王珊1
1.天津科技大学海洋与环境学院,天津 300457
基金项目: 国家自然科学基金资助项目41606157
天津市自然科学基金资助项目16JCYBJC20900国家自然科学基金资助项目(41606157)
天津市自然科学基金资助项目(16JCYBJC20900)
Chromate reduction by Fe(III)-reducing bacterium Klebsiella sp. KB52
LIU Hongyan1,,WANG Shan1
1.College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:以分离自海洋沉积物中异化铁还原细菌Klebsiella sp. KB52为研究对象,分析微生物异化铁还原过程对还原 Cr(VI)的影响。菌株KB52是一株非典型耐铬细菌,在Cr(VI)浓度10~50 mg·L-1范围内,该菌株生长受到明显抑制。当将Fe(OH)3添加至培养体系,菌株KB52能够良好生长并具有铁还原性质,同时提高了Cr(VI)还原效率。Fe(OH)3浓度为 300 mg·L-1时,菌株KB52细胞生长指标OD600和累积产生Fe(II)浓度最高,分别是1.4760±0.04和(39.79±1.45) mg·L-1,Cr(VI)还原率(42%)是对照组的5.25倍。当柠檬酸铁作为电子受体,菌株KB52还原Fe(III)效率最高,Fe(II)累积浓度达到(109.87±1.27) mg·L-1,Cr(VI)还原率提高至67%。上述结果表明,菌株KB52能够利用可溶性和不可溶性Fe(III)作为电子受体进行生长,同时其异化铁还原过程偶联Cr(VI)还原。研究结果可为利用异化铁还原细菌还原Cr(VI)提供理论依据,拓宽微生物治理重金属污染的应用范围。
关键词: 异化铁还原细菌/
菌株Klebsiella sp. KB52/
Fe(III)还原/
Cr(VI)还原
Abstract:Fe(III)-reducing bacterium Klebsiella sp. KB52 isolated from marine sediment was used to investigate the effect of microbial Fe(III) reduction on Cr(VI) reduction. Strain KB52 was not a typical chromium-tolerant bacterium, its cell growth was obviously inhibited over a range of Cr(VI) concentration from 10 to 50 mg·L-1. As Fe(OH)3 was added into the culture system as an electron acceptor, a good cell growth for strain KB52 occurred with Fe(III) reduction ability, which led to the increase of Cr(VI) reduction rate. The results showed that the absorbance values (OD600) and Fe(II) concentration reached their maximum value of 1.476 0 ± 0.04 and (39.79 ± 1.45) mg·L-1, respectively, and the Cr(VI) reduction rate (42%) was 5.25 times of the control group at the Fe(III) concentration of 300 mg·L-1. When ferric citrate was used as an electron acceptor, strain KB52 showed the highest Fe(III)-reducing activity, and the Fe(II) accumulation content could reach (109.87 ± 1.27) mg·L-1, Cr(VI) reduction rate increased up to 67%. The results showed that Fe(III)-reducing bacterium KB52 could use both soluble and insoluble Fe(III) as electron acceptor, and promote its cell growth, Fe(III) reduction and Cr(VI) coupling reduction. The results demonstrated that Cr(VI) reduction by Fe(III)-reducing bacterium is an effective method, which could provide evidence for the application of microorganism to treating heavy metal pollution.
Key words:dissmilatory Fe(III)-reducing bacterium/
Klebsiella sp. KB52/
Fe(III) reduction/
Cr(VI) reduction.
