删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同尺度潜流人工湿地对污染河水的净化机制

本站小编 Free考研考试/2021-12-31

闁瑰瓨鍔掔拹鐔烘嫚閸欍儱鏁╅悶娑辩厜缁辨繈宕氶崱鏇㈢叐閻犲洤澧介埢鑲╂導閸曨剚鐏愰梺鍓у亾鐢浜告潏顐㈠幋闁兼儳鍢茶ぐ锟�40%闁圭粯鍔栭崹姘辨導濮樿埖灏柨娑虫嫹
闁规亽鍔岀粻宥囨導濮樿埖灏柡澶婂暟濞夘參濡撮崒婵愬殾濞寸媴缍€閵嗗啴宕i鐐╁亾濮樺磭绠栧ù婊勫笩娴犲牏绱旈幋鐘垫惣闂侇偅鏌ㄧ欢鐐寸▔閻戞ɑ鎷辩紒鏃€鐟︾敮褰掔嵁閸噮鍚呭ù鑲╁Л閳ь剚閽扞P濞村吋鑹鹃幉鎶藉灳濠垫挾绀夐柣鈧妽閸╂盯鏌呭宕囩畺閻犲洤褰為崬顒傛偘閵娧勭暠闁告帒妫旈棅鈺呮煣閻愵剙澶嶉柟瀛樼墬閹癸綁骞庨妷銊ユ灎濞戞梹婢橀幃妤呮晬瀹€鍐惧殾濞寸媴缍€閵嗗啴鎳㈠畡鏉跨悼40%闁圭粯鍔栭崹姘跺Υ閸屾繍鍤﹀ù鐙呯秬閵嗗啰鎷归婵囧闁哄牜鍓涢悵顖涚鐠佸磭绉垮ù婧犲啯鎯傞柨娑樿嫰濞煎孩绂嶉銏犵秬9闁硅埖菧閳ь剙鍊搁惃銏ゅ礆閸℃洟鐓╅梺鍓у亾鐢挳濡存担瑙勫闯闁硅翰鍎卞ù姗€鎮ч崶鈺冩惣闁挎稑鑻ぐ鍌炲礆閺夋鍔呴柡宓氥値鍟堥柛褎绋忛埀顑胯兌濞呫劍鎯旈敃浣稿灡闁告皜浣插亾娴i晲绨抽柛妤佸搸閳ь兛绀佹禍鏇熺┍鎺抽埀顑垮倕Q缂佸本妞藉Λ鍧楀Υ娴h櫣鍙€濞戞柨绨洪埀顑挎祰閻挳鎮洪敐鍥╂惣闁告艾瀚妵鍥嵁閸愭彃閰遍柕鍡嫹
沈莹1,,
郑于聪1,
王晓昌1,
贾策1,
赵梦云1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家科技重大专项 (2014ZX07305-002-01)
陕西省教育厅重点实验室科研计划项目(17JS078)
中国博士后科学基金第61批面上项目 (2017M613290XB)




Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water

SHEN Ying1,,
ZHENG Yucong1,
WANAG Xiaochang1,
JIA Ce1,
ZHAO Mengyun1
1.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

-->

摘要
HTML全文
(0)(0)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。
关键词: 尺度/
净化机制/
潜流人工湿地/
污染河水

Abstract:In order to investigate the mechanism of subsurface constructed wetland (SSF CW) for polluted river water purification, a lab scale and a pilot scale SSF CW were constructed to analyze the roles of substrates, microorganism and plants in CW. The results indicated that the two different scales CWs showed similar removal efficiencies for suspended solids (SS 95.86%, 94.74%) and organic matter (COD 85.29%, 80.41%; BOD5 90.60%, 89.99%). However, the lab scale wetland showed higher nutrient removal rates (TN 30.13%, TP 76.89%) than the pilot scale wetland (TN 20.27%, TP 52.45%). Furthermore, the diversity and the number of microbial communities in the lab scale wetland were both higher than those in the pilot scale. The Flavobacterium and Chryseobacterium were only found in the lab scale wetland which could degrade nitrogen and organic matter simultaneously. Finally, the pilot scale CW provided more favorable environment for plants growth than the lab scale. The plants played an important function especially in pilot scale CW for nitrogen and phosphorus removal (TN 23.55%, TP 8.80%), with TN 11.03%, TP 4.46% in lab scale CW.
Key words:scale/
purification mechanism/
subsurface flow constructed wetland/
polluted river water.

