考虑提纯能耗的氢网络提纯优化 |
刘桂莲, 王颖佳 |
西安交通大学 化学工程与技术学院, 西安 710049 |
Optimization of a hydrogen network with consideration of the energy consumption for purification |
LIU Guilian, WANG Yingjia |
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China |
摘要:
| |||
摘要由于环保法规的日益严格以及原油的重质化使得炼厂迫切需要降低新氢消耗,提纯回用可降低新氢消耗,但是提纯过程将增加能耗。为了权衡两者变化关系以确定系统最优提纯流量,该文根据概念法确定氢网络公用工程节省量和夹点随流量变化线,综合考虑变压吸附提纯的相关费用,做出节省新氢费用-流量线和提纯费用-流量线,通过图像分析法确定最优的提纯流量和临界提纯流量。应用此方法对某石化企业氢网络分析结果为:该系统的临界提纯流量为4.8 mol/s,最优提纯量为60.74 mol/s,最优提纯流量下,新氢节约量为29.03 mol/s,提纯后可节约费用 2.41×106 US$/a。 | |||
关键词 :氢网络,提纯,能耗,优化 | |||
Abstract:Increasing stringent environmental regulations and the increased processing of inferior crude oils require that refineries reduce fresh hydrogen consumption. This can be achieved by purification of the hydrogen. However, the energy consumption for purification must be considered in the system. The study balances both factors to determine the optimal purification feed flow rate (PFFR). The pinch concept is used to relate the hydrogen utility savings (HUS) and the purification feed flow rate. The cost versus PFFR diagram includes the pressure swing adsorption (PSA) cost with an HUS cost versus PFFR line and a purification cost versus PFFR line to identify the optimal PFFR and the limiting PFFR. The hydrogen network of a petrochemical enterprise is optimized using this method with the results showing that the limiting PFFR is 4.8 mol/s, the optimal PFFR is 60.74 mol/s , and the annual cost can be decreased by 2.41×106 US$/a. | |||
Key words:hydrogen networkpurificationenergy consumptionoptimization | |||
收稿日期: 2015-09-01 出版日期: 2016-07-22 | |||
| |||
基金资助:国家自然科学基金资助项目(21476180) |
引用本文: |
刘桂莲, 王颖佳. 考虑提纯能耗的氢网络提纯优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 717-722. LIU Guilian, WANG Yingjia. Optimization of a hydrogen network with consideration of the energy consumption for purification. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 717-722. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.019或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/717 |
图表:
图1 夹点位于氢阱连接线 |
图2 公用工程节省量与提纯量定量关系曲线 |
图3 PSA 提纯操作费用与节省新氢费用的比较 |
表1 氢源和氢阱数据 |
图4 提纯量与公用工程节省量的简化关系图 |
图5 费用与提纯量的关系图 |
参考文献:
[1] Alves J. Analysis and Design of Refinery Hydrogen Distribution Systems[D]. Manchester, UK:University of Manchester, 1999. [2] LIU Fengru, ZHANG Nan. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10):1315-1330. [3] Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17):5986-5995. [4] Ng D K S, Foo D C Y, Tan R R, et al. Automated targeting for conventional and bilateral property-based resource conservation network[J]. Chemical Engineering Journal, 2009, 149(1):87-101. [5] Ng D K S, Foo D C Y, Tan R R. Automated targeting technique for single-impurity resource conservation networks. Part 1:Direct reuse/recycle[J]. Industrial & Engineering Chemistry Research, 2009, 48(16):7637-7646. [6] Ng D K S, Foo D C Y, Tan R R. Automated targeting technique for single-impurity resource conservation networks. Part 2:Single-pass and partitioning waste-interception systems[J]. Industrial & Engineering Chemistry Research, 2009, 48(16):7647-7661. [7] Ng D K S, Foo D C Y, Tan R R, et al. Automated targeting technique for concentration-and property-based total resource conservation network[J]. Computers & Chemical Engineering, 2010, 34(5):825-845. [8] Nelson A M, Liu Y. Hydrogen-pinch analysis made easy[J]. Chemical Engineering, 2008, 115(6):56-61. [9] Bandyopadhyay S. Source composite curve for waste reduction[J]. Chemical Engineering Journal, 2006, 125(2):99-110. [10] ZHANG Qiao, FENG Xiao, LIU Guilian, et al. A novel graphical method for the integration of hydrogen distribution systems with purification reuse[J]. Chemical Engineering Science, 2011, 66(4):797-809. [11] LIU Guilian, LI Hao, FENG Xiao, et al. A conceptual method for targeting the maximum purification feed flow rate of hydrogen network[J]. Chemical Engineering Science, 2013, 88(12):33-47. [12] LIU Guilian, LI Hao, FENG Xiao, et al. Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle[J]. AIChE Journal, 2013, 59(6):1964-1980. [13] LI Hao. A Novel Concept Method to Identify the Optimal Purification Flow Rate of the Hydrogen Network with Purification Reuse[D]. Xi'an:Xi'an Jiaotong University, 2012. [14] JIA Nan, ZHANG Nan. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8):4663-4670. [15] LIAO Zuwei, WANG Jingdai, YANG Yongrong, et al. Integrating purifiers in refinery hydrogen networks:A retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3):233-241. [16] LIAO Zuwei, RONG Gang, WANG Jingdai, et al. Rigorous algorithmic targeting methods for hydrogen networks-Part I:Systems with no hydrogen purification[J]. Chemical Engineering Science, 2011, 66(5):813-820. [17] DENG Chun, PAN Huaimin, LI Yantao, et al. Comparative analysis of different scenarios for the synthesis of refinery hydrogen network[J]. Applied Thermal Engineering, 2014, 70(2):1162-1179. [18] Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming approach[J]. Industrial & Engineering Chemistry Research, 2014, 53(51):19715-19735. [19] Towler G P, Mann R, Serriere A J L, et al. Refinery hydrogen management:cost analysis of chemically-integrated facilities[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2378-2388. [20] Aden A, Foust T. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol[J]. Cellulose, 2009, 16(4):535-45. |
相关文章:
|