删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

垃圾渗滤液补充反硝化碳源强化脱氮效果

本站小编 Free考研考试/2021-12-31

徐晨璐1,,
尹志轩1,,
李春雨1,
毕学军1,
顾瑞环2
1.青岛理工大学环境与市政工程学院,青岛 266033
2.青岛首创瑞海水务有限公司,青岛 266042
基金项目: 国家水体污染控制与治理科技重大专项2017ZX07101-002
国家国际科技合作专项项目2016YFE0123500-003国家水体污染控制与治理科技重大专项(2017ZX07101-002)
国家国际科技合作专项项目(2016YFE0123500-003)




Nitrogen removal enhancement with landfill leachate as supplemental carbon source for denitrification

XU Chenlu1,,
YIN Zhixuan1,,
LI Chunyu1,
BI Xuejun1,
GU Ruihuan2
1.School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
2.Qingdao Capital Ruihai Water Co.Ltd., Qingdao 266042, China*Correspording author, E-mail: yzxqut@163.com

-->

摘要
HTML全文
(0)(0)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要:垃圾渗滤液中含有大量易被微生物利用的挥发性脂肪酸,若其可以作为城镇污水处理厂的补充碳源,将对降低碳源投加成本和实现垃圾渗滤液的资源化利用有重要意义。在实际城镇污水处理厂考察了垃圾渗滤液补充进水碳源的脱氮效果,并进一步对比了传统碳源(甲醇、乙酸钠)、垃圾渗滤液及垃圾渗滤液在不同pH条件下产生的水解酸化液作为碳源时的反硝化效果。结果表明,实际城镇污水处理厂投加乙酸钠作为补充碳源时总氮去除率仅提高3%左右,而在进水中混合垃圾渗滤液后提高了约10%。垃圾渗滤液与乙酸钠作碳源时NO3--N去除率均>97%,但垃圾渗滤液为碳源时最大比反硝化速率高达8.8 mg·(g·h) -1(以MLSS计),是乙酸钠为碳源时的1.7倍;垃圾渗滤液中性和碱性水解酸化液为碳源时,反硝化效果相差不大,最大比反硝化速率为4.5~4.8 mg·(g·h) -1(以MLSS计),NO3--N去除率仅为70%左右。垃圾渗滤液或其水解酸化液是否可以作为强化脱氮效果的补充碳源取决于基质本身的性质。
关键词: 垃圾渗滤液资源化/
外加脱氮碳源/
反硝化/
水解酸化

Abstract:Because of containing large amount of readily biodegradable volatile fatty acids in landfill leachate, it is expected to use this leachate as a type of supplemental carbon source for denitrification in municipal wastewater treatment plant, which will have great significance in cost reduction of external carbon source and resource utilization of landfill leachate. The nitrogen removal effect was investigated when the landfill leachate was taken as supplemental carbon source in a municipal wastewater treatment plant. Furthermore, the denitrification efficiencies were compared among different carbon sources, such as traditional methanol and sodium acetate, landfill leachate and its hydrolysis acidification liquor at different pH. The results show that total nitrogen removal efficiency only increased by 3% with sodium acetate as external carbon source, but increased by about 10% when landfill leachate was mixed in the influent of a municipal wastewater treatment plant. In the batch tests, NO3--N removal efficiencies could reach over 97% when landfill leachate or sodium acetate was taken as carbon source, respectively, while the maximum specific denitrification rate with landfill leachate carbon source was 8.8 mg·(g·h) -1 (calculated by MLSS), which was 1.7 times with sodium acetate. There is almost no difference in the denitrification efficiencies between neutral and alkaline hydrolysis acidification liquor carbon sources of landfill leachate, the maximum specific denitrification rates were 4.5~ 4.8 mg·(g·h) -1(calculated by MLSS), and nitrate removal efficiencies were only 70%. Thus, whether landfill leachate and its hydrolysis acidification liquor can be taken as an alternative external carbon source for nitrogen removal enhancement is dependent on its own characteristics.
Key words:resource recovery from landfill leachate/
external carbon source for nitrogen removal/
denitrification/
hydrolysis and acidification.

