郑于聪1,
王晓昌1,
贾策1,
赵梦云1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家科技重大专项 (2014ZX07305-002-01)
陕西省教育厅重点实验室科研计划项目(17JS078)
中国博士后科学基金第61批面上项目 (2017M613290XB)
Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water
SHEN Ying1,,ZHENG Yucong1,
WANAG Xiaochang1,
JIA Ce1,
ZHAO Mengyun1
1.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。
关键词: 尺度/
净化机制/
潜流人工湿地/
污染河水
Abstract:In order to investigate the mechanism of subsurface constructed wetland (SSF CW) for polluted river water purification, a lab scale and a pilot scale SSF CW were constructed to analyze the roles of substrates, microorganism and plants in CW. The results indicated that the two different scales CWs showed similar removal efficiencies for suspended solids (SS 95.86%, 94.74%) and organic matter (COD 85.29%, 80.41%; BOD5 90.60%, 89.99%). However, the lab scale wetland showed higher nutrient removal rates (TN 30.13%, TP 76.89%) than the pilot scale wetland (TN 20.27%, TP 52.45%). Furthermore, the diversity and the number of microbial communities in the lab scale wetland were both higher than those in the pilot scale. The Flavobacterium and Chryseobacterium were only found in the lab scale wetland which could degrade nitrogen and organic matter simultaneously. Finally, the pilot scale CW provided more favorable environment for plants growth than the lab scale. The plants played an important function especially in pilot scale CW for nitrogen and phosphorus removal (TN 23.55%, TP 8.80%), with TN 11.03%, TP 4.46% in lab scale CW.
Key words:scale/
purification mechanism/
subsurface flow constructed wetland/
polluted river water.
[1] | ROZKOSNY M, KRISKA M, ?ALEK J, et al.Natural technologies of wastewater treatment[R].Slovakia: Global Water Partnership Central and Eastern Europe,2014:98-101 |
[2] | 曹笑笑, 吕宪国, 张仲胜, 等. 人工湿地设计研究进展[J]. 湿地科学,2013,11(1):121-128 |
[3] | 贾丽娜, 张发宇, 柯凡, 等. 复合人工湿地对低污染城市河流的深度净化效果[J]. 中国给水排水,2016,32(23):80-84 |
[4] | XIE E, DING A Z, ZHENG L, et al.Seasonal variation in populations of nitrogen transforming bacteria and correlation with nitrogen removal in a full-scale horizontal flow constructed wetland treating polluted river water[J].Geomicrobiology Journal,2016,33:338-346 |
[5] | THOMAS R, GOUGH R, FREENAN C.Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product[J].Ecological Engineering,2017,106:415-422 |
[6] | 王俊锋, 宋新山, 严登明, 等. 潜流人工湿地水动力学研究方法进展[J]. 环境科学与技术,2015,38(8):75-79 |
[7] | 刘红美, 李春杰, 吴德意, 等. 基质强化型潜流人工湿地净化景观水的研究[J]. 中国给水排水,2013,29(1):6-10 |
[8] | BARCO A, BORIN M.Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment[J].Ecological Engineering,2017,107:160-171 |
[9] | 常军军, 吴苏青, 梁康, 等. 复合垂直流人工湿地微生物特征对典型污水的响应差异[J]. 环境科学研究,2016,29(8):1200-1206 |
[10] | 熊家晴, 李珊珊, 葛媛, 等. 处理高污染河水垂直流人工湿地微生物群落特性[J]. 环境工程学报,2017,11(3):1959-19651 10.12030/j.cjee.201511160 |
[11] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2005:243-284 |
[12] | 鲁如坤. 土壤农业化学分析方法[M]. 2版. 北京: 中国农业出版社,1992:244-278 |
[13] | 丁怡, 王玮, 宋新山, 等. 人工湿地在水质净化中的应用及研究进展[J]. 工业水处理,2017,37(3):6-9 |
[14] | HUA Y M, PENG L, ZHANG S H, et al.Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater[J].Ecological Engineering,2017,108:70-77 |
[15] | GAO Y, XIE Y W, ZHANG Q, et al.Intensified nitrate and phosphorus removal in an electrolysis-integrated horizontal subsurface-flow constructed wetland[J].Water Research,2017,108:39-45 |
[16] | CHANG J J, WU S Q, LIANG K, et al.Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewater[J].Environmental Science and Pollution Research,2015,22:3518-3527 10.1007/s11356-014-3594-0 |
[17] | GUAN W, YIN M, HE T, et al.Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J].Environmental Science and Pollution Research,2015,22:16202-16209 |
[18] | LUCA G A D, MAINE M A, MUFARREGE M M, et al.Phosphorus distribution pattern in sediments of natural and constructed wetlands[J].Ecological Engineering,2017,108:227-233 |
[19] | JOHANSSON L.The use of LECA (light expanded clay aggregates) for the removal of phosphorus from wastewater[J].Water Science and Technology,1997,35(5):87-93 |
