删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

复合菌对黑臭水体中S2-的氧化条件优化及动力学特性

本站小编 Free考研考试/2021-12-31

徐瑶瑶1,2,,
宋晨3,
宋楠楠2,
王进1,
岳正波1,
刘晓玲2,
1.合肥工业大学资源与环境工程学院,合肥 230009
2.中国环境科学研究院,流域水环境污染综合治理研究中心,北京 100012
3.南京瑞迪建设科技有限公司,南京 210029
基金项目: 北京市自然科学基金面上项目8182058
中央级公益性科研院所基本科研业务费专项JY-201209012北京市自然科学基金面上项目(8182058)
中央级公益性科研院所基本科研业务费专项(JY-201209012)




Condition optimization and kinetic characteristics of S2- bio-oxidation in a black-stinking water body by composite microorganisms

XU Yaoyao1,2,,
SONG Chen3,
SONG Nannan2,
WANG Jin1,
YUE Zhengbo1,
LIU Xiaoling2,
1.School of Resources and Environmental Engineering,Hefei University of Technology,Hefei 230009,China
2.Research Center for Comprehensive Treatment of Water Environmental Pollution in River Basin, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3.Nanjing R&D Tech Group Co.Ltd.,Nanjing 210029,China

-->

摘要
HTML全文
(0)(0)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以S2-的氧化率为主要考察指标,对从北京黑臭水体东沙河筛选获得的3株高效S2-氧化土著微生物sp1(Citrobacter sp.)、sp2(Ochrobactrum sp.)和sp3(Stenotrophomonas sp.)进行复配,获得硫氧化复合菌(sulphur oxidizing composite microorganisms, SOCM),比较单株菌sp1、sp2和sp3和SOCM对S2-的氧化效果。结果表明,SOCM对S2-的氧化能力明显优于单菌株。SOCM在复配比例为1∶1∶1,温度为25 ℃,初始pH为7时对北京市东沙河黑臭水样中S2-的氧化效果最好,氧化率最高达到76.7%;同时,色度、COD、NH3-N和TP的去除率可分别达到83.3%、69.2%、77.9%和68.2%。此外,建立了SOCM氧化S2-的动力学方程。当SOCM初始菌浓度从0.01 g·L-1逐渐提高到10 g·L-1时,底物比氧化速率常数Km随之减小,S2-平均氧化速率提高。但是,当SOCM初始菌浓度从10 g·L-1逐渐提高到50 g·L-1时,S2-平均氧化速率不再随着初始菌浓度的升高而加快。最后,将SOCM接种于北京清河和景观沟渠黑臭水样中,其对S2-氧化率分别达到67.0%和64.1%;同时,色度亦分别下降了83.3%和79.2%。研究为黑臭水体的微生物法治理提供了参考。
关键词: S2-氧化/
复合菌/
黑臭水体/
动力学特性

Abstract:In this study, S2- oxidation ratios was taken as the main index, three indigenous pure strains of sp1 (Citrobacter sp.), sp2 (Ochrobactrum sp.) and sp3 (Stenotrophomonas sp.) with high efficiently S2- oxidation were isolated from Dongsha river, a black-stinking water body in Beijing. They were mixed to produce the sulfur-oxidizing composite microorganisms(SOCM).The S2- oxidation efficiencies of sp1, sp2, sp3 and SOCM were compared. The results showed that SOCM had an obviously better performance on S2- oxidation than these three pure bacteria, and the best S2- oxidation effect in the black-stinking water samples from Dongsha river in Beijing occurred at the complex ratio for SOCM production 1∶1∶1, 25 ℃ and the initial pH of 7, and the highest S2- oxidation efficiency reached 76.7%, and the removal efficiencies of chroma, COD, NH3-N and TP were 83.3%, 69.2%, 77.9% and 68.2%, respectively. In addition, the kinetic equation for S2- oxidation by SOCM was determined. When the initial bacterial concentration of SOCM increased from 0.01 g·L-1 to 10 g·L-1, the substrate specific oxidation rate constant Km decreased, and the average S2- oxidation rate increased. When the initial bacterial concentration of SOCM increased from 10 g·L-1 to 50 g·L-1, the average S2- oxidation ratio did not increase any more. Finally, after inoculating SOCM into the black-stinking water samples from Qinghe river and Jingguangouqu river in Beijing, the S2- oxidation efficiencies reached 67.0% and 64.1%, and their chroma values decreased by 83.3% and 79.2%, respectively. This study provided a reference for the microbial remediation of black-stinking water body.
Key words:S2- oxidation/
composite microorganisms/
black-stinking water body/
kinetic characteristics.

