删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

膜生物反应器中小球藻生物膜生长与代谢的光调控特性

本站小编 Free考研考试/2021-12-31

李春1,,
王胜威1,
张磊1,
王永忠1
1.重庆大学生物工程学院,生物流变科学与技术教育部重点实验室,重庆 400030
基金项目: 国家自然科学基金面上项目(51376200)




Regulation of light intensity on characteristics of growth and metabolism of Chlorella biofilm in a membrane bioreactor

LI Chun1,,
WANG Shengwei1,
ZHANG Lei1,
WANG Yongzhong1
1.Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China

-->

摘要
HTML全文
(0)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为改善微藻细胞固定化培养过程中的光传递与气体传质性能,设计一种具有气液分离特性的膜式光生物反应器系统,并开展光照强度影响下小球藻细胞生物膜成膜及代谢特性研究。通过检测反应器中小球藻生物膜细胞的生物量、细胞组成、叶绿素以及油脂组分,分析光照条件对小球藻生物膜的形成、生长及油脂合成等调控特性。研究发现:高光强胁迫正调控胞内油脂积累,在光照强度为230 μmol·(m2·s)-1条件下小球藻生物量产率和油脂产率最高,分别为5.50 g·(m2·d)-1和1.71 g·(m2·d)-1;细胞内叶绿素a和b及淀粉含量随光照强度增加呈先增加后减少的趋势,但类胡萝卜素和蛋白质的含量变化较小;在小球藻的油脂组成中,在光照强度为46 μmol·(m2·s)-1时,得到最大的C16~C18碳链脂肪酸含量及不饱和脂肪酸含量,而除C16~C18碳链脂肪酸外的其他脂肪酸组分则随光照强度的增加逐渐增加。
关键词: 小球藻/
气液分离/
光照强度/
细胞组分

Abstract:In this study, a gas-liquid separation biofilm cultivation system was developed for improving the transportation performance of light and gas during immobilization culture of Chlorella sp. Biofilm formation of Chlorella sp. and its metabolic performance were investigated under different illumination intensity. Biomass productivity and biochemical composition, as well as chlorophyll, and fatty acid profile were measured to evaluate the characteristics of formation, growth, and lipid synthesis of biofilm under different illumination conditions. High light stress positively regulated cellular lipids accumulation, and the maximal biomass productivity (5.50 g·(m2·d)-1), lipid productivity (1.71 g·(m2·d)-1) were obtained at 230 μmol·(m2·s)-1 illumination intensity. The contents of chlorophyll a and b, as well as starch, increased initially and then decreased, while the contents of carotenoids and proteins became relatively constant. Furthermore, the maximal contents of C16 to C18 of the total fatty acids and unsaturated fatty acids were obtained at 46 μmol·(m2·s)-1 illumination intensity, while the contents of other lipids rose gradually with an increase of the illumination intensity.
Key words:Chlorella/
gas-liquid separation/
illumination intensity/
cell composition.

