删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒

本站小编 Free考研考试/2021-12-31

胡超超1,2,,
王里奥1,2,,
詹欣源1,2,
龚健1,2,
柏继松3,
杨鲁3
1.重庆大学资源及环境科学学院,重庆 400044
2.重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
3.重庆市生活垃圾资源化处理协同创新中心,重庆 401331
基金项目: 重庆市教委项目(shljzyh2017-001)




Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues

HU Chaochao1,2,,
WANG Li'ao1,2,,
ZHAN Xinyuan1,2,
GONG Jian1,2,
BAI Jisong3,
YANG Lu3
1.College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China
2.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
3.Chongqing Municipal Solid Waste Resource Utilization and Treatment Collaborative Innovation Center, Chongqing 401331, China

-->

摘要
HTML全文
(0)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为减少城市生活垃圾焚烧飞灰(简称飞灰)与电解锰渣中的重金属对环境的危害,考察了利用两者辅以粉煤灰烧制陶粒的可行性。通过单因素实验确定原材料最佳配比以及最宜烧制工艺条件,并对焙烧后陶粒的微观形貌以及重金属浸出浓度进行分析。结果表明:随着飞灰掺量的增加,陶粒的颗粒强度与堆积密度降低,1 h吸水率升高;确定最佳原料配比为飞灰掺量12%、电解锰渣掺量43%、粉煤灰掺量45%;确定最宜烧制工艺条件为预热温度600 ℃、焙烧温度1 140 ℃。在最佳条件下,烧制陶粒的颗粒强度为769 N,堆积密度为687 kg·m-3,1 h吸水率为6.44%。通过微观结构观察,陶粒表面致密呈釉化,内部呈现多孔隙结构。陶粒中重金属浸出浓度均低于国家标准。此陶粒的使用可为飞灰与电解锰渣资源化利用提供参考。
关键词: 城市生活垃圾焚烧飞灰/
电解锰渣/
陶粒/
重金属/
固体废物资源化

Abstract:In order to reduce the harm to the environment from the heavy metals in municipal solid waste incineration (MSWI) fly ash and electrolytic manganese residues (EMR), the feasibility of preparing ceramsite with these two solid wastes, and coal fly ash as an auxiliary one was investigated. The single-factor experiments were conducted to determine the optimal mixture ratio of raw materials and the most suitable sintering conditions, and the morphology of ceramsite and its heavy metals leaching were analyzed. The results showed that with the doping amount increase of MSWI fly ash, granule strength and bulk density of ceramsite decreased, while its 1 h water absorption increased. The optimum mixture ratios of raw materials were 12% of MSWI fly ash, 43% of EMR and 45% of coal fly ash. The most suitable sintering conditions were preheating temperature of 600 °C and roasting temperature of 1 140 °C. Under this condition, the prepared ceramsite had a granule strength of 769 N, bulk density of 687 kg·m-3, and 1 h water absorption of 6.44%. Through analyzing microstructure of ceramsite, a succession glaze layer and internal pore structure appeared, and the leaching concentrations of heavy metals from ceramsite were lower than the national standard. It was a novel approach to utilize MSWI fly ash and EMR.
Key words:municipal solid waste incineration(MSWI) fly ash/
electrolytic manganese residues(EMR)/
ceramsite/
heavy metal/
resource recovery of solid waste.