加载中
[1] WANG X, WANG Y G, SUN C H, et al. Formation mechanism and assessment method for urban black and odorous water body: A review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1331-1340.
[2] 赵越, 姚瑞华, 徐敏, 等.我国城市黑臭水体治理实践及思路探讨[J]. 环境保护, 2015, 43(13): 27-29.
[3] LIAO W L, HUANG J S, DING J G, et al. Pollution status and remediation technologies of malodorous black water body in China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(11): 153-158.
[4] 刘建福, 陈敬雄, 辜时有. 城市黑臭水体空气微生物污染及健康风险[J]. 环境科学, 2016, 37(4): 1264-1271.
[5] SONG C, LIU X L, SONG Y H, et al. Key blackening and stinking pollutants in Dongsha River of Beijing: spatial distribution and source identification[J]. Journal of Environmental Management, 2017, 200: 335-346.
[6] TANG W, SHAN B, ZHANG H, et al. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China[J]. Scientific Reports, 2014, 4: 7152-7158.
[7] 王玉琳, 汪靓, 华祖林. 黑臭水体中不同浓度Fe2+、S2-与DO和水动力关系[J]. 中国环境科学, 2018, 38(2): 627-633.
[8] ARCO-LZARO E, AGUDO I, CLEMENTE R, et al. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition[J]. Environmental Pollution, 2016, 216: 71-79.
[9] GAUR V K , GUPTA S K , PANDEY S D, et al. Distribution of heavy metals in sediment and water of river Gomti[J]. Environmental Monitoring and Assessment, 2005, 102(1/2/3): 419-433.
[10] 刘树娟, 陈磊, 钟润生, 等. 硝酸钙对河流底泥中含硫化合物嗅味原位控制[J]. 环境科学研究, 2012, 25(6): 691-698.
[11] TAO L L, LI P, DING J M, et al. The chemical coagulation-advanced oxidation composite process for treating sulfur-contained tannery wastewater[J]. Leather & Chemicals, 2011, 28(6): 8-10.
[12] 陈正勇, 王国祥, 杨飞, 等. Fenton试剂对富营养化湖水黑臭的氧化降解作用[J]. 环境工程学报,2012, 6(5):1591-1594.
[13] 杨华, 席劲瑛, 胡洪营, 等. 投加化学药剂改善城市黑臭河流水质的研究[J]. 环境科学与技术, 2012, 35(6I): 295-298.
[14] SHENG Y Q, QU Y X, Ding C F, et al. A combined application of different engineering and biological techniques to remediate a heavily polluted river[J]. Ecological Engineering, 2013, 57: 1-7.
[15] 吴霞, 谢悦波. 直接投菌法在城市重污染河流治理中的应用研究[J]. 环境工程学报, 2014, 8(8): 3331-3336.
[16] 涂玮灵, 胡湛波, 梁益聪, 等. 反硝化细菌修复城市黑臭河道底泥实验研究[J]. 环境工程, 2015, 33(10): 5-9.
[17] 宋晓兰, 张洁, 陈渊, 等. 微生物修复技术在苏南某黑臭河道的应用[J]. 环境科学与技术, 2014, 37(6N): 166-168.
[18] PAN M, ZHAO J, ZHEN S, et al. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river[J]. Water Science and Technology, 2016, 74(3): 655-662.
[19] CHEN J N, ZHANP, KOOPMAN B, et al. Bioaugmentation with Gordonia strain JW8 in treatment of pulp and paper wastewater[J]. Clean Technologies & Environmental Policy, 2012, 14(5): 899-904.
[20] 高丹英. 黑臭水净化菌株的筛选及净水效果的研究[D]. 武汉: 华中师范大学, 2009.
[21] DURAN M, TEPE N, YURTSEVER D, et al. Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control[J]. Applied Microbiology & Biotechnology, 2006, 73(4): 960-966.
[22] 何杰财. 固定化生物催化剂在河涌黑臭治理中的效能研究[D]. 广州: 华南理工大学, 2013.
[23] 黄菲菲. 组合微生物对黑臭水的净化研究[D]. 武汉: 华中师范大学, 2012.
[24] 赵志萍. 河流黑臭水体的微生物修复研究[D]. 杨凌: 西北农林科技大学, 2007.
[25] 徐熊鲤, 谢翼飞, 陈政阳, 等. 曝气强化微生物功能菌修复黑臭水体[J]. 环境工程学报, 2017, 11(8): 4559-4565.
[26] YU G W, QIU L, LEI H Y, et al. In situ biochemical technology to control black-odor of polluted sediments in tidal river[J]. Journal of Biotechnology, 2008, 136: 665.
[27] 叶姜瑜, 程士兵, 窦建军, 等. 高效降解黑臭废水细菌的筛选及鉴定[J]. 环境工程, 2012, 30(s2): 13-16.
[28] ZHUANG R Y, LOU Y J, QIU X T, et al. Identification of a yeast strain able to oxidize and remove sulfide high efficiently[J]. Applied Microbiology & Biotechnology, 2017, 101(1): 391-400.
[29] WANG G F, LI X N, FANG Y, et al. Analysis on the formation condition of the algae-induced odorous black water agglomerate[J]. Saudi Journal of Biological Sciences, 2014, 21(6): 597-604.
[30] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[31] HE D F, CHEN R R, ZHU E H, et al. Toxicity bioassays for water from black-odor rivers in Wenzhou, China[J]. Environmental Science & Pollution Research International, 2015, 22(3): 1731-1741.
[32] LI Z J, SONG L L, MA J Z, et al. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015[J]. Atmospheric Environment, 2017, 156: 61-69.
[33] 陈燕飞. pH对微生物的影响[J]. 太原师范学院学报(自然科学版), 2009, 8(3): 121-124.
[34] LIU C, HUANG X, WANG H. Start-up of a membrane bioreactor bioaugmented with genetically engineered microorganism for enhanced treatment of atrazine containing wastewater[J]. Desalination, 2008, 231(1): 12-19.
[35] PRADHAN S, RAI LC. Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis [J]. World Journal of Microbiology & Biotechnology, 2000, 16(6): 579-584.
[36] 聂麦茜, 吴蔓莉, 王晓昌, 等. 一株黄杆菌及其粗酶液对芘降解的动力学特征研究[J]. 环境科学学报, 2006, 26(2):181-185.
[37] 李燕. 废水生物处理中溶解性微生物产物的产生及性质研究[D]. 南京: 南京大学, 2013.
[38] ADAMS C E, ECKENFEFELDER W W, HOVIOUS J C. A kinetic model for design of completely-mixed activated sludge treating variable-strength industrial wastewaters[J]. Water Research, 1975, 9(1): 37-42.
[39] MATHUR A K, MAJUMDER C B, CHATTERJEE S, et al. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus[J]. Journal of Hazardous Materials, 2008, 157(2/3): 335-343.
[40] SHEN J Y, ZHANG X, CHEN D, et al. Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18[J]. Bioprocess and Biosystems Engineering, 2014, 37(6): 1185-1192.
[41] HAZRATI H, SHAYEGAN J, SEYEDI S M. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1):1-12.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1392
HTML全文浏览数:1344
PDF下载数:244
施引文献:0
出版历程