加载中
[1] ROZKOSNY M, KRISKA M, ?ALEK J, et al.Natural technologies of wastewater treatment[R].Slovakia: Global Water Partnership Central and Eastern Europe,2014:98-101
[2] 曹笑笑, 吕宪国, 张仲胜, 等. 人工湿地设计研究进展[J]. 湿地科学,2013,11(1):121-128
[3] 贾丽娜, 张发宇, 柯凡, 等. 复合人工湿地对低污染城市河流的深度净化效果[J]. 中国给水排水,2016,32(23):80-84
[4] XIE E, DING A Z, ZHENG L, et al.Seasonal variation in populations of nitrogen transforming bacteria and correlation with nitrogen removal in a full-scale horizontal flow constructed wetland treating polluted river water[J].Geomicrobiology Journal,2016,33:338-346
[5] THOMAS R, GOUGH R, FREENAN C.Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product[J].Ecological Engineering,2017,106:415-422
[6] 王俊锋, 宋新山, 严登明, 等. 潜流人工湿地水动力学研究方法进展[J]. 环境科学与技术,2015,38(8):75-79
[7] 刘红美, 李春杰, 吴德意, 等. 基质强化型潜流人工湿地净化景观水的研究[J]. 中国给水排水,2013,29(1):6-10
[8] BARCO A, BORIN M.Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment[J].Ecological Engineering,2017,107:160-171
[9] 常军军, 吴苏青, 梁康, 等. 复合垂直流人工湿地微生物特征对典型污水的响应差异[J]. 环境科学研究,2016,29(8):1200-1206
[10] 熊家晴, 李珊珊, 葛媛, 等. 处理高污染河水垂直流人工湿地微生物群落特性[J]. 环境工程学报,2017,11(3):1959-19651 10.12030/j.cjee.201511160
[11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2005:243-284
[12] 鲁如坤. 土壤农业化学分析方法[M]. 2版. 北京: 中国农业出版社,1992:244-278
[13] 丁怡, 王玮, 宋新山, 等. 人工湿地在水质净化中的应用及研究进展[J]. 工业水处理,2017,37(3):6-9
[14] HUA Y M, PENG L, ZHANG S H, et al.Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater[J].Ecological Engineering,2017,108:70-77
[15] GAO Y, XIE Y W, ZHANG Q, et al.Intensified nitrate and phosphorus removal in an electrolysis-integrated horizontal subsurface-flow constructed wetland[J].Water Research,2017,108:39-45
[16] CHANG J J, WU S Q, LIANG K, et al.Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewater[J].Environmental Science and Pollution Research,2015,22:3518-3527 10.1007/s11356-014-3594-0
[17] GUAN W, YIN M, HE T, et al.Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J].Environmental Science and Pollution Research,2015,22:16202-16209
[18] LUCA G A D, MAINE M A, MUFARREGE M M, et al.Phosphorus distribution pattern in sediments of natural and constructed wetlands[J].Ecological Engineering,2017,108:227-233
[19] JOHANSSON L.The use of LECA (light expanded clay aggregates) for the removal of phosphorus from wastewater[J].Water Science and Technology,1997,35(5):87-93
[20] 张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报,2016,25(2):292-299
[21] 李怀正, 叶建锋, 徐祖信. 几种经济型人工湿地基质的除污效能分析[J]. 中国给水排水,2007,23(19):27-30
[22] PARK J H, KIM S H, DELAUNE R D, et al.Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands[J].Ecological Engineering,2016,95:612-621
[23] LI H B, LI Y H, GONG Z Q, et al.Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate [J].Ecological Engineering,2013,53:39-45
[24] TAKAICH S, MAOKA T, TAKASAKI K, et al.Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes) identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2’-dirhamnoside[J].Microbiology,2010,156:757-763
[25] LIU H, LU Q, WANG Q, et al.Isolation of a bacterial strain, Acinetobacter sp.from centrate wastewater and study of its cooperation with algae in nutrients removal[J].Bioresource Technology,2017,235:59-69
[26] PAUL E A, CLARK F E.Soil Microbiology and Biochemistry[M]. 2nd ed.San Diego, California: Academic Press,1996:340
[27] GRANT W D, LONG P E.Environmental Microbiology[M].Glasgow: Blackie and Son,1981
[28] HALEEN P G, HENRICUS T S B.Isolation of thermophilic Desulfotomaculm strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp[J].International Journal of Systematic Bacteriology,2003,53:1223-1229
[29] 高会杰, 黎元生. 短程反硝化菌株FDN-1的分离鉴定及其脱氮性能[J]. 生物学通报,2013,48(12):56-58
[30] DONG X, REDDY G B.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010,101(4):1175-1182
[31] 朱砺之, 黄娟, 傅大放, 等. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程,2012,19(2):26-30
[32] SAEED T, SUN G.A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J].Journal of Environmental Management,2012,112:429-448
[33] VYMAZAL J.The use of subsurface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J].Ecological Engineering,2002,18:633-646
[34] VYMAZAL J.Removal of nutrients in various types of constructed wetlands[J].Science of the Total Environment,2007,380:48-65
[35] WU H M, ZHANG J, LI P Z, et al.Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J].Ecological Engineering,2011,37:560-568
[36] TANNER C C.Plants for constructed wetland treatment systems:A comparison of the growth and nutrient uptake of eight emergent species[J].Ecological Engineering,1996,7(1):59-83



