陈招妹1,
王少权1,
蔡锡锋1,
郭高飞1,
沈敏超1,
周冰1
1.浙江菲达环保科技股份有限公司,诸暨 311800
基金项目: 国家重点研发计划项目2016YFC0209107
浙江省重点研发计划项目2018C03SA631191国家重点研发计划项目(2016YFC0209107)
浙江省重点研发计划项目(2018C03SA631191)
Emission characteristics and removal technology of SO3 from coal-fired power plants
LIU Hanxiao1,,CHEN Zhaomei1,
WANG Shaoquan1,
CAI Xifeng1,
GUO Gaofei1,
SHEN Minchao1,
ZHOU Bing1
1.Zhejiang Feida Environmental Science & Technology Co. Ltd., Zhuji 311800,China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:通过现场实测和文献调研相结合的方式,对目前燃煤电厂SO3排放特征进行较全面的表征,排放浓度为0.3~22.7 mg·m-3,按10 mg·m-3和5 mg·m-3排放限值考核,达标率分别为89.8%、66.7%。对现有除尘、脱硫设备及新技术的SO3脱除能力进行定量分析,常规电除尘器对SO3脱除率仅为10%~20%;低低温电除尘技术可达95%以上;电袋复合除尘器可达80%以上;常规石灰石石膏湿法脱硫技术多在30%~60%,采用旋汇耦合、双托盘等技术后,SO3脱除率可达90%以上;金属板式湿式电除尘器多在50%~80%,导电玻钢管式湿式电除尘器多在60%~90%;碱基干粉或溶液喷射技术均可达到80%以上的SO3脱除效果;烟气冷凝相变凝聚技术在消除有色烟羽的同时,也具有一定的SO3脱除效果。根据不同SO3脱除技术对比结果,碱基喷射技术不仅可以实现较高SO3脱除效果,还可有效解决空预器的腐蚀、堵塞等问题,将是未来解决高浓度SO3问题的主流技术方向。
关键词: 燃煤电厂/
SO3/
排放特征/
脱除技术
Abstract:The current emission characteristics of SO3 from coal-fired power plants was comprehensively characterized by field measurement and literature survey, the emission concentration was determined as 0.3~ 22.7 mg·m-3 with the compliance rates of 89.8% and 66.7% according to the emission limits of 10 mg·m-3 and 5 mg·m-3, respectively. Based on quantitative analysis of the SO3 removal capacities of the existed equipment for dust removal and desulphurization and new technology, the SO3 removal efficiencies of conventional ESP, LL-ESP and EF were only 10%~20%, higher than 95% and higher than 80%, respectively. For the conventional WFGD, the SO3 removal efficiency was mostly 30%~60%, while it could be improved up to higher than 90% when spiral-sink coupling, double pallet and other technologies were used. Moreover, the SO3 removal efficiencies were mostly 50%~80%, 60%~90% and higher than 80% for the metal plate type WESP, the conductive glass tube type WESP and alkaline dry powder or solution injection technology, respectively. The colored plume and SO3 could be synchronously removed by PCA technology. Based on the comparison of different SO3 removal technologies, the alkaline dry powder injection technology can not only achieve higher SO3 removal effect, but also solve the corrosion, blockage and other problems of air heater effectively, which will be a major technology direction for solving the problem of SO3 with high concentration in the future.
Key words:coal-fired power plant/
SO3/
emission characteristics/
removal technology.
