删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于分布式视频网络的交叉口车辆精确定位方法

清华大学 辅仁网/2017-07-07

基于分布式视频网络的交叉口车辆精确定位方法
杨德亮1,2, 谢旭东1, 李春文1, 牛小铁2
1. 清华大学自动化系, 北京 100084;
2. 北京工业职业技术学院机电工程系, 北京 100042
Accurate vehicle location method at an intersection based on distributed video networks
YANG Deliang1,2, XIE Xudong1, Li Chunwen1, NIU Xiaotie2
1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Department of Mechanical and Electrical Engineering, Beijing Polytechnic College, Beijing 100042, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要为了对交叉口车辆的位置进行准确定位, 提出了一种分布式视频网络架构下车辆精确定位方法。在分布式视频网络中每处摄像机架设位置均设有2类摄像机: 近景摄像机和远景摄像机。首先在近景摄像机拍摄范围内, 对感兴趣区域内车辆进行身份识别, 根据车牌照平面与道路平面垂直的约束条件, 建立车牌照模型来对车辆精确定位; 接着在远景摄像机拍摄范围内, 采用融合局部二值模式(LBP)纹理特征的金字塔稀疏光流法实时跟踪车辆上局部特征点, 根据特征点运动趋势相似性获得稳态特征点, 来对车辆位置估计; 最后根据不同摄像机检测结果, 采用加权一致性信息融合算法来提高车辆定位精度。实验结果表明: 该方法能对交叉口车辆位置进行精确定位。
关键词 车辆精确定位,分布式视频网络,加权一致性信息融合,车牌照模型
Abstract:A robust framework is given for precise vehicle localization in intersections using distributed video networks. Each intersection is equipped with short-range and long-range cameras in a distributed video network. If the vehicle is in the shooting range of the short-range camera, within the region of interest for vehicle identification, and the license plate is perpendicular to the road plane, a vehicle license plate model is used to accurately locate the vehicle position. If the vehicle is in the shooting range of the long-range camera, a pyramid sparse optical flow algorithm with LBP texture features is used in real-time to track the local feature points on the vehicle to estimate the vehicle position based on stable feature points obtained from the similar motions. Finally, information is exchanged between the cameras, a weighted consensus information fusion algorithm is used to obtain a globally optimal estimate of the vehicle position. Tests show that this method can accurately locate the vehicle position at intersections.
Key wordsprecise vehicle locationdistributed video networksweighted consensus information fusionvehicle license plate model
收稿日期: 2015-11-02 出版日期: 2016-04-01
ZTFLH:TN911.73
通讯作者:谢旭东,副教授,E-mail:xdxie@tsinghua.edu.cnE-mail: xdxie@tsinghua.edu.cn
引用本文:
杨德亮, 谢旭东, 李春文, 牛小铁. 基于分布式视频网络的交叉口车辆精确定位方法[J]. 清华大学学报(自然科学版), 2016, 56(3): 281-286,293.
YANG Deliang, XIE Xudong, Li Chunwen, NIU Xiaotie. Accurate vehicle location method at an intersection based on distributed video networks. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 281-286,293.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.033 http://jst.tsinghuajournals.com/CN/Y2016/V56/I3/281


图表:
图1 道路上方网络摄像机固定架设示意图
图2 摄像机架设图和2类摄像机拍摄的图像
图3 系统处理流程图
图4 车牌照尺寸和模型
图5 跟踪特征点对车辆位置估计
图6 摄像机i中加权一致性信息融合的车辆位置跟踪流程图
图7 实验场所
图8 某时间段车辆定位结果对比图
表1 车辆定位结果的平均误差和有效范围对比表


参考文献:
[1] Buch N, Velastin S A, Orwell J. A review of computer vision techniques for the analysis of urban traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3):920-939.
[2] Ghosh N, Bhanu B. Incremental unsupervised three-dimensional vehicle model learning from video[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2):423-440.
[3] Chang W C, Cho C W. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B:Cybernetics. 2010, 40(3):892-902.
[4] Kanhere N K, Birchfield S T. Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features[J]. IEEE Transactions on Intelligent Transportation Systems. 2008, 9(1):148-160.
[5] Bhanu B, Ravishankar C V, Roy-Chowdhury A K, et al. Distributed Video Sensor Networks[M]. London, UK:Springer London, 2011.
[6] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems[J]. In Proceedings of the IEEE, 2007, 95(1):215-233.
[7] Olfati-Saber R. Kalman-consensus filter:optimality, stability, and performance[C]//In IEEE Conference on Decision and Control. Shanghai, China:IEEE Press, 2009:7036-7042.
[8] Kamal A T, Ding C, Song B, et al. A generalized kalman consensus filter for wide area video networks[C]//In IEEE Conference on Decision and Control. Orlando, FL, USA:IEEE Press, 2011:7863-7869.
[9] Kamal A T, Farrell J A, Roy-Chowdhury A K. Information weighted consensus filters and their application in distributed camera networks[J]. IEEE Transactions on Automatic Control, 2013, 58(12):3112-3125.
[10] Yang D L, Chen Y Z, Xin L, et al. Real-time detecting and tracking of traffic shockwaves based on weighted consensus information fusion in distributed video network[J]. IET Intelligent Transport Systems. 2014, 8(4):377-387.
[11] Hofleitner A, Herring R, Bayen A. Arterial travel time forecast with streaming data:a hybrid approach of flow modeling and machine learning[J]. Transportation Research Part B, 2012, 46(9):1097-1122.
[12] Du S, Ibrahim M, Shehata M, et al. Automatic license plate recognition (ALPR):a state-of-the-art review[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(2):311-325.
[13] Mithun N C, Rashid N U, Rahman S M M. Detection and classification of vehicles from video using multiple time-spatial images[J]. IEEE Transactions on Intelligent Transportation Systems. 2012,13(3):1215-1225.
[14] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002,24(7):971-987.
[15] Shi J, Tomasi C. Good features to track[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle:IEEE Press, 1994:593-600.
[16] GA36-2007. 中华人民共和国机动车号牌[S]. 北京:中华人民共和国公安部, 2007. GA36-2007. License plate of motor vehicle of the People's Republic of China[S].Beijing:the ministry of public security of the People's Republic of China, 2007. (in Chinese)
[17] 杨德亮, 谢旭东, 李春文, 等. 基于车牌照模型的大地坐标系下车辆精确定位[J]. 清华大学学报(自然科学版), 2014,54(12):1566-1572. YANG Deliang, XIE Xudong, LI Chunwen, et al. Precise vehicle location under geodetic coordinate based on vehicle license plate model[J]. Journal of Tsinghua University, 2014,54(12):1566-1572. (in Chinese)
[18] Kay S M. Fundamentals of Statistical Signal Processing, Volume I:Estimation Theory[M]. Upper Saddle River, NJ, USA:Prentice Hall, 1993.


相关文章:
No related articles found!

相关话题/车辆 网络 北京 信息 道路