刊出日期:2019-03-14




-->








复合菌对黑臭水体中S2-的氧化条件优化及动力学特性

徐瑶瑶1,2,,
宋晨3,
宋楠楠2,
王进1,
岳正波1,
刘晓玲2,
1.合肥工业大学资源与环境工程学院,合肥 230009
2.中国环境科学研究院,流域水环境污染综合治理研究中心,北京 100012
3.南京瑞迪建设科技有限公司,南京 210029
基金项目: 北京市自然科学基金面上项目8182058 中央级公益性科研院所基本科研业务费专项JY-201209012北京市自然科学基金面上项目(8182058) 中央级公益性科研院所基本科研业务费专项(JY-201209012)
关键词: S2-氧化/
复合菌/
黑臭水体/
动力学特性
摘要:以S2-的氧化率为主要考察指标,对从北京黑臭水体东沙河筛选获得的3株高效S2-氧化土著微生物sp1(Citrobacter sp.)、sp2(Ochrobactrum sp.)和sp3(Stenotrophomonas sp.)进行复配,获得硫氧化复合菌(sulphur oxidizing composite microorganisms, SOCM),比较单株菌sp1、sp2和sp3和SOCM对S2-的氧化效果。结果表明,SOCM对S2-的氧化能力明显优于单菌株。SOCM在复配比例为1∶1∶1,温度为25 ℃,初始pH为7时对北京市东沙河黑臭水样中S2-的氧化效果最好,氧化率最高达到76.7%;同时,色度、COD、NH3-N和TP的去除率可分别达到83.3%、69.2%、77.9%和68.2%。此外,建立了SOCM氧化S2-的动力学方程。当SOCM初始菌浓度从0.01 g·L-1逐渐提高到10 g·L-1时,底物比氧化速率常数Km随之减小,S2-平均氧化速率提高。但是,当SOCM初始菌浓度从10 g·L-1逐渐提高到50 g·L-1时,S2-平均氧化速率不再随着初始菌浓度的升高而加快。最后,将SOCM接种于北京清河和景观沟渠黑臭水样中,其对S2-氧化率分别达到67.0%和64.1%;同时,色度亦分别下降了83.3%和79.2%。研究为黑臭水体的微生物法治理提供了参考。

English Abstract






--> --> --> 参考文献 (41)
相关话题/微生物 北京 环境科学 环境工程 城市