[1] | 郦建国, 朱法华, 孙雪丽. 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51(6): 2-10. |
[2] | 孙雪丽, 朱法华, 王圣, 等.燃煤电厂颗粒物超低排放技术路线选择[J].环境工程技术学报, 2018, 8(2): 129-136. |
[3] | 郑楚光. 洁净煤技术[M]. 武汉: 华中理工大学出版社, 1996. |
[4] | 马广大. 大气污染控制工程[M]. 北京: 中国环境科学出版社, 2004. |
[5] | 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. |
[6] | 刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中SO3生成、治理及测试技术研究[J]. 中国电力, 2015, 48(9): 152-156. |
[7] | HUANG R J, ZHANG Y L, CARLO B, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514 (7521): 218-222. |
[8] | 舒喜, 田原润, 惠润堂, 等. SO3在燃煤电厂各设备中形成和脱除现状研究[J]. 环境科学与技术, 2017, 40(11): 121-126. |
[9] | 王定帮, 雷鸣, 余福胜, 等. 燃煤机组 SO3迁移规律及排放特性试验[J]. 热力发电, 2018, 47(11): 96-101. |
[10] | 潘丹萍, 吴昊, 鲍静静, 等. 电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J]. 中国电机工程学报, 2016, 36(16): 4356-4362. |
[11] | 陈鹏芳, 朱庚富, 张俊翔. 基于实测的燃煤电厂烟气协同控制技术对 SO3去除效果的研究[J]. 环境污染与防治, 2017, 39(3): 232-235. |
[12] | 沈志刚, 刘启贞, 陶雷行, 等. 湿式电除尘器对烟气中颗粒物的去除特性[J], 环境工程学报, 2016, 10(5): 2557-2561. |
[13] | 杨玮, 孙彬彬, 王雪, 等. 山西某电厂燃煤烟气SO3与颗粒物排放特征[J], 环境工程, 2018, 36(1): 83-87. |
[14] | 陈瑶姬, 孟炜, 胡达清. 燃煤电厂烟气超低排放技术对三氧化硫脱除影响的研究[J], 上海节能, 2015(12): 657-660. |
[15] | 杨丁, 陈永强, 陈威祥, 等. SO3采样技术改进及烟气处理设备SO3脱除能力测试[J]. 中国电力, 2018, 51(7): 157-161. |
[16] | 聂孝峰, 张超, 刘源, 等. 湿式电除尘(雾)器在燃煤电厂300MW 机组上的应用[J]. 电力科技与环保, 2016, 32(2): 31-34. |
[17] | 刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中低浓度SO3采样方法研究 [J]. 环境工程, 2017, 35(11): 139-142. |
[18] | 张德君, 刘含笑, 赵琳, 等. 燃煤电厂可凝结颗粒物(SO3)采样方法研究[J]. 中国电力, 2018, 51(6): 1-5 |
[19] | 李皓然, 刘含笑, 赵琳, 等. 湿式电除尘器性能测试方法及排放特征研究[J]. 中国电力, 2018, 51(9): 1-7. |
[20] | 吴金, 刘含笑, 郦建国, 等. 基于中试平台的低低温电除尘器深度试验研究[J]. 中国电力, 2018, 51(6): 11-16. |
[21] | 刘含笑, 姚宇平, 郦建国, 等. 低低温电除尘技术适用性及污染物减排特性研究[J]. 动力工程学报, 2018, 38(8): 650-657. |
[22] | 刘含笑, 姚宇平, 郦建国, 等. 一种适用于低浓度三氧化硫采样的采样系统: 201710049703. 7[P]. |
[23] | 魏宏鸽, 程雪山, 马颜斌, 等. 燃煤烟气中SO3的产生与转化及其抑制对策谈谈[J]. 发电与空调, 2012, 33(2): 1-4. |
[24] | 纪培栋. SCR 催化剂 SO2氧化机理及调控机制研究[D]. 杭州: 浙江大学, 2016. |
[25] | 刘含笑, 袁建国, 郦祝海, 等. 低低温工况下颗粒凝并机理分析及研究方法初探[J]. 电力与能源, 2015, 36(1): 107-111. |
[26] | 刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425. |
[27] | 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. |
[28] | 郦建国, 郦祝海, 何毓忠, 等. 低低温电除尘技术的研究及应用[J]. 中国环保产业, 2014(3): 28-34. |
[29] | 名嶋慎司. 石炭火力用低低温電気集塵装置[J]. 住友重機械技報, 2001, 146: 35-38. |
[30] | YOSHIO N, WALKER J, BELO L, et al. SO3 emission and removal by dust in coal-fired oxy-fuel combustion[J]. Energy & Fuel, 2014, 28(8): 5296-5306. |
[31] | 陈奎续. 电袋复合除尘+湿法脱硫工艺脱除多污染物的效果研究[J]. 环境污染与防治, 2018, 40(4): 398-403. |
[32] | 刘勇. 碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D]. 杭州: 浙江大学, 2018. |
[33] | SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762. |
[34] | 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-51. |
[35] | 杜振, 杨立强, 魏宏鸽, 等. 低低温电除尘器对粉尘特性和SO3[J]. 中国电力, 2017, 50(9): 125-128. |
[36] | YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. |
[37] | 张雪峰, 杨正大, 李响, 等. SO3 对高湿静电场中电晕放电的影响机制研究[J]. 中国环境科学, 2017, 37(9): 3268-3275. |
[38] | YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy & Fuels, 2017, 31(8): 8400-8406. |
[39] | KEENER T C, KHANG S J. Kinetics of the sodium bicarbonate-sulfur dioxide reaction[J]. AICHE Journal, 1987, 33(9): 1522-1532. |
