删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

纳米流体沸腾模型中某些物理参数的理论探讨

清华大学 辅仁网/2017-07-07

纳米流体沸腾模型中某些物理参数的理论探讨
袁杨1,2, 李祥东2, 屠基元1,2
1. 清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084, 中国;
2. 墨尔本皇家理工大学 航空与机械工程学院, 维多利亚 3083, 澳大利亚
Numerical investigation of boiling model parameters for nanofluids
YUAN Yang1,2, LI Xiangdong2, TU Jiyuan1,2
1. Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria 3083, Australia

摘要:

输出: BibTeX | EndNote (RIS)
摘要纳米流体核态沸腾理论预测模型的缺乏阻碍了其作为高效换热介质在工业系统中的应用。为实现对纳米流体核态沸腾的准确预测和计算, 该文在现有实验基础上对纳米流体核态沸腾的特有现象进行了机理分析, 建立了一系列的封闭方程来修正和完善经典的壁面热通量拆分模型, 将模拟结果与纳米流体及纯工质核态沸腾的实验数据进行了对比, 对模型中的一些物理参数进行了理论探讨。研究表明: 采用壁面热通量拆分模型模拟纳米流体核态沸腾的关键在于准确模拟纳米包覆层对汽泡成核、生长及脱离规律的影响, 特别是要准确把握壁面润湿性及壁面形态变化对核态沸腾特征的影响。
关键词 传热学,纳米流体,核态沸腾,热通量拆分模型,参数
Abstract:The lack of accurate boiling heat transfer models for nanofluids limits their applications in industrial systems. This study describes the mechanisms for nucleate pool boiling of nanofluids based on experimental results in the literature. New closure correlations are given for the nucleate boiling parameters to improve the classical heat flux partitioning model. The numerical results agree well with available experimental data. The most important task when modeling nucleate boiling of nanofluids is to accurately predict the effects of the surface wettability and surface morphology caused by the nano-coating on the bubble nucleation, growth and departure from the heater surface.
Key wordsheat transfernanofluidsnucleate boilingheat flux partitioning modelparameter
收稿日期: 2014-01-14 出版日期: 2015-09-18
ZTFLH:TK124
通讯作者:屠基元,教授,E-mail:jiyuan.tu@rmit.edu.auE-mail: jiyuan.tu@rmit.edu.au
引用本文:
袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
YUAN Yang, LI Xiangdong, TU Jiyuan. Numerical investigation of boiling model parameters for nanofluids. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 815-820.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I7/815


图表:
图1 各汽泡脱离直径计算式与 实验数据(文[3])的对比[9]
图2 汽泡直径公式(式(2))计算结果与 实验数据(文[2])对比
图3 各活化核心密度计算式与实验数据的对比
图4 静态接触角对活化核心密度预测的影响
图5 纳米颗粒直径对活化核心密度预测的影响
图6 静态接触角对传热系数的影响
图7 纳米颗粒直径对传热系数的影响
图8 纳米流体传热系数的提升与表面颗粒相互 影响参数的实验数据汇总图


参考文献:
[1] 李祥东, 屠基元. 纳米流体核态沸腾的机理探讨及数值模拟 [J]. 工程热物理学报, 2013, 34(6): 1096-1100.LI Xiangdong, TU Jiyuan. Mechanistic modelling of nucleate boiling of nanofluids [J]. Journal of Engineering Thermophysics, 2013, 34(6): 1096-1100. (in Chinese)
[2] Yeoh G, Tu J. Modelling Subcooled Boiling Flows [M]. New York: Nova Science Publishers, 2009: 5-36.
[3] Gerardi C, Buongiorno J, Hu L, et al. Infrared thermometry study of nanofluid pool boiling phenomena [J]. Nanoscale Research Letters, 2011, 6(1): 1-17.
[4] Phan H, Caney N, Marty P, et al. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism [J]. International Journal of Heat and Mass Transfer, 2009, 52(23): 5459-5471.
[5] Kim S, Bang I, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux [J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4105-4116.
[6] Ganapathy H, Sajith V. Semi-analytical model for pool boiling of nanofluids [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 32-47.
[7] Benjamin R, Balakrishnan A. Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties [J]. Experimental Thermal and Fluid Science, 1997, 15(1): 32-42.
[8] Wang C, Dhir V. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface [J]. Journal of Heat Transfer, 1993, 115(3): 659-669.
[9] Li X, Li K, Tu J, et al. On two-fluid modeling of nucleate boiling of dilute nanofluids [J]. International Journal of Heat and Mass Transfer, 2014, 69: 443-450.
[10] Wu J, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement: Research gap to engineering application [J]. Progress in Nuclear Energy, 2013, 66: 13-24.
[11] Das S, Narayan G, Baby A. Survey on nucleate pool boiling of nanofluids: The effect of particle size relative to roughness [J]. Journal of Nanoparticle Research, 2008, 10(7): 1099-1108.
[12] Narayan G, Baby A, Das S. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes [J]. Journal of Applied Physics, 2007, 102(7): 074317-1-074317-7.
[13] Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids [J]. Journal of Nanoparticle Research, 2005, 7(2/3): 265-274.
[14] Das S, Putra N, Roetzel W. Pool boiling nano-fluids on horizontal narrow tubes [J]. International Journal of Multiphase Flow, 2003, 29: 1237-1247.
[15] Bang I, Chang S. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool [J]. International Journal of Heat and Mass Transfer, 2005, 48: 2407-2419.


相关文章:
[1]李佳徽, 张焱, 栾凤宇, 李雪茹, 周来, 周世东. 基于多径指纹的概率匹配室内定位方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 514-519,525.
[2]张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
[3]黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
[4]于华龙,赵争鸣,袁立强,鲁挺,姬世奇. 高压IGBT串联变换器直流母排设计与杂散参数分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 540-545.
[5]张金换, 刘卫国, 李景涛, 赵福全. 行人头型冲击器试验有限元建模及敏感参数分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 294-298.
[6]陈利高, 刘晓波, 龚建, 王侃, 董传江, 荣茹, 鲁艺. 中子多重性探测器搭建及参数标定[J]. 清华大学学报(自然科学版), 2014, 54(2): 159-163.

相关话题/纳米 实验 数据 传热 计算