Screening and comprehensive evaluation of garden waste based cultivation substrate
CHEN Tong1,, QIU Junfu1, QI Xingyu2, MA Qinghu3, LI Pengwu1, HU Qing2,, 1.Beijing SUSTech Blue Technology Co., Ltd., Beijing 100083, China 2.School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3.Wuxi Xi′ao Environmental Protection Technology Co., Ltd., Wuxi 214194, China
Abstract:The principal component analysis was used to analyze the culture substrate formula of garden waste, which could provide scientific reference for comprehensive evaluation and selection of optimal formula. Nine groups of substrates for plant cultivation were prepared by using garden waste, soil and commercial nutritive soil as the main raw materials, in which the mass fraction of total decomposed and undecomposed garden waste reached up to 30%~40%, and non-renewable nature resources such as peat soil were not required. Most physical and chemical indexes of the substrate met the requirements of the national and industrial standards for cultivation substrates. The results of planting experiments showed that the germination rate of tall fescue seeds in the substrate was higher than 85%. The results of the comprehensive score evaluation of substrate formulas adopting “principal component analysis methodology” showed that the total porosity, nitrogen, phosphorus, potassium and total nutrients had the greatest influence on the physical and chemical properties of the substrates. The highest comprehensive evaluation score of nine substrate formulations was substrate 3, which was as follows: control soil/decomposed garden waste/undecomposed garden waste/commercial nutrient soil=5/3/1/1, and the mass fraction of total decomposed and undecomposed garden wastes reached 40% of the raw materials. Key words:recycling of garden waste/ solid waste recycling/ cultivation substrate/ principal component analysis.
表1原料主要性能指标 Table1.Main performance indexes of raw materials
供试原料
pH
干容重/ (g·cm?3)
有机质 含量/%
总养分 (TN+TP+TK)/%
全钾/ (mg·kg?3)
全磷/ (mg·kg?3)
全氮/ (mg·kg?3)
电导率EC/ (mS·cm?1)
含水率/ %
未腐熟园林废弃物
6.59
0.31
67.34
2.47
7913
981
15931
5.570
6.69
腐熟园林废弃物
7.38
0.48
69.40
2.97
9481
975
19233
9.270
6.48
商品营养土
4.62
0.27
72.54
2.78
8664
677
18302
5.130
18.80
对照土壤
7.57
1.33
0.13
0.63
4852
136
1191
1.044
1.59
供试原料
pH
干容重/ (g·cm?3)
有机质 含量/%
总养分 (TN+TP+TK)/%
全钾/ (mg·kg?3)
全磷/ (mg·kg?3)
全氮/ (mg·kg?3)
电导率EC/ (mS·cm?1)
含水率/ %
未腐熟园林废弃物
6.59
0.31
67.34
2.47
7913
981
15931
5.570
6.69
腐熟园林废弃物
7.38
0.48
69.40
2.97
9481
975
19233
9.270
6.48
商品营养土
4.62
0.27
72.54
2.78
8664
677
18302
5.130
18.80
对照土壤
7.57
1.33
0.13
0.63
4852
136
1191
1.044
1.59
下载: 导出CSV 表2基质配方的质量分数 Table2.Mass fraction of substrates formula %
基质编号
对照土壤
腐熟园林废弃物
未腐熟园林废弃物
商品营养土
基质1
50
40
0
10
基质2
50
35
5
10
基质3
50
30
10
10
基质4
60
35
0
5
基质5
60
30
5
5
基质6
60
25
10
5
基质7
65
30
0
5
基质8
65
25
5
5
基质9
65
20
10
5
基质编号
对照土壤
腐熟园林废弃物
未腐熟园林废弃物
商品营养土
基质1
50
40
0
10
基质2
50
35
5
10
基质3
50
30
10
10
基质4
60
35
0
5
基质5
60
30
5
5
基质6
60
25
10
5
基质7
65
30
0
5
基质8
65
25
5
5
基质9
65
20
10
5
下载: 导出CSV 表3基质与植物测试指标 Table3.Indexes of substrates and vegetation
基质编号 或标准
pH
通气孔 隙度/%
干容重/ (g·cm?3)
有机质 含量/ %
总养分 (TN+TP+ TK)/%
全钾/ (mg·kg?3)
全磷/ (mg·kg?3)
全氮/ (mg·kg?3)
非毛细 管孔隙 度/%
总孔 隙度/ %
电导率/ (mS·cm?1)
阳离子 交换量/ (cmol·kg?1)
根系 长度/ mm
地上生 长高度/ mm
基质1
7.86
54.81
0.60
33.14
1.57
6 805
801
8 092
9.52
64.33
4.20
35.38
15.7
36.3
基质2
6.96
56.15
0.67
43.55
1.15
8 922
949
7 581
8.25
64.40
3.68
35.58
24.4
42.5
基质3
7.65
60.25
0.62
38.69
2.04
10 475
997
8 955
7.19
67.44
3.64
37.12
30.6
45.6
基质4
7.87
55.91
0.79
37.87
1.59
7 227
864
7 817
4.52
60.43
5.73
35.00
12.3
22.5
基质5
7.64
57.52
0.67
30.49
1.45
6 039
859
7 613
6.94
64.46
5.32
30.99
24.8
39.4
基质6
7.57
55.34
0.69
43.56
1.82
9 923
888
7 415
8.83
64.17
4.60
30.32
15.6
24.7
基质7
7.83
53.14
0.78
35.94
1.68
8 692
953
7 176
5.89
59.03
5.23
35.21
12.9
36.8
基质8
7.77
52.68
0.70
38.03
1.65
8 648
905
6 939
12.03
64.71
4.79
30.72
15.9
42.1
基质9
7.69
56.34
0.75
42.31
1.51
8 393
822
5 904
5.14
61.48
4.07
29.08
30.2
39.6
《绿化用有机基质》(GB/T 33891-2017)
4.00~9.50
?