[40] | 陈鹏. 钙基吸收剂脱除燃煤烟气中SO3的研究[D]. 济南: 山东大学, 2011. |
[41] | 陈晓露, 赵钦新, 鲍颖群, 等.SO3脱除技术实验研究[J].动力工程学拫, 2014, 34(12): 966-971. |
[42] | 娄彤, 方晓东, 陆明智, 等.燃煤烟气多污染物协同治理试验研究[J]. 洁净煤技术, 2018, 24(5): 966-971. |
[43] | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128-134. |
[44] | TAN H, WANG Y, CAO R, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J]. Applied Thermal Engineering, 2017, 130: 1208-1214. |
[45] | 王述浩, 李水清, 段璐, 等. 相变凝聚器内蒸汽凝结与细颗粒团聚规律研究[J]. 中国电机工程学报, 2017, 37(24): 7230-7235. |
[46] | LIU J M, ZHU F H, |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1122
HTML全文浏览数:1049
PDF下载数:118
施引文献:0
出版历程
刊出日期:2019-06-03
-->
燃煤电厂SO3排放特征及其脱除技术
刘含笑1,,陈招妹1,
王少权1,
蔡锡锋1,
郭高飞1,
沈敏超1,
周冰1
1.浙江菲达环保科技股份有限公司,诸暨 311800
基金项目: 国家重点研发计划项目2016YFC0209107 浙江省重点研发计划项目2018C03SA631191国家重点研发计划项目(2016YFC0209107) 浙江省重点研发计划项目(2018C03SA631191)
关键词: 燃煤电厂/
SO3/
排放特征/
脱除技术
摘要:通过现场实测和文献调研相结合的方式,对目前燃煤电厂SO3排放特征进行较全面的表征,排放浓度为0.3~22.7 mg·m-3,按10 mg·m-3和5 mg·m-3排放限值考核,达标率分别为89.8%、66.7%。对现有除尘、脱硫设备及新技术的SO3脱除能力进行定量分析,常规电除尘器对SO3脱除率仅为10%~20%;低低温电除尘技术可达95%以上;电袋复合除尘器可达80%以上;常规石灰石石膏湿法脱硫技术多在30%~60%,采用旋汇耦合、双托盘等技术后,SO3脱除率可达90%以上;金属板式湿式电除尘器多在50%~80%,导电玻钢管式湿式电除尘器多在60%~90%;碱基干粉或溶液喷射技术均可达到80%以上的SO3脱除效果;烟气冷凝相变凝聚技术在消除有色烟羽的同时,也具有一定的SO3脱除效果。根据不同SO3脱除技术对比结果,碱基喷射技术不仅可以实现较高SO3脱除效果,还可有效解决空预器的腐蚀、堵塞等问题,将是未来解决高浓度SO3问题的主流技术方向。
English Abstract
Emission characteristics and removal technology of SO3 from coal-fired power plants
LIU Hanxiao1,,CHEN Zhaomei1,
WANG Shaoquan1,
CAI Xifeng1,
GUO Gaofei1,
SHEN Minchao1,
ZHOU Bing1
1.Zhejiang Feida Environmental Science & Technology Co. Ltd., Zhuji 311800,China
Keywords: coal-fired power plant/
SO3/
emission characteristics/
removal technology
Abstract:The current emission characteristics of SO3 from coal-fired power plants was comprehensively characterized by field measurement and literature survey, the emission concentration was determined as 0.3~ 22.7 mg·m-3 with the compliance rates of 89.8% and 66.7% according to the emission limits of 10 mg·m-3 and 5 mg·m-3, respectively. Based on quantitative analysis of the SO3 removal capacities of the existed equipment for dust removal and desulphurization and new technology, the SO3 removal efficiencies of conventional ESP, LL-ESP and EF were only 10%~20%, higher than 95% and higher than 80%, respectively. For the conventional WFGD, the SO3 removal efficiency was mostly 30%~60%, while it could be improved up to higher than 90% when spiral-sink coupling, double pallet and other technologies were used. Moreover, the SO3 removal efficiencies were mostly 50%~80%, 60%~90% and higher than 80% for the metal plate type WESP, the conductive glass tube type WESP and alkaline dry powder or solution injection technology, respectively. The colored plume and SO3 could be synchronously removed by PCA technology. Based on the comparison of different SO3 removal technologies, the alkaline dry powder injection technology can not only achieve higher SO3 removal effect, but also solve the corrosion, blockage and other problems of air heater effectively, which will be a major technology direction for solving the problem of SO3 with high concentration in the future.