轴系的热膨胀对于锥齿轮错位量的影响 |
田程1, 周驰1, 丁炜琦2, 桂良进1, 范子杰1 |
1. 清华大学 汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084; 2. 陕西汉德车桥有限公司, 西安 710201 |
Influence of the thermal expansion of a shaft on the misalignment of bevel gears |
TIAN Cheng1, ZHOU Chi1, DING Weiqi2, GUI Liangjin1, FAN Zijie1 |
1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China; 2. Shaanxi Hande Axle Co., Ltd, Xi'an 710201, China |
摘要:
| |||
摘要错位量对锥齿轮传动性能影响显著, 而轴系的热膨胀会影响传动系统刚度, 进而影响错位量。该文针对现有锥齿轮校核和分析时没有考虑轴系的热膨胀对错位量的影响这一问题, 详细推导了热膨胀与轴承刚度、轴系变形之间的关系, 建立了一种考虑热膨胀的锥齿轮传动系统非线性有限元模型, 并用于计算锥齿轮错位量。算例结果表明, 热膨胀会使锥齿轮错位量减小。进一步研究了不同工作温度下错位量的变化情况, 结果表明, 系统工作温度越高, 热膨胀的影响越明显。该研究为锥齿轮校核和分析中如何考虑和利用热膨胀提供了依据, 对其他传动系统的分析也具有一定借鉴意义。 | |||
关键词 :锥齿轮错位量,热膨胀,有限元方法,轴承刚度,系统变形 | |||
Abstract:Misalignment can significantly impact the force transmission in bevel gears. The thermal expansion of the shaft can impact the stiffness of the transmission system which further influences the misalignment. The effect of the thermal expansion of the shaft on the misalignment is given by a relationship between the thermal expansion and the bearing stiffness and shaft system deformation. A non-linear finite element model is built to model a bevel gear transmission system with the thermal expansion to calculate the bevel gear misalignment. The results show that the thermal expansion reduces the bevel gear misalignment with higher working temperatures giving greater thermal expansion effects. The results describe how to use the expansion effect for bevel gear rating and design. | |||
Key words:misalignments of bevel gearsthermal expansionfinite element methodbearing stiffnesssystem deformation | |||
收稿日期: 2015-04-27 出版日期: 2016-07-01 | |||
| |||
通讯作者:范子杰, 教授, E-mail: zjfan@tsinghua.edu.cnE-mail: zjfan@tsinghua.edu.cn |
引用本文: |
田程, 周驰, 丁炜琦, 桂良进, 范子杰. 轴系的热膨胀对于锥齿轮错位量的影响[J]. 清华大学学报(自然科学版), 2016, 56(6): 565-571. TIAN Cheng, ZHOU Chi, DING Weiqi, GUI Liangjin, FAN Zijie. Influence of the thermal expansion of a shaft on the misalignment of bevel gears. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 565-571. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.013或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/565 |
图表:
![]() |
图1 汽车主减速器 |
![]() |
图2 轴承局部坐标系 |
![]() |
图3 滚子切片示意图 |
![]() |
图4 锥齿轮简化模型 |
![]() |
图5 锥齿轮错位量定义 |
![]() |
表1 准双齿面齿轮基本参数 |
![]() |
表2 热膨胀对错位量的影响 |
![]() |
表3 不同温度下错位量的计算结果 |
![]() |
图6 不同轴承温度下综合错位量的计算结果 |
参考文献:
[1] The Gleason Works. Bending and Contact Stresses in Hypoid Gear Teeth [R]. New York: The Gleason Works, 1981. [2] 苏进展, 方宗德. 弧齿锥齿轮印痕稳定性优化设计与试验 [J]. 航空动力学报, 2012, 27(11): 2622-2628.SU Jinzhan, FANG Zongde. Optimization design and test of stability of contact patterns of spiral bevel gears [J]. Journal of Aerospace Power, 2012, 27(11): 2622-2628. (in Chinese) [3] 刘光磊, 张瑞庭, 赵宁, 等. 安装误差对航空弧齿锥齿轮传动误差曲线的影响分析[J]. 航空发动机, 2012, 38(2): 32-35.LIU Guanglei, ZHANG Ruiting, ZHAO Ning, et al. Effect of installation error on transmission error curve for aero spiral bevel gears [J]. Aeroengine, 2012, 38(2): 32-35. (in Chinese) [4] 田久良, 洪军, 朱永生, 等. 机床主轴-轴承系统热-力耦合模型及其动态性能研究 [J]. 西安交通大学学报, 2012, 46(7): 63-68.TIAN Jiuliang, HONG Jun, ZHU Yongsheng, et al. Thermo-mechanical coupling model and dynamical characteristics of machining spindle-bearing system [J]. Journal of Xi'an Jiaotong University, 2012, 46(7): 63-68. (in Chinese) [5] 国家机械工业局. 汽车驱动桥台架试验方法: QC-T 533—1999 [S]. 北京: 中国标准出版社, 1999.State Administration of Machinery Industry. Automotive Drive Axle Bench Test Method: QC-T 533—1999 [S]. Beijing: Standards Press of China, 1999. (in Chinese) [6] 冯喜成, 张步良, 杨建军. 驱动桥支撑刚性对齿轮啮合特性的影响分析 [J]. 汽车技术, 2010(8): 20-23.FENG Xicheng, ZHANG Buliang, YANG Jianjun. Analysis on effects of driving axle support rigidity on gear engagement characteristic [J]. Automobile Technology, 2010(8): 20-23. (in Chinese) [7] 刘显军, 洪军, 朱永生, 等. 多支承轴系轴承受力与刚度的有限元迭代计算方法 [J]. 西安交通大学学报, 2010, 44(11): 41-45.LIU Xianjun, HONG Jun, ZHU Yongsheng, et al. Iterative method to solve bearing's force and stiffness for a multi-support spindle system based on finite element analysis [J]. Journal of Xi'an Jiaotong University, 2010, 44(11): 41-45. (in Chinese) [8] Demirhan N, Kanber B. Stress and displacement distributions on cylindrical roller bearing rings using FEM [J]. Mechanics Based Design of Structures and Machines, 2008, 36(1): 86-102. [9] Guo Y, Parker R G. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model [J]. Mechanism and Machine Theory, 2012, 51: 32-45. [10] Harris T, Kotzalas M. 滚动轴承分析 [M]. 5版. 罗继伟, 马伟, 杨咸启, 等, 译. 北京: 机械工业出版社, 2010.Harris T, Kotzalas M. Rolling Bearing Analysis [M]. 5th Ed. LUO Jiwei, MA Wei, YANG Xianqi, et al. trans. Beijing: China Machine Press, 2010. (in Chinese) [11] Lim T, Singh R. Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation [J]. Journal of Sound and Vibration, 1990, 139(2): 179-199. [12] 程尧舜. 弹性力学基础 [M]. 上海: 同济大学出版社, 2009.CHENG Yaoshun. Elastic Mechanics Basis [M]. Shanghai: Tongji University Press, 2009. (in Chinese) |
相关文章:
|