[1] | 杨宇, 高宇, 程潜, 等. 一株铬还原菌的分离鉴定及铬还原特性研究[J]. 生态环境学报, 2018, 27(2): 322-329. |
[2] | KANCHINADHAM S B K, LOGANATHAN V D, KALYANARAMAN C. A preliminary study on leachability of chromium from a contaminated site[J]. Environmental Progress & Sustainable Energy, 2013, 32(4): 1096-1100. |
[3] | RAJYALAXMI K, MERUGU R, GIRISHAM S, et al. Chromate reduction by purple non sulphur phototrophic bacterium Rhodobacter, sp. GSKRLMBKU-03 isolated from pond water[J]. Proceedings of the National Academy of Sciences India, 2017, 89(1): 259-265. |
[4] | 郑建中, 石美, 李娟, 等. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. |
[5] | 胡静, 李东, 胡思扬, 等. 牺牲铁阳极法修复铬(VI)污染土壤实验研究[J]. 重庆工商大学学报(自然科学版), 2017, 34(4): 95-100. |
[6] | AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1): 102-108. |
[7] | SHEN Y, ZHENG X, WANG X, et al. The biomineralization process of uranium (VI) by Saccharomyces cerevisiae: Transformation from amorphous U(VI) to crystalline chernikovite[J]. Applied Microbiology & Biotechnology, 2018, 102(9): 4217-4229. |
[8] | 段骏, 贾蓉, 曲东. 厌氧培养体系中V(Ⅴ)与Fe(III)还原之间的电子竞争[J]. 水土保持学报, 2014, 28(3): 264-270. |
[9] | ZHANG J, DONG H, ZHAO L, et al. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens[J]. Chemical Geology, 2014, 370(4): 29-39. |
[10] | 司友斌, 王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响[J]. 环境科学, 2015, 36(9): 3533-3542. |
[11] | XU W, LIU Y, ZENG G, et al. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena[J]. Journal of Hazardous Materials, 2005, 126(1/2/3): 17-22. |
[12] | 李义纯, 李永涛, 李林峰, 等. 水稻土中铁-氮循环耦合体系影响镉活性机理研究[J]. 环境科学学报, 2018, 38(1): 328-335. |
[13] | 陈鹏程, 李晓敏, 李芳柏. 硝酸盐还原和亚铁氧化对贪铜菌还原砷的影响[J]. 生态环境学报, 2017, 26(2): 328-334. |
[14] | 刘洪艳, 王红玉, 谢丽霞, 等. 海洋沉积物中一株铁还原细菌分离及Fe(Ⅲ)还原性质[J]. 海洋科学, 2016, 40(3): 65-70. |
[15] | LIU H Y, WANG H Y. Characterization of Fe(III)-reducing enrichment culture and isolation of Fe(III)-reducing bacterium Enterobacter sp. L6 from marine sediment [J]. Journal of Bioscience & Bioengineering, 2016, 122(1): 92-96. |
[16] | 王伟民, 曲东, 徐佳. 水稻土中铁还原菌的分离纯化及铁还原能力分析[J]. 西北农林科技大学学报, 2008, 36(10): 103-109. |
[17] | PENG L, LIU Y, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139: 334-339. |
[18] | ZHANG H, LIU L, CHANG Q, et al. Biosorption of Cr(VI) ions from aqueous solutions by a newly isolated Bosea sp. strain Zer-1 from soil samples of a refuse processing plant[J]. Canadian Journal of Microbiology, 2015, 61(6): 399-408. |
[19] | 洪霞, 张馨荃, 严君华, 等. Pseudomonas S2-3菌株对Cr(VI)的耐受性及去除[J]. 环境工程学报, 2016, 10(3): 1539-1545. |
[20] | HUANG B, GU L, HE H, et al. Enhanced biotic and abiotic transformation of Cr(VI) by quinone-reducing bacteria/dissolved organic matters/Fe(III) in anaerobic environment[J]. Environmental Science Processes & Impacts, 2016, 18(9): 1185-1192. |
[21] | LEHOURS A C, RABIET M, MOREL-DESROSIERS N, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France)[J]. Geomicrobiology Journal, 2010, 27(8): 714-722. |
[22] | DALLA V E, SUVOROVA I, MAILLARD J, et al. Fe (III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1[J]. Geobiology, 2014, 12(1): 48-61. |
[23] | 伍迪, 陈晓明, 肖伟, 等. 粘质沙雷氏菌对U(VI)、Co(II)、Cr(VI)的耐受性研究[J]. 安全与环境工程, 2017, 24(2): 53-57. |
[24] | LIU C, ZACHARA J M, GORBY Y A, et al. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32[J]. Environmental Science & Technology, 2001, 35(7): 1385-1393. |