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1391
HTML全文浏览数:971
PDF下载数:340
施引文献:0
出版历程

刊出日期:2018-06-18




-->








不同尺度潜流人工湿地对污染河水的净化机制

沈莹1,,
郑于聪1,
王晓昌1,
贾策1,
赵梦云1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家科技重大专项 (2014ZX07305-002-01) 陕西省教育厅重点实验室科研计划项目(17JS078) 中国博士后科学基金第61批面上项目 (2017M613290XB)
关键词: 尺度/
净化机制/
潜流人工湿地/
污染河水
摘要:为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。

English Abstract






--> --> --> 参考文献 (36)
閻熸洑鐒︽竟姗€鎳撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟归悹鍥у⒔濠€鈩冿紣濡硶鍋撴笟鈧。鑺ユ償閹炬墎鍋撴担绛嬫綊濡増鍩婄槐鍨交濞嗘挸娅¢悹褍瀚花顔炬惥閸涱厼寮块柨娑楃濠€顏嗙棯閸喖甯抽悹鎰秺濡插嫮鎷犳导娆戠<
2濞戞挸娲ㄩ~鎺楁嚀閸愵亞鍩¢柤鏉垮暙瀹曘儵鎮介棃娑氭憤濞戞棑璁g槐娆愶紣濡櫣姘ㄩ柕鍡曟祰椤锛愰幋娆屽亾娴gǹ寮垮┑鍌涱殙缁侇偊寮▎娆戠闁告瑥锕ゅ濠氱嵁鐎靛憡鍩傚Λ鐗堬公缁辨繂鈽夐悽鍨0547闁圭鍋撻梻鍕╁灪閻楋拷4濞戞挸娲g紞鎴炵▔椤忓洠鍋撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟圭紒澶嬪灩濞蹭即濡存担瑙e亾閸愵亞鍩¢柛蹇e墮閸欙紕鎷犻幘鍛闁衡偓閹稿簼绗夐柤鏄忕簿椤曘垽寮弶娆惧妳闁挎稑顦埀顒婃嫹40缂佸绉崇粭鎾寸▔濮橀硸鏁嬪璇″亾缁辨瑩鏌岄幋锝団偓铏规兜閺囩儑绱滈柕鍡曞簻BA闁靛棔绀佸ù妤呮⒔閸涱厽娅岄柛鏃撶磿椤㈡碍绔熼鐘亾娴h鐓€闂傚倽顔婄槐鍫曞箻椤撶媭鏁嬪璇″亖閳ь兛鑳堕妵鐐村濮橆兛绱eù锝嗙矌椤㈡碍绔熼銈囨惣闁挎稑顦埀顒婃嫹28缂侇偉顕ч幃鎾剁驳婢跺⿴鍔呴柛鏃€绋撻弫鐢垫兜閺囨氨鐟╁☉鎾村搸閳ь剨鎷�1130缂佸绉剁划锟犲礂閸涘﹥娈岄柡澶嬪姂閳ь剙鍊瑰Λ銈囨媼閻戞ê浜堕柡鍕靛灣濠€鈩冿紣濡崵宸濈紓浣稿暔閳ь兛绶氶。鑺ユ償閹惧啿鐓曞Λ鐗堬公缁辨繃娼诲Ο缁樞﹀璺虹С缁″嫰寮▎鎰稄闁挎稑濂旂粩瀛樼▔閻氬様P濞村吋鑹鹃幉鎶藉锤閸パ冭婵犲◥銈呭枙闁诡喓鍔庡▓鎴︽閳ь剙效閸屾ǚ鍋撻敓锟�
相关话题/实验室 微生物 污染 植物 环境