3.中电莱斯信息系统有限公司,南京 210007
1.School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, Nanjing 210094, China
3.CETC LES Information System Co. Ltd., Nanjing 210007, China
基于对高浓度含氰废水处理的重大需求和现有破氰技术的共性缺点,采用管式电化学反应器工艺对西部某化工厂生产过程的高浓度含氰废水进行预处理的中试研究,并与次钠氯碱法和ClO
处理4 h后,对废水中TCN、COD和间苯二腈的去除率分别可以达到81.74%、57.71%和81.33%,长期运行效果也处于最佳。此外,尽管管式电化学反应器的建设成本较高,单位能耗高,但由于该工艺无需加药,其运行成本低廉,仅为次钠氯碱法的13.10%,故总体运行成本较低。同时,还对管式电化学反应器的运行过程进行了参数优化及机理探究。在综合考虑建设、运行和折旧,管式电化学反应器具有良好的应用前景。
Based on the great demand for the treatment of high-concentration cyanide-containing wastewater and the shortage of current cyanide removal technologies, a pilot study was carried out on the pretreatment of high-concentration cyanide-containing wastewater in a chemical plant in western China by utilizing a tubular electrochemical reactor process, and it was compared with the chloro-alkali process and the ClO
oxidation process. The tubular electrochemical reactor with Ti/RuO
as anode had the best treatment effect compared with other processes, after 4 h treatment with 20 mA·cm
, the removal rates of TCN, COD and m-phenyldionitrile could reach 81.74%, 57.71% and 81.33%, respectively, and the long-term operation effect was also superior. In addition, the construction cost of the tubular electrochemical reactor was expensive and the unit energy consumption was high, but its operation cost was very low and only 13.10% of that of the chloro-alkali process without chemicals addition. At the same time, the operation parameters of the tubular electrochemical reactor were optimized and its preliminary mechanism was investigated. In comprehensive consideration of construction, operation and depreciation, tubular electrochemical reactor has an excellent economy, reflecting a good market prospect and a broad application field.
.
Construction schematic of the tubular electrochemical reactor
Removal effect of cyanide-containing wastewater by each process
-N in wastewater treated by each process
TCN treatment effect of each process after 60 cycles operation
各工艺对于废水中不同水质污染因子的单位能耗
Unit energy consumption of each process for different pollution factors
Function of total cost and operation time of each process
各工艺在运行5 a和10 a之后投入的对比和具体组成
Comparison and investment composition of each process after 5 and 10 years of operation
在不同电流密度下TCN和IPN去除率的变化
Changes of TCN and IPN removal rates at different current densities
First-order kinetic fitting of the removal of TCN and IPN
Effect of initial pH on TCN and IPN removal
Effect of different electrolytes on TCN and IPN removal
管式电化学反应器对TCN和IPN去除的反应机理
Reaction mechanism of TCN and IPN removal by the tubular electrochemical reactor
[1] | DAS P P, ANWESHAN, MONDAL P, et al. Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater[J]. Chemosphere, 2021, 263: 1-10. |
[2] | 马一岚. 氰化物性质、含氰废水处理及中毒救护[J]. 中国绿色画报, 2018(9): 161-163. |
[3] | 苏丹, 孙贤波. 含氰废水的来源及氰化物的质量和排放标准比较[C]//上海市化学化工学会2009年度学术年会论文集, 2009: 238-241. |
[4] | 陈长斌. 中国氰化物行业发展现状及发展趋势[J]. 无机盐工业, 2012, 44(6): 1-4. doi: 10.3969/j.issn.1006-4990.2012.06.001 |
[5] | SARLA M, PANDIT M, TYAGI D K, et al. Oxidation of cyanide in aqueous solution by chemical and photochemical process[J]. Journal of Hazardous Materials, 2004, 116(1/2): 49-56. |
[6] | 王燕燕. 含氰废水处理工艺比较及应用实例探讨[J]. 资源节约与环保, 2020(6): 69. doi: 10.3969/j.issn.1673-2251.2020.06.065 |
[7] | MONTEAGUDO J M, RODRIGUEZ L, VILLASENOR J. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(2): 117-125. doi: 10.1002/jctb.947 |
[8] | 连庆堂. INCO法处理含氰电镀废水的实验研究[J]. 环境与发展, 2017, 29(6): 80-81. |
[9] | SINGH H, MISHRA B K. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process[J]. Water Science and Technology, 2018, 78(10): 2214-2227. doi: 10.2166/wst.2018.503 |
[10] | 周珉, 黄仕源, 瞿贤. 过氧化氢催化氧化法处理高浓度含氰废水研究[J]. 工业用水与废水, 2013(5): 31-34. doi: 10.3969/j.issn.1009-2455.2013.05.009 |
[11] | 蒋金平, 杨文. 高浓度含氰电镀废水的处理[J]. 电镀与涂饰, 2011, 30(5): 43-45. |
[12] | 陆雪梅. 高浓度含氰农药废水治理工艺的研究[D]. 南京: 南京工业大学, 2003. |
[13] | 张玮. 高浓度含氰废水处理实验研究[D]. 保定: 华北电力大学, 2004. |
[14] | 陈礼铸, 余继发. 氯氧化法废水脱氰反应热力学[J]. 安徽化工, 1994(3): 45-51. |
[15] | 黄思远. 焦化废水中铁氰化物光解氧化技术研究[D]. 上海: 华东理工大学, 2014. |
[16] | SIRéS I, BRILLAS E, OTURAN M, et al. Electrochemical advanced oxidation processes: Today and tomorrow: A review[J]. Environmental Science & Pollution Research, 2014, 21: 8336-8367. |
