删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

pH对高铁酸盐氧化剩余污泥的影响

本站小编 Free考研考试/2021-12-31

金润1,2,,
李祥1,2,3,
郭超然1,2,
殷记强1,2,
黄勇1,2,,
马军3
1.苏州科技大学环境科学与工程学院,苏州 215011
2.苏州科技大学环境生物技术研究所,苏州 215011
3.哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室,哈尔滨 150090
基金项目: 国家自然科学基金资助项目51478287,51408384国家自然科学基金资助项目(51478287,51408384)
江苏省特色优势学科二期项目
江苏省水处理技术与材料协同创新 中心项目




Effects of pH on ferrate oxidation of excess sludge

JIN Run1,2,,
LI Xiang1,2,3,
GUO Chaoran1,2,
YIN Jiqiang1,2,
HUANG Yong1,2,,
MA Jun3
1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
2.Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215011, China
3.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

-->

摘要
HTML全文
(0)(0)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要:针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH4+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L-1。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L-1,在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。
关键词: 高铁酸盐/
pH/
污泥减量化/
胞外聚合物/
污泥比阻/
TN/
TOC

Abstract:Due to the different oxidizability and stability of ferrate under acid and alkali environment, the ferrate solution was used to treat excess sludge under different pHs of 1、3、5、7、9、11、13. Sludge dewatering performances (sludge specific resistance) and reduction effects were investigated, as well as the solution characteristics (NH4+-N, TN, PO43-, TP, total organic carbon, dissolved organic COD, extracellular polymeric substances) and sludge properties (mixed liquor volatile suspended solids, sludge sedimentation ratio, sludge volume index, particle size). The results showed that the concentrations of pollutants in the disintegration solution were low at middle pHs, and high at acidic and alkaline pHs. The oxidation effects of ferrate under acid and alkaline pHs were better than that under neutral pH. At pH 13, both the best reduction effect and the most release of nitrogen and organic matter occurred, while the worst dewatering effect occurred. At pH 1, the most total phosphorus in the disintegration solution was observed, and up to 90.6 mg·L-1. At pH 13 and ferrate dosage of 15 mg Fe per gram dry sludge, SCOD release was 1.13 g SCOD per gram MLVSS, the release of TN, SCOD and TOC were 179.3, 3 507.9 and 1 134.3 mg·L-1, respectively, which was conducive to obtaining good sludge reduction effect, then resource recovery and disposal of the disintegration solution afterwards.
Key words:ferrate/
pH/
sludge reduction/
extracellular polymeric substances/
sludge specific resistance/
TN/
TOC.

加载中
[1] 刘阳, 曾薇, 韩玉伟, 等. 热水解预处理对剩余污泥可生物降解性的影响[J]. 环境工程学报, 2016, 10(8): 4445-4450.
[2] TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009.
[3] ZHANG D, CHEN Y, ZHAO Y, et al. New sludge pretreatment method to improve methane production in waste activated sludge digestion[J]. Environmental Science & Technology, 2010, 44(12): 4802-4808.
[4] FITER M. Ozonation as a pretreatment for anaerobic digestion of waste activated sludge: Effect of the ozone doses[J]. Ozone Science & Engineering, 2015, 37(4): 1-7.
[5] WANG G, SUI J, SHEN H, et al. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation[J]. Journal of Hazardous Materials, 2011, 192(1): 93-98.
[6] 郭宇衡. 高铁酸钾对污泥的脱水减量研究[D]. 广州: 华南理工大学, 2013.
[7] 李洋洋, 李欢, 金宜英, 等. 碱热联合处理用于污泥强化脱水[J]. 高校化学工程学报, 2010, 24(4): 714-718.
[8] 徐慧敏, 何国富, 戴晓虎, 等. 超声联合碱解预处理对剩余污泥破解和厌氧消化的影响[J]. 环境工程学报, 2017, 11(5):3073-3078.
[9] JIANG J Q. Advances in the development and application of ferrate(VI) for water and wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(2): 165-177.
[10] JIANG J Q, LLOYD B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6): 1397-1408.
[11] JIANG J Q, SHARMA V K. The Use of Ferrate(VI) Technology in Sludge Treatment[M]. Washington, DC: American Chemical Society, 2008: 306-325.
[12] 吕丰锦, 刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 42(s1): 63-66.
[13] ZHANG W, CAO B, WANG D, et al. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage[J]. Biochemical Engineering Journal, 2016, 106: 37-47.
[14] ZHANG X, LEI H, KAI C, et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474.
[15] 张煜, 李明玉, 李善得, 等. 直接分光光度法测定高铁酸盐的含量[J]. 无机盐工业, 2011, 43(2): 59-62.
[16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[17] 中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 北京: 中国标准出版社, 2005.
[18] HERBERT D, PHILIPPS P J, STRANGE R E. Carbohydrate analysis[J]. Methods in Enzymology, 1971, 5: 265-277.
[19] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
[20] NIU T, ZHOU Z, REN W, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances[J]. International Biodeterioration & Biodegradation, 2016, 106: 170-177.
[21] LIU Y, WANG L, MA J, et al. Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution[J]. Chemical Engineering Journal, 2016, 287: 11-18.
[22] FANG Z, LONG X, RAN T, et al. The phosphorus-incorporating property of extracellular polymer substances[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2374-2379.
[23] ZHANG X, LEI H, KAI C, et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474.
[24] FENG X, LEI H, DENG J, et al. Physical and chemical characteristics of waste activated sludge treated ultrasonically[J]. Chemical Engineering & Processing Process Intensification, 2009, 48(1): 187-194.
[25] 刘天泽. 高铁酸盐污泥减量实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[26] LIU H, FANG H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256.
[27] LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720.
[28] YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1): 91-96.
[29] ZHANG W, XIAO P, LIU Y, et al. Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability[J]. Separation & Purification Technology, 2014, 132(1): 430-437.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:768
HTML全文浏览数:718
PDF下载数:106
施引文献:0
出版历程

刊出日期:2019-03-14




-->








pH对高铁酸盐氧化剩余污泥的影响

金润1,2,,
李祥1,2,3,
郭超然1,2,
殷记强1,2,
黄勇1,2,,
马军3
1.苏州科技大学环境科学与工程学院,苏州 215011
2.苏州科技大学环境生物技术研究所,苏州 215011
3.哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室,哈尔滨 150090
基金项目: 国家自然科学基金资助项目51478287,51408384国家自然科学基金资助项目(51478287,51408384) 江苏省特色优势学科二期项目 江苏省水处理技术与材料协同创新 中心项目
关键词: 高铁酸盐/
pH/
污泥减量化/
胞外聚合物/
污泥比阻/
TN/
TOC
摘要:针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH4+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L-1。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L-1,在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。

English Abstract






--> --> --> 参考文献 (29)
相关话题/苏州科技大学 城市 环境 资源 哈尔滨工业大学