0.10~1.00
≥25.00
≥1.50
?
?
?
≥15.00
?
12.00
?
?
?
《绿化用有机基质》(LY/T 1970-2011)
5.00~8.00
≥20.00
0.10~0.80
≥15.00
≥1.50
?
?
?
?
?
0.50~3.00
?
?
?
注:“?”代表国标和行业标准对该指标未作要求。
基质编号 或标准
pH
通气孔 隙度/%
干容重/ (g·cm?3)
有机质 含量/ %
总养分 (TN+TP+ TK)/%
全钾/ (mg·kg?3)
全磷/ (mg·kg?3)
全氮/ (mg·kg?3)
非毛细 管孔隙 度/%
总孔 隙度/ %
电导率/ (mS·cm?1)
阳离子 交换量/ (cmol·kg?1)
根系 长度/ mm
地上生 长高度/ mm
基质1
7.86
54.81
0.60
33.14
1.57
6 805
801
8 092
9.52
64.33
4.20
35.38
15.7
36.3
基质2
6.96
56.15
0.67
43.55
1.15
8 922
949
7 581
8.25
64.40
3.68
35.58
24.4
42.5
基质3
7.65
60.25
0.62
38.69
2.04
10 475
997
8 955
7.19
67.44
3.64
37.12
30.6
45.6
基质4
7.87
55.91
0.79
37.87
1.59
7 227
864
7 817
4.52
60.43
5.73
35.00
12.3
22.5
基质5
7.64
57.52
0.67
30.49
1.45
6 039
859
7 613
6.94
64.46
5.32
30.99
24.8
39.4
基质6
7.57
55.34
0.69
43.56
1.82
9 923
888
7 415
8.83
64.17
4.60
30.32
15.6
24.7
基质7
7.83
53.14
0.78
35.94
1.68
8 692
953
7 176
5.89
59.03
5.23
35.21
12.9
36.8
基质8
7.77
52.68
0.70
38.03
1.65
8 648
905
6 939
12.03
64.71
4.79
30.72
15.9
42.1
基质9
7.69
56.34
0.75
42.31
1.51
8 393
822
5 904
5.14
61.48
4.07
29.08
30.2
39.6
《绿化用有机基质》(GB/T 33891-2017)
4.00~9.50
?
0.10~1.00
≥25.00
≥1.50
?
?
?
≥15.00
?
12.00
?
?
?
《绿化用有机基质》(LY/T 1970-2011)
5.00~8.00
≥20.00
0.10~0.80
≥15.00
≥1.50
?
?
?
?
?
0.50~3.00
?
?
?
注:“?”代表国标和行业标准对该指标未作要求。
下载: 导出CSV 表4主成分分析结果 Table4.Results of principal component analysis
GONG X Q, LI S Y, SUN X Y, et al. Alkyl polyglycoside and earthworm (Eisenia fetida) enhance biodegradation of green waste and its use for growing vegetables[J]. Ecotoxicology and Environmental Safety, 2019, 167(15): 459-466.
[3]
MARIEKETEN H, SANDERBRUUN, LARS S J, et al. Life cycle assessment of garden waste management options including long-term emissions after land application[J]. Waste Management, 2019, 86(1): 54-66.
[4]
LEORY B M, HEARTH M S K, DENEVE S, et al. Effect of vegetable, fruit and garden (VFG) waste compost on soil physical properties[J]. Compost Science & Utilization, 2013, 16(1): 43-51.
[5]
GONG X Q, LI S Y, SUN X Y, et al. Green waste compost and vermicompost as peat substitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.)[J]. Scientia Horticulturae, 2018, 236: 186-191. doi: 10.1016/j.scienta.2018.03.051
CHEN M L, HUANG Y M, LIU H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326-335.
1.Beijing SUSTech Blue Technology Co., Ltd., Beijing 100083, China 2.School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3.Wuxi Xi′ao Environmental Protection Technology Co., Ltd., Wuxi 214194, China Received Date: 2020-08-18 Accepted Date: 2020-10-23 Available Online: 2021-04-23 Keywords:recycling of garden waste/ solid waste recycling/ cultivation substrate/ principal component analysis Abstract:The principal component analysis was used to analyze the culture substrate formula of garden waste, which could provide scientific reference for comprehensive evaluation and selection of optimal formula. Nine groups of substrates for plant cultivation were prepared by using garden waste, soil and commercial nutritive soil as the main raw materials, in which the mass fraction of total decomposed and undecomposed garden waste reached up to 30%~40%, and non-renewable nature resources such as peat soil were not required. Most physical and chemical indexes of the substrate met the requirements of the national and industrial standards for cultivation substrates. The results of planting experiments showed that the germination rate of tall fescue seeds in the substrate was higher than 85%. The results of the comprehensive score evaluation of substrate formulas adopting “principal component analysis methodology” showed that the total porosity, nitrogen, phosphorus, potassium and total nutrients had the greatest influence on the physical and chemical properties of the substrates. The highest comprehensive evaluation score of nine substrate formulations was substrate 3, which was as follows: control soil/decomposed garden waste/undecomposed garden waste/commercial nutrient soil=5/3/1/1, and the mass fraction of total decomposed and undecomposed garden wastes reached 40% of the raw materials.