加载中
[1] MANDAL P, DUBEY B K, GUPTA A K. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope[J]. Waste Management, 2017, 69: 250-273.
[2] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment: Review and opportunity[J]. Journal of Hazardous Materials, 2008, 150: 468-493.
[3] ISKANDER S M, ZHAO R Z, PATHAK A, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment[J]. Water Research, 2018, 145: 297-311.
[4] 石明岩, 冯兆继, 余建恒, 等. 城市污水混合垃圾渗滤液脱氮试验研究[J]. 环境工程, 2010, 28(5): 39-42.
[5] 刘建国, 倪哲, 罗辉, 等. 垃圾龄对填埋场好氧修复供氧和加速稳定化效果的影响[J]. 环境工程, 2016, 34(2): 14-18.
[6] 国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB 18918-2002[S]. 北京: 中国环境科学出版社, 2002.
[7] SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage[J]. Minerals Engineering, 2013, 48: 56-60.
[8] 段存礼, 顾瑞环, 罗辉, 等. 青岛李村河污水厂升级改造工程设计及运行[J]. 中国给水排水, 2011, 27(12): 66-70.
[9] 唐凤喜, 魏瑞霞, 司军, 等. 水解酸化预处理垃圾渗滤液的研究与实践[J]. 工业水处理, 2012, 32(11): 51-54.
[10] 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442.
[11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[12] 操家顺, 侯梁浩, 方芳, 等. 温度及外加碳源对生物脱氮除磷过程的影响[J]. 环境工程学报, 2013, 7(6): 2013-2018.
[13] 袁敏, 周琪, 杨殿海, 等. 垃圾渗滤液为碳源时A2/O法的脱氮除磷研究[J]. 中国给水排水, 2008, 24(11): 27-29.
[14] 张永梅. 餐厨垃圾碳源的有效回收与强化脱氮原理的研究[D]. 西安: 西安建筑科技大学, 2016.
[15] 阿拉木斯, 蔡碧婧, 王峰, 等. 碳源对污水处理反硝化过程及细菌种群的影响[J]. 四川环境, 2015, 34(1): 13-18.
[16] 赵庆良, 李湘中. 垃圾渗滤液中的氨氮对微生物活性的抑制作用[J]. 环境污染与防治, 1998, 20(6): 1-4.
[17] 张弛, 王国红, 李晓姣, 等. 北方城市垃圾渗滤液水量水质变化特征[J]. 环境工程学报, 2015, 9(11): 5421-5426.
[18] 熊建英, 郑正. 垃圾填埋场渗滤液溶解性有机质特性及其去除技术综述[J]. 环境化学, 2015, 34(1): 44-53.
[19] SOTO O, ASPé E, ROECKEL M. Kinetics of cross-inhibited denitrification of a high load wastewater[J]. Enzyme and Microbial Technology, 2007, 40(6): 1627-1634.
[20] 马娟, 王丽, 彭永臻, 等. FNA 的抑制作用及反硝化过程的交叉影响[J]. 环境科学, 2010, 31(4): 1030-1035.
[21] 马勇, 彭永臻, 王淑莹. 不同外碳源对污泥反硝化特性的影响[J]. 北京工业大学学报, 2009, 35(6): 820-824.
[22] DAHIYA S, SARKAR O, SWAMY Y V, et al. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J]. Bioresource Technology, 2015, 182: 103-113.
[23] MA H J, CHEN X C, LIU H, et al. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?[J]. Waste Management, 2016, 48: 397-403.
[24] 贺诗雅, 方茜, 肖英豪, 等. pH调控对淘米水厌氧发酵的挥发性脂肪酸组成及奇偶数比率的影响[J]. 环境污染与防治, 2018, 40(3): 323-328.
[25] ELEFSINIOTIS P, WAREHAM D G, SMITH M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnology, 2004, 114(3): 289-297.
[26] ELEFSINIOTIS P, LI D. The effect of temperature and carbon source on denitrification using volatile fatty acids[J]. Biochemical Engineering Journal, 2006, 28(2): 148-155.
[27] 宋成康, 秦健, 王亚宜, 等. 碳源对反硝化除磷效能及N2O产生的长期影响[J]. 环境污染与防治, 2014, 36(12): 11-16.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1020
HTML全文浏览数:931
PDF下载数:70
施引文献:0
出版历程

刊出日期:2019-06-03




-->








垃圾渗滤液补充反硝化碳源强化脱氮效果

徐晨璐1,,
尹志轩1,,
李春雨1,
毕学军1,
顾瑞环2
1.青岛理工大学环境与市政工程学院,青岛 266033
2.青岛首创瑞海水务有限公司,青岛 266042
基金项目: 国家水体污染控制与治理科技重大专项2017ZX07101-002 国家国际科技合作专项项目2016YFE0123500-003国家水体污染控制与治理科技重大专项(2017ZX07101-002) 国家国际科技合作专项项目(2016YFE0123500-003)
关键词: 垃圾渗滤液资源化/
外加脱氮碳源/
反硝化/
水解酸化
摘要:垃圾渗滤液中含有大量易被微生物利用的挥发性脂肪酸,若其可以作为城镇污水处理厂的补充碳源,将对降低碳源投加成本和实现垃圾渗滤液的资源化利用有重要意义。在实际城镇污水处理厂考察了垃圾渗滤液补充进水碳源的脱氮效果,并进一步对比了传统碳源(甲醇、乙酸钠)、垃圾渗滤液及垃圾渗滤液在不同pH条件下产生的水解酸化液作为碳源时的反硝化效果。结果表明,实际城镇污水处理厂投加乙酸钠作为补充碳源时总氮去除率仅提高3%左右,而在进水中混合垃圾渗滤液后提高了约10%。垃圾渗滤液与乙酸钠作碳源时NO3--N去除率均>97%,但垃圾渗滤液为碳源时最大比反硝化速率高达8.8 mg·(g·h) -1(以MLSS计),是乙酸钠为碳源时的1.7倍;垃圾渗滤液中性和碱性水解酸化液为碳源时,反硝化效果相差不大,最大比反硝化速率为4.5~4.8 mg·(g·h) -1(以MLSS计),NO3--N去除率仅为70%左右。垃圾渗滤液或其水解酸化液是否可以作为强化脱氮效果的补充碳源取决于基质本身的性质。

English Abstract






--> --> --> 参考文献 (27)
相关话题/资源 环境工程 环境 科技 国际