[20] | 张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报,2016,25(2):292-299 |
[21] | 李怀正, 叶建锋, 徐祖信. 几种经济型人工湿地基质的除污效能分析[J]. 中国给水排水,2007,23(19):27-30 |
[22] | PARK J H, KIM S H, DELAUNE R D, et al.Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands[J].Ecological Engineering,2016,95:612-621 |
[23] | LI H B, LI Y H, GONG Z Q, et al.Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate [J].Ecological Engineering,2013,53:39-45 |
[24] | TAKAICH S, MAOKA T, TAKASAKI K, et al.Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes) identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2’-dirhamnoside[J].Microbiology,2010,156:757-763 |
[25] | LIU H, LU Q, WANG Q, et al.Isolation of a bacterial strain, Acinetobacter sp.from centrate wastewater and study of its cooperation with algae in nutrients removal[J].Bioresource Technology,2017,235:59-69 |
[26] | PAUL E A, CLARK F E.Soil Microbiology and Biochemistry[M]. 2nd ed.San Diego, California: Academic Press,1996:340 |
[27] | GRANT W D, LONG P E.Environmental Microbiology[M].Glasgow: Blackie and Son,1981 |
[28] | HALEEN P G, HENRICUS T S B.Isolation of thermophilic Desulfotomaculm strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp[J].International Journal of Systematic Bacteriology,2003,53:1223-1229 |
[29] | 高会杰, 黎元生. 短程反硝化菌株FDN-1的分离鉴定及其脱氮性能[J]. 生物学通报,2013,48(12):56-58 |
[30] | DONG X, REDDY G B.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010,101(4):1175-1182 |
[31] | 朱砺之, 黄娟, 傅大放, 等. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程,2012,19(2):26-30 |
[32] | SAEED T, SUN G.A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J].Journal of Environmental Management,2012,112:429-448 |
[33] | VYMAZAL J.The use of subsurface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J].Ecological Engineering,2002,18:633-646 |
[34] | VYMAZAL J.Removal of nutrients in various types of constructed wetlands[J].Science of the Total Environment,2007,380:48-65 |
[35] | WU H M, ZHANG J, LI P Z, et al.Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J].Ecological Engineering,2011,37:560-568 |
[36] | TANNER C C.Plants for constructed wetland treatment systems:A comparison of the growth and nutrient uptake of eight emergent species[J].Ecological Engineering,1996,7(1):59-83 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1391
HTML全文浏览数:971
PDF下载数:340
施引文献:0
出版历程
刊出日期:2018-06-18
-->
不同尺度潜流人工湿地对污染河水的净化机制
沈莹1,,郑于聪1,
王晓昌1,
贾策1,
赵梦云1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家科技重大专项 (2014ZX07305-002-01) 陕西省教育厅重点实验室科研计划项目(17JS078) 中国博士后科学基金第61批面上项目 (2017M613290XB)
关键词: 尺度/
净化机制/
潜流人工湿地/
污染河水
摘要:为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。
English Abstract
Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water
SHEN Ying1,,ZHENG Yucong1,
WANAG Xiaochang1,
JIA Ce1,
ZHAO Mengyun1
1.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Keywords: scale/
purification mechanism/
subsurface flow constructed wetland/
polluted river water
Abstract:In order to investigate the mechanism of subsurface constructed wetland (SSF CW) for polluted river water purification, a lab scale and a pilot scale SSF CW were constructed to analyze the roles of substrates, microorganism and plants in CW. The results indicated that the two different scales CWs showed similar removal efficiencies for suspended solids (SS 95.86%, 94.74%) and organic matter (COD 85.29%, 80.41%; BOD5 90.60%, 89.99%). However, the lab scale wetland showed higher nutrient removal rates (TN 30.13%, TP 76.89%) than the pilot scale wetland (TN 20.27%, TP 52.45%). Furthermore, the diversity and the number of microbial communities in the lab scale wetland were both higher than those in the pilot scale. The Flavobacterium and Chryseobacterium were only found in the lab scale wetland which could degrade nitrogen and organic matter simultaneously. Finally, the pilot scale CW provided more favorable environment for plants growth than the lab scale. The plants played an important function especially in pilot scale CW for nitrogen and phosphorus removal (TN 23.55%, TP 8.80%), with TN 11.03%, TP 4.46% in lab scale CW.