加载中
[1] 中国环境保护产业协会城市生活垃圾处理专业委员会. 城市生活垃圾处理行业2017年发展综述[J]. 中国环保产业, 2017(4): 9-15.
[2] ABANADES S, FLAMANT G, GAGNEPAIN B, et al. Fate of heavy metals during municipal solid waste incineration[J]. Waste Management & Research, 2002, 20(1): 55-68.
[3] RIMAITYTE I, DENAFAS G, JAGER J. Report: Environmental assessment of Darmstadt (Germany) municipal waste incineration plant[J]. Waste Management & Research, 2007, 25(2): 177-182.
[4] CHENG H, HU Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824.
[5] PAN Y, YANG L, ZHOU J, et al. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China[J]. Chemosphere, 2013, 92(7): 765-771.
[6] POLETTINI A, POMI R, TRINCI L, et al. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives[J]. Chemosphere, 2004, 56(10): 901-910.
[7] 刘清才, 鹿存房, 黄本生,等. 城市生活垃圾焚烧飞灰的熔融分离处理[J]. 环境工程学报, 2008, 2(10): 1403-1406.
[8] WANG F H, ZHANG F, CHEN Y J, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash[J]. Journal of Hazardous Materials, 2015, 300:451-458.
[9] GUO X, SHI H, HU W, et al. Durability and microstructure of CSA cement-based materials from MSWI fly ash[J]. Cement & Concrete Composites, 2014, 46(2): 26-31.
[10] NA W. Production of sludge ceramsite from sewage sludge, municipal solid waste incineration fly ash and clay[J]. Nature Environment and Pollution Technology, 2015, 14(1): 153-156.
[11] TAN W F, WANG L, HUANG C, et al. Municipal solid waste incineration fly ash sintered lightweight aggregates and kinetics model establishment[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 465-472.
[12] HU N, ZHENG J, DING D, et al. Metal pollution in huayuan river in hunan province in china by manganese sulphate waste residue[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4): 583-590.
[13] SILVA M A R, MATER L, SOUZA-SIERRA M M, et al. Small hazardous waste generators in developing countries: Use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal[J]. Journal of Hazardous Materials, 2007, 147(3): 986-990.
[14] NING D, WANG F, ZHOU C B, et al. Analysis of pollution materials generated from electrolytic manganese industries in China[J]. Resources Conservation & Recycling, 2010, 54(8): 506-511.
[15] 胡春燕, 于宏兵. 电解锰渣制备陶瓷砖[J]. 硅酸盐通报, 2010, 29(1): 112-115.
[16] 张金龙, 彭兵, 柴立元, 等. 电解锰渣-页岩-粉煤灰烧结砖的研制[J]. 环境科学与技术, 2011, 34(1): 144-147.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法: GB/T 17431-2010[S]. 北京: 中国标准出版社, 2010.
[18] 国家环境保护总局. 固体废物浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
[19] 樊臻. 污泥陶粒的制备及其机理研究[D]. 扬州: 扬州大学, 2015.
[20] 高礼雄, 丁庆军, 王发洲. 粉煤灰陶粒的研制[J]. 河南建材, 2002(1): 3-4.
[21] 谭文发. 城市生活垃圾焚烧飞灰特性与资源化利用: 烧制轻质陶粒研究[D]. 重庆: 重庆大学, 2013.
[22] 罗忠涛, 肖宇领, 杨久俊, 等. 垃圾焚烧飞灰有毒重金属固化稳定技术研究综述[J]. 环境污染与防治, 2012, 34(8): 58-62.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:999
HTML全文浏览数:926
PDF下载数:130
施引文献:0
出版历程

刊出日期:2019-01-08




-->








城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒

胡超超1,2,,
王里奥1,2,,
詹欣源1,2,
龚健1,2,
柏继松3,
杨鲁3
1.重庆大学资源及环境科学学院,重庆 400044
2.重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
3.重庆市生活垃圾资源化处理协同创新中心,重庆 401331
基金项目: 重庆市教委项目(shljzyh2017-001)
关键词: 城市生活垃圾焚烧飞灰/
电解锰渣/
陶粒/
重金属/
固体废物资源化
摘要:为减少城市生活垃圾焚烧飞灰(简称飞灰)与电解锰渣中的重金属对环境的危害,考察了利用两者辅以粉煤灰烧制陶粒的可行性。通过单因素实验确定原材料最佳配比以及最宜烧制工艺条件,并对焙烧后陶粒的微观形貌以及重金属浸出浓度进行分析。结果表明:随着飞灰掺量的增加,陶粒的颗粒强度与堆积密度降低,1 h吸水率升高;确定最佳原料配比为飞灰掺量12%、电解锰渣掺量43%、粉煤灰掺量45%;确定最宜烧制工艺条件为预热温度600 ℃、焙烧温度1 140 ℃。在最佳条件下,烧制陶粒的颗粒强度为769 N,堆积密度为687 kg·m-3,1 h吸水率为6.44%。通过微观结构观察,陶粒表面致密呈釉化,内部呈现多孔隙结构。陶粒中重金属浸出浓度均低于国家标准。此陶粒的使用可为飞灰与电解锰渣资源化利用提供参考。

English Abstract






--> --> --> 参考文献 (22)
相关话题/资源 重庆 重庆大学 工艺 结构