删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

静电卡盘与晶圆之间稀薄气体传热的影响因素

清华大学 辅仁网/2017-07-07

静电卡盘与晶圆之间稀薄气体传热的影响因素
孙钰淳, 程嘉, 路益嘉, 侯悦民, 季林红
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Factors influcing rarefied gas heat transfer between a wafer and an electrostatic chuck
SUN Yuchun, CHENG Jia, LU Yijia, HOU Yuemin, JI Linhong
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要通过在晶圆背面填充稀薄气体的方式来对晶圆进行冷却或加热是等离子体刻蚀工艺中的一项关键技术。该文对晶圆与静电卡盘之间的稀薄气体传热问题进行了解析建模, 给出了一个适用于整个气压范围的气体导热解析表达式, 并用直接模拟Monte Carlo方法验证了其准确性。基于该解析模型, 还对气体压强、狭缝距离、热适应系数和气体温度等影响传热系数的参数进行了研究, 发现狭缝距离和气体温度对传热系数影响较弱, 即静电卡盘表面形貌(如凸台高度等)和刻蚀温度对于静电卡盘与晶圆之间的传热效果影响不大; 而气体压强和热适应系数都表现出对传热系数有明显的影响。因此, 在实际的刻蚀工艺中, 可以通过调节气体压强来改变静电卡盘与晶圆之间的传热效果。
关键词 传热,静电卡盘,稀薄气体,温度,气压,狭缝尺度,热适应系数
Abstract:Wafer cooling/heating by gas flow along the backside of the wafer is a key part of the plasma-etching process. The rarefied gas heat transfer across the gap between the wafer and the electrostatic chuck is modeled in this article with an analytical equation developed for the entire pressure range whose predictions are verified by direct simulation Monte Carlo results. The model is then used to investigate the effects of the gas pressure, gap size, accommodation coefficient and gas temperature on the heat transfer coefficient. The gap size and gas temperature have little influence, so the etching temperature and the surface profiles like the height have little effect on the heat transfer between the wafer and the electrostatic chuck. However, the gas pressure and the accommodation coefficient significantly impact the heat transfer coefficient. Therefore, changes in the gas pressure during the etching process will significantly affect the heat transfer between the wafer and the electrostatic chuck.
Key wordsheat transferelectrostatic chuckrarefied gastemperaturepressuregap sizeaccommodation coefficient
收稿日期: 2015-02-01 出版日期: 2015-09-18
ZTFLH:TL331
通讯作者:季林红,教授,E-mail:jilh@tsinghua.edu.cnE-mail: jilh@tsinghua.edu.cn
引用本文:
孙钰淳, 程嘉, 路益嘉, 侯悦民, 季林红. 静电卡盘与晶圆之间稀薄气体传热的影响因素[J]. 清华大学学报(自然科学版), 2015, 55(7): 756-760.
SUN Yuchun, CHENG Jia, LU Yijia, HOU Yuemin, JI Linhong. Factors influcing rarefied gas heat transfer between a wafer and an electrostatic chuck. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 756-760.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I7/756


图表:
图1 不同模型表达式下传热系数随气压的变化曲线
图2 气体压强对于传热系数的影响(α=1,g=10μm)
图3 气体温度对于传热系数的影响 (p=10Torr,α=0.5,g=10μm)
图4 不同气压下狭缝距离对传热系数的影响 (α=1,T1=273K,T2=373K)
图5 狭缝距离对传热系数的影响 (p=10Torr,α=0.5,T1=273K,T2=373K)
图6 热适应系数对于传热系数的影响 (T1=273K,T2=373K,g=2μm)
图7 热适应系数对于传热系数的影响 (p=10Torr,T1=273K,T2=373K,g=10μm)


参考文献:
[1] Brezmes A O, Breitkopf C. Simulation of inductively coupled plasma with applied bias voltage using COMSOL [J]. Vacuum, 2014, 109: 52-60.
[2] Woo J C, Kim S H, Kim C I. Etch characteristics of TiN/Al2O3 thin film by using a Cl2/Ar adaptive coupled plasma [J]. Vacuum, 2011, 86(4): 403-408.
[3] Kanno S, Edamura M, Yoshioka K, et al. High-temperature electrostatic chuck for nonvolatile materials dry etch [J]. J Vac Sci Technol B, 2005, 23(1): 113-118.
[4] Nojiri K. Dry Etching Technology for Semiconductors [M]. Cham, Switzerland: Springer International Publishing, 2015.
[5] Springer G. Heat transfer in rarefied gases [J]. Advances in Heat Transfer, 1971, 7: 163-218.
[6] Song S, Yovanovich M, Nho K. Thermal gap conductance: Effects of gas pressure and mechanical load [J]. J Thermophysics and Heat Transfer, 1992, 6(1): 62-68.
[7] Klick M, Bernt M. Microscopic approach to an equation for the heat flow between wafer and E-chuck [J]. J Vac Sci Technol B, 2006, 24(6): 2509-2517.
[8] Samir T. Improving Wafer Temperature Uniformity for Etch Application [D]. Lubbock: Texas Technology University, 2003.
[9] 刘静. 刻蚀工艺静电卡盘温度仿真及真空测温技术研究[D]. 北京: 北京工业大学, 2012. LIU Jing. Temperature Simulation on ESC in Etching Process and Study on Measurement Method with Vacuum System [D]. Beijing: Beijing University of Technology, 2012. (in Chinese)
[10] Moon M D, Gambino J P, Adderly S A, et al. The effect of backside roughness on Al interconnect dimensions for RF CMOS SOI devices [C]//Proc Advanced Semiconductor Manufacturing Conference (ASMC) 25th Annual SEMI. New York, 2014: 384-388.
[11] Kennard E. Kinetic Theory of Gases [M]. New York: McGraw-Hill, 1938.
[12] Dushman S, Lafferty J M, Brown S C. Scientific foundations of vacuum technique [J]. American Journal of Physics, 1962, 30(8): 612.
[13] Bird G A. DS1V Program [R/OL]. [2014-12-30]. http://www.gab.com.au/.


相关文章:
[1]袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
[2]朱志明, 范开果, 刘晗, 王永东. 低气压对自保护药芯焊丝电弧特性的影响[J]. 清华大学学报(自然科学版), 2015, 55(7): 734-738.
[3]林鹏,胡杭,郑东,李庆斌. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[4]郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
[5]左正,胡昱,李庆斌,李炳锋,黄涛. 基于实际通水监测的大体积混凝土数字温度监测[J]. 清华大学学报(自然科学版), 2015, 55(1): 21-26.
[6]虞君武,何榕,张衍国. 分形颗粒在低Reynolds数条件下传热特性[J]. 清华大学学报(自然科学版), 2014, 54(6): 781-786.
[7]黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
[8]卓子寒, 王婕, 翟伟明, 王亨, 唐劲天. 热籽介导磁感应热疗稳态温度场仿真[J]. 清华大学学报(自然科学版), 2014, 54(5): 638-642.
[9]蔡东阳, 卓子寒, 王婕, 武建安, 唐劲天. 基于模拟退火算法的磁感应治疗热籽分布[J]. 清华大学学报(自然科学版), 2014, 54(2): 153-158.

相关话题/传热 工艺 混凝土 北京 系数