[25] | 郭琼, 肖琳, 于忆潇, 等. 以圆币草发酵液为碳源时硫酸盐还原菌处理重金属废水[J]. 微生物学通报, 2017, 44(9): 2019-2028. |
[26] | WHITAKER A H, PE?A J, AMOR M, et al. Cr(VI) uptake and reduction by biogenic iron (oxyhydr)oxides[J]. Environmental Science Processes & Impacts, 2018, 20(7): 1056-1068. |
[27] | GR?HLICH A, LANGER M, MITRAKAS M, et al. Effect of organic matter on Cr(VI) removal from groundwater by Fe(II) reductive precipitation for groundwater treatment[J]. Water, 2017, 9(6): 389-404. |
[28] | ZHOU Z, JING G, ZHENG X. Reduction of Fe (III) EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions[J]. Bioresource Technology, 2013, 132(3): 210-216. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1153
HTML全文浏览数:1089
PDF下载数:93
施引文献:0
出版历程
刊出日期:2019-06-03
-->
异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)
刘洪艳1,,王珊1
1.天津科技大学海洋与环境学院,天津 300457
基金项目: 国家自然科学基金资助项目41606157 天津市自然科学基金资助项目16JCYBJC20900国家自然科学基金资助项目(41606157) 天津市自然科学基金资助项目(16JCYBJC20900)
关键词: 异化铁还原细菌/
菌株Klebsiella sp. KB52/
Fe(III)还原/
Cr(VI)还原
摘要:以分离自海洋沉积物中异化铁还原细菌Klebsiella sp. KB52为研究对象,分析微生物异化铁还原过程对还原 Cr(VI)的影响。菌株KB52是一株非典型耐铬细菌,在Cr(VI)浓度10~50 mg·L-1范围内,该菌株生长受到明显抑制。当将Fe(OH)3添加至培养体系,菌株KB52能够良好生长并具有铁还原性质,同时提高了Cr(VI)还原效率。Fe(OH)3浓度为 300 mg·L-1时,菌株KB52细胞生长指标OD600和累积产生Fe(II)浓度最高,分别是1.4760±0.04和(39.79±1.45) mg·L-1,Cr(VI)还原率(42%)是对照组的5.25倍。当柠檬酸铁作为电子受体,菌株KB52还原Fe(III)效率最高,Fe(II)累积浓度达到(109.87±1.27) mg·L-1,Cr(VI)还原率提高至67%。上述结果表明,菌株KB52能够利用可溶性和不可溶性Fe(III)作为电子受体进行生长,同时其异化铁还原过程偶联Cr(VI)还原。研究结果可为利用异化铁还原细菌还原Cr(VI)提供理论依据,拓宽微生物治理重金属污染的应用范围。
English Abstract
Chromate reduction by Fe(III)-reducing bacterium Klebsiella sp. KB52
LIU Hongyan1,,WANG Shan1
1.College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
Keywords: dissmilatory Fe(III)-reducing bacterium/
Klebsiella sp. KB52/
Fe(III) reduction/
Cr(VI) reduction
Abstract:Fe(III)-reducing bacterium Klebsiella sp. KB52 isolated from marine sediment was used to investigate the effect of microbial Fe(III) reduction on Cr(VI) reduction. Strain KB52 was not a typical chromium-tolerant bacterium, its cell growth was obviously inhibited over a range of Cr(VI) concentration from 10 to 50 mg·L-1. As Fe(OH)3 was added into the culture system as an electron acceptor, a good cell growth for strain KB52 occurred with Fe(III) reduction ability, which led to the increase of Cr(VI) reduction rate. The results showed that the absorbance values (OD600) and Fe(II) concentration reached their maximum value of 1.476 0 ± 0.04 and (39.79 ± 1.45) mg·L-1, respectively, and the Cr(VI) reduction rate (42%) was 5.25 times of the control group at the Fe(III) concentration of 300 mg·L-1. When ferric citrate was used as an electron acceptor, strain KB52 showed the highest Fe(III)-reducing activity, and the Fe(II) accumulation content could reach (109.87 ± 1.27) mg·L-1, Cr(VI) reduction rate increased up to 67%. The results showed that Fe(III)-reducing bacterium KB52 could use both soluble and insoluble Fe(III) as electron acceptor, and promote its cell growth, Fe(III) reduction and Cr(VI) coupling reduction. The results demonstrated that Cr(VI) reduction by Fe(III)-reducing bacterium is an effective method, which could provide evidence for the application of microorganism to treating heavy metal pollution.