基于大涡模拟的圆管脉动湍流减阻数值分析 |
宁涛, 顾春伟 |
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 北京 100084 |
Numerical analysis of the drag reduction for turbulent pulsating pipe flows based on large eddy simulations |
NING Tao, GU Chunwei |
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要该文利用商业软件ANSYS-CFX对圆管中的脉动湍流进行了大涡模拟,分析了脉动流的减阻特性和总能耗。文中的脉动流算例包括稳态流主控和振荡流主控两种流态。结果表明:脉动流通过叠加适合的振荡流来改变稳态流的边界层特性,脉动幅值为5.5时得到最佳减阻率为25%;当脉动流的流态由振荡流主控且振荡流分量的边界层为层流时,减阻效果较好;简单正弦形式脉动流的总能耗高于相应的稳态流。 | |||
关键词 :圆管脉动流,湍流,大涡模拟,减阻,能耗 | |||
Abstract:Large eddy simulations were conducted for turbulent pulsating flows using the commercial solver ANSYS-CFX. The drag reduction and the total energy consumption for pulsating flows were analyzed. The simulations included current dominated and wave dominated pulsating flows. The boundary layer characteristics of the current flow were affected by the superposition of the wave flow. The best drag reduction in the pulsating flows gave a 25% drag reduction when the non-dimensional pulsating amplitude was 5.5. The analysis indicates that the drag reduction is optimized when the pulsating flow is wave dominated and the wave boundary layer is laminar. Pulsating flows with simple sinusoidal pulsating patterns consume much more energy than steady flows. | |||
Key words:pulsating pipe flowsturbulencelarge eddy simulationdrag reductionenergy consumption | |||
收稿日期: 2016-03-23 出版日期: 2017-05-20 | |||
| |||
通讯作者:顾春伟,教授,E-mail:gcw@tsinghua.edu.cnE-mail: gcw@tsinghua.edu.cn |
引用本文: |
宁涛, 顾春伟. 基于大涡模拟的圆管脉动湍流减阻数值分析[J]. 清华大学学报(自然科学版), 2017, 57(5): 511-515. NING Tao, GU Chunwei. Numerical analysis of the drag reduction for turbulent pulsating pipe flows based on large eddy simulations. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 511-515. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.029或 http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/511 |
图表:
表1 稳态流和脉动流算例的相关参数 |
图1 计算网格示意 |
表2 量纲为1的网格尺度和时间尺度 |
图2 量纲为1的速度剖面 |
图3 沿径向的湍动度对比 |
表3 不同脉动流算例的参数和减阻率 |
图4 不同相位的相平均速度剖面(α=5.5) |
图5 稳态流和脉动流的Reynolds应力 |
图6 不同算例的速度剖面比较 |
图7 大涡模拟得到的减阻率比较 |
表4 不同算例的脉动总能耗比较 |
参考文献:
[1] | Lodahl C R, Sumer B M, Fredsoe J. Turbulent combined oscillatory flow and current in a pipe [J]. Journal of Fluid Mechanics, 1998, 373: 313-348. |
[2] | MAO Zhuoxiong, Hanratty T J. Studies of the wall shear stress in a turbulent pulsating pipe flow [J]. Journal of Fluid Mechanics, 1986, 170: 545-564. |
[3] | Akhavan R, Kamm R D, Shapiro A H. An investigation of transition to turbulence in bounded oscillatory stokes flows, Part 1. Experiments [J]. Journal of Fluid Mechanics, 1991, 225: 395-422. |
[4] | Tu S W, Ramaprian B R. Fully developed periodic turbulent pipe flow: Part 1. Main experimental results and comparison with predictions [J]. Journal of Fluid Mechanics, 1983, 137: 31-58. |
[5] | Ramaprian B R, Tu S W. Fully developed periodic turbulent pipe flow: Part 2. The detailed structure of the flow [J]. Journal of Fluid Mechanics, 1983, 137: 59-81. |
[6] | He S, Jackson J D. An experimental study of pulsating turbulent flow in a pipe [J]. European Journal of Mechanics-B: Fluids, 2009, 28(2): 309-320. |
[7] | Tuzi R, Blondeaux P. Intermittent turbulence in a pulsating pipe flow [J]. Journal of Fluid Mechanics, 2008, 599: 51-79. |
[8] | Scotti A, Piomelli U. Numerical simulation of pulsating turbulent channel flow [J]. Physics of Fluids, 2001, 13(5): 1367-1384. |
[9] | Manna M, Vacca A. Resistance reduction in pulsating turbulent pipe flows [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127: 410-417. |
[10] | Manna M, Vacca A. Spectral dynamic of pulsating turbulent pipe flow [J]. Computers & Fluids, 2008, 37(7): 825-835. |
[11] | Tardu S F, Binder G, Blackwelder R F. Turbulent channel flow with large-amplitude velocity oscillations [J]. Journal of Fluid Mechanics, 1994, 267: 109-151. |
[12] | Eggels, J G M, Unger F, Weiss M H, et al. Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment [J]. Journal of Fluid Mechanics, 1994, 268: 175-210. |
[13] | Souma A, Iwamoto K, Murata A. Experimental analysis of pressure-gradient profile upon drag-reduction effect in pulsating turbulent pipe flow [J]. Transactions of the Japan Society of Mechanical Engineers Series B, 2012, 78(787): 521-530. |
相关文章:
|