加载中
[1] 缪晓玲, 吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源, 2003(3):13-16
[2] 王曰杰,孟范平, 李永富,等.内置LED光源平板型光生物反应器用于微藻培养:普通小球藻在反应器中的固碳产油性能探究[J].中国环境科学,2015,5(5):1526-1534
[3] 林喆, 匡亚莉, 郭进,等.微藻采收技术的进展与展望[J].过程工程学报,2009,9(6):1242-1248
[4] 陈莉佳, 郭家宏, 崔健,等.一种平板式生物膜反应器点源污水处理设备:CN204151189U[P].2015-02-11
[5] 李宁.新型生物转鼓反应器研制及脱氮效能研究[D].石家庄:河北科技大学, 2015
[6] 林源, 张瀚丹.微藻生长的影响因素[J].北京农业, 2015(19):190-191
[7] 赵云, 陈家城, 沈英,等.利用微藻同步实现CO2生物固定与养殖废水脱氮除磷[J].环境工程学报,2014,8(9):3553-3558
[8] LEITE G B, PARANJAPE K, ABDELAZIZ A E M, et al.Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae[J].Bioresource Technology,2015,4:123-130
[9] ZHU S, HUANG W, XU J, et al.Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis[J].Bioresource Technology,2014,2(1):292-298
[10] BRNYIKOV I, MARLKOV B, DOUCHA J, et al.Microalgae-novel highly efficient starch producers[J].Biotechnology & Bioengineering,2011,8(4):766-776
[11] ALWIDYAN M I, ALSHYOUKH A O.Experimental evaluation of the transesterification of waste palm oil into biodiesel[J].Bioresource Technology,2002,5(3):253-256
[12] 华雪铭, 周洪琪, 丁卓平.温度和光照对微藻的生长、总脂肪含量及脂肪酸组成的影响[J].上海水产大学学报, 1999(4):309-315
[13] 方涛, 贺心然, 冯志华,等.光照对微藻在海水中吸收氮磷营养盐的影响[J].淮海工学院学报(自然科学版),2012,1(2):80-83
[14] 孔维宝.微藻生物柴油制备的几个关键技术研究[D].北京:中国科学院大学, 2012
[15] 陈春光.类胡萝卜素异构酶在光合机构运转中的功能研究[D].北京:中国科学院大学, 2013
[16] DAMIANI M C, POPOVICH C A, CONSTENLA D, et al.Lipid analysis in Haematococcus pluvialis, to assess its potential use as a biodiesel feedstock[J].Bioresource Technology,2010,1(11):3801-3807
[17] MUTANDA T, RAMESH D, KARTHIKEYAN S, et al.Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production[J].Bioresource Technology,2011,2(1):57-70
[18] 李荷芳, 周汉秋.光照强度对海洋微藻脂肪含量及脂肪酸组成影响的研究[EB/OL].[2017-06-02].https://wenku.baidu.com/view/1975db274b35eefdc8d333a3.html
[19] CARLOZZI P, TORZILLO G.Productivity of Spirulina, in a strongly curved outdoor tubular photobioreactor[J].Applied Microbiology and Biotechnology,1996,5(1):18-23
[20] YOO C, JUN S Y, LEE J Y, et al.Selection of microalgae for lipid production under high levels carbon dioxide[J].Bioresource Technology,2010,1(s1):S71-S74
[21] 曹春晖, 孙世春, 麦康森,等.光照强度对四株海洋绿藻总脂含量和脂肪酸组成的影响[J].生态学报,2010,0(9):2347-2353
[22] 胡群菊.微拟球藻属(Nannochloropsis)藻株的筛选及其油脂与生物柴油生产潜力的评估[D].北京:中国科学院大学, 2015



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:706
HTML全文浏览数:393
PDF下载数:571
施引文献:0
出版历程

刊出日期:2018-02-08




-->








膜生物反应器中小球藻生物膜生长与代谢的光调控特性

李春1,,
王胜威1,
张磊1,
王永忠1
1.重庆大学生物工程学院,生物流变科学与技术教育部重点实验室,重庆 400030
基金项目: 国家自然科学基金面上项目(51376200)
关键词: 小球藻/
气液分离/
光照强度/
细胞组分
摘要:为改善微藻细胞固定化培养过程中的光传递与气体传质性能,设计一种具有气液分离特性的膜式光生物反应器系统,并开展光照强度影响下小球藻细胞生物膜成膜及代谢特性研究。通过检测反应器中小球藻生物膜细胞的生物量、细胞组成、叶绿素以及油脂组分,分析光照条件对小球藻生物膜的形成、生长及油脂合成等调控特性。研究发现:高光强胁迫正调控胞内油脂积累,在光照强度为230 μmol·(m2·s)-1条件下小球藻生物量产率和油脂产率最高,分别为5.50 g·(m2·d)-1和1.71 g·(m2·d)-1;细胞内叶绿素a和b及淀粉含量随光照强度增加呈先增加后减少的趋势,但类胡萝卜素和蛋白质的含量变化较小;在小球藻的油脂组成中,在光照强度为46 μmol·(m2·s)-1时,得到最大的C16~C18碳链脂肪酸含量及不饱和脂