高校师生群体间人员接触网络研究 |
马勋, 申世飞, 倪顺江, 雍诺 |
清华大学 工程物理系, 公共安全研究院, 北京 100084 |
Student-teacher networks in university research institutes |
MA Xun, SHEN Shifei, NI Shunjiang, YONG Nuo |
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要为了研究高校师生群体之间的接触特性, 该文通过视频监控的手段收集了相关接触数据, 构建了该高校某研究所师生群体间的人员接触网络, 并分析了该网络的度分布、聚类系数、层次性及社团结构等特性。统计结果显示, 该研究所人员接触网络所表现出的特征兼有ER(Erdos-Renyi) 随机网络和WS(Watts-Strogatz) 小世界网络的部分特征, 同时又呈现出丰富的层次结构和模块化特性, 这些特征使得该网络明显区别于现有的ER随机网络和WS小世界网络。师生关系对于该人员接触网络的拓扑结构影响明显。该研究成果可为构建一般工作场所的人群接触网络模型提供实证研究基础, 对研究工作场所中传染病、信息等的传播动力学模型具有重要意义。 | |||
关键词 :人员接触网络,度分布,群组结构 | |||
Abstract:Student-teacher relationships in a university were analyzed using contact data from surveillance videos to calculate distributions, clustering coefficients, k-cores and community structures. The results show that the contact networks have some characteristics of ER random networks and WS small world networks, but with many more k-cores and communities. The relationships between the teachers and students play an important role in the network structure. The results provide empirical data for building contact network models in workplaces and for the study of information and epidemic spreading in workplaces. | |||
Key words:contact networksdegree distributiongroup structures | |||
收稿日期: 2015-12-27 出版日期: 2016-05-19 | |||
| |||
通讯作者:倪顺江, 讲师, E-mail: sjni@tsinghua.edu.cnE-mail: sjni@tsinghua.edu.cn |
引用本文: |
马勋, 申世飞, 倪顺江, 雍诺. 高校师生群体间人员接触网络研究[J]. 清华大学学报(自然科学版), 2016, 65(5): 538-543. MA Xun, SHEN Shifei, NI Shunjiang, YONG Nuo. Student-teacher networks in university research institutes. Journal of Tsinghua University(Science and Technology), 2016, 65(5): 538-543. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.013或 http://jst.tsinghuajournals.com/CN/Y2016/V65/I5/538 |
图表:
图1 研究所布局平面图 |
图2 研究所人员接触网络拓扑结构示意 |
图3 三种网络度分布对比 |
图4 ER 随机网络拓扑结构示意 |
图5 WS小世界网络拓扑结构示意 |
表1 三种网络群组特性统计 |
图6 人员接触网络的kG核分解示意 |
参考文献:
[1] Erd s P, Rényi A. On the evolution of random graphs[J].Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 38(1):17-61. [2] Barabâsi A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations[J].Physica A Statistical Mechanics & Its Applications, 1977, 6(2):66-70. [3] Newman M E. The structure of scientific collaboration networks[J].Working Papers, 2000,98(2):404-409. [4] Fass C, Ginelli M, Turtle B. Six Degree of Kevin Bacon[M]. New York:Plume Books, 1996. [5] Achacoso T B, Yamamoto W S. AY's Neuroanatomy of C. Elegans for Computation[M]. Boca Raton, Florida:CRC Press, 1991. [6] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000,407(6804):651-654 [7] Barabási A L, Albert R, Jeong H. Scale-free characteristic of random networks:The topology of the world-wide web[J].Physica A Statistical Mechanics & Its Applications, 2000,281(s1-4):9-77. [8] Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J].Nature, 1998,393(6684):440-442. [9] Guare J. Six Degrees of Separation:A Play[M]. New York, USA:Vintage, 1990. [10] Barabasi A L, Albert R. Emergence of scaling in random networks[J].Science, 1999,286(5439):509-512. [11] Seidman S B. Network structure and minimum degree[J].Social Networks,1983,5(3):269-287. [12] Newman M E J. Modularity and community structure in networks[C]//2006 APS March Meeting. Baltimore, USA:American Physical Society, 2006:8577-8582. [13] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J].Physical Review Letters, 2000,86(14):3200-3203. [14] Claudio C, Romualdo P S. Thresholds for epidemic spreading in networks[J].Physical Review Letters,2010,105(21):3305-3305. [15] Granovetter M S. The strength of weak ties[J].Social Science Electronic Publishing, 1973,13(2):1360-1380. [16] Watts D J, Bak P. Small worlds:The dynamics of networks between order and randomness[J]. Sigmod Record, 1999, 31(2):74-75. [17] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J].Nature, 2000,406(6754):378-382. [18] Hueta-Quintanilla R. Modelong social network topologies in elementary schools[J].Plos One, 2013, 8(2):e55371. [19] Stehlé J, Voirin N, Barrat A, et al. High-resolution measurements of face-to-face contact patterns in a primary school[J]. Plos One, 2011, 6(8):23176-231789. [20] Bollobás B, Riordan O M. Mathematical Results on Scale-free Random Graphs[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2003:1-37. [21] Mahadevan P, Krioukov D, Fomenkov M, et al. Lessons from three views of the internet topology[J].Bone & Joint Journal,2013,95-B(11):1450-1452. [22] Bae J, Kim S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness[J]. Physica A Statistical Mechanics and Its Applications,2014,395(C):549-559. [23] Adiga A, Vullikanti A K S. How Robust is the Core of a Network?[M]. Berlin Heidelberg:Springer, 2013:541-556. |
相关文章:
|