[17] | JüTTNER K, GALLA U, SCHMIEDER H. Electrochemical approaches to environmental problems in the process industry[J]. Electrochimica Acta, 2000, 45(15/16): 2575-2594. |
[18] | YANG J I, WANG J, JIA J. Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor[J]. Environmental Science & Technology, 2009, 43(10): 3796-3802. |
[19] | 熊英健, 范娟, 朱锡海. 三维电极电化学水处理技术研究现状及方向[J]. 工业水处理, 1998, 18(1): 7-10. doi: 10.11894/1005-829x.1998.18(1).2 |
[20] | CUI T, ZHANG Y, HAN W, et al. Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis[J]. Chemical Engineering Journal, 2017, 315: 335-344. doi: 10.1016/j.cej.2017.01.039 |
[21] | LI H, ZHANG Y, CHEN Y, et al. Preparation and characterization of the novel Ti/PbO2 electrodes by electrodeposition and anodization[J]. Advanced Materials Research, 2011, 391-392:1273-1277. |
[22] | 江义平, 敖小平, 王良恩. 高浓度氰化物废水处理的研究和应用[J]. 工业用水与废水, 2005(2): 47-49. |
[23] | 顾泽平, 孙水裕, 肖华花. 用次氯酸钠法处理选矿废水[J]. 化工环保, 2006, 26(1): 35-37. doi: 10.3969/j.issn.1006-1878.2006.01.009 |
[24] | 梁玉兰, 李福仁. 二氧化氯处理矿山含氰废水的实验研究[J]. 环境污染与防治, 2003, 25(4): 245-246. doi: 10.3969/j.issn.1001-3865.2003.04.019 |
[25] | CAI Y W, WANG L Y, ZHU H Y, et al. A pretreatment method for detection of cyanide ion concentration in decontamination wastewater[J]. Advanced Materials Research, 2014, 864-867: 101-105. |
[26] | 刘锋. 二氧化氯处理含氰废水处理工艺浅析[J]. 化学工程与装备, 2010(4): 105-107. |
[27] | 中华人民共和国生态环境部, 中国国家标准化管理委员会. 水质 氰化物的测定 容量法和分光光度法: HJ 484-2009[S]. 北京: 中国环境科学出版社, 2009. |
[28] | 中华人民共和国生态环境部, 中国国家标准化管理委员会. 水质 化学需氧量的测定快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2007. |
[29] | 中华人民共和国生态环境部, 中国国家标准化管理委员会. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2007[S]. 北京: 中国环境科学出版社, 2009. |
[30] | CUI T, WANG Y, WANG X, et al. Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA)[J]. Bioresource Technology, 2020, 306: 122135. |
[31] | KUYUCAK N, AKCIL A. Cyanide and removal options from effluents in gold mining and metallurgical processes[J]. Minerals Engineering, 2013, 50-51: 13-29. doi: 10.1016/j.mineng.2013.05.027 |
[32] | OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment: Principles and applications: A review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23): 2577-2641. |
[33] | MARTíNEZ-HUITLE C A, BRILLAS E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B: Environmental, 2009, 87(3/4): 105-145. |
[34] | PULKKA S, MARTIKAINEN M, BHATNAGAR A, et al. Electrochemical methods for the removal of anionic contaminants from water: A review[J]. Separation and Purification Technology, 2014, 132: 252-271. doi: 10.1016/j.seppur.2014.05.021 |
[35] | WANG F, XIAO S, HOU Y, et al. Electrode materials for aqueous asymmetric supercapacitors[J]. RSC Advances, 2013, 3(32): 13059-13084. doi: 10.1039/c3ra23466e |
[36] | SIRES I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review[J]. Environment International, 2012, 40: 212-229. doi: 10.1016/j.envint.2011.07.012 |
[37] | DASH R R, GAUR A, BALOMAJUMDER C. Cyanide in industrial wastewaters and its removal: A review on biotreatment[J]. Journal of Hazardous Materials, 2009, 163(1): 1-11. doi: 10.1016/j.jhazmat.2008.06.051 |
[38] | FENG Y J, LI X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Research, 2003, 37(10): 2399-2407. doi: 10.1016/S0043-1354(03)00026-5 |
[39] | 姜鲁, 王静, 刘宝峰. 污水厂接收含氰废水的可行性评估[J]. 中国给水排水, 2018, 34(18): 32-35. |
[40] | PITZER K S. Thermodynamics of electrolytes I: Theoretical basis and general equations[J]. Journal of Physical Chemistry, 1973, 77(2): 268-277. doi: 10.1021/j100621a026 |
[41] | VASUDEVAN S, OTURAN M A. Electrochemistry as cause and cure in water pollution: An overview[J]. Environmental Chemistry Letters, 2014, 12(1): 97-108. doi: 10.1007/s10311-013-0434-2 |
[42] | MARTINEZ-HUITLE C A, RODRIGO M A, SIRES I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. doi: 10.1021/acs.chemrev.5b00361 |
[43] | VALIUNIENE A, MARGARIAN Z, VALIUNAS R. Electrooxidation of cyanide ion on a platinized Ti electrode[J]. Reaction Kinetics Mechanisms & Catalysis, 2015, 115(2): 449-461. |
[44] | LI W, LI Y Q, XU K. Facile, electrochemical chlorination of graphene from an aqueous NaCl solution[J]. Nano Letters, 2021, 21(2): 1150-1155. doi: 10.1021/acs.nanolett.0c04641 |
[45] | WICK C D, DANG L X. Computational observation of enhanced solvation of the hydroxyl radical with increased NaCl concentration[J]. Journal of Physical Chemistry B, 2006, 110(18): 8917-8920. doi: 10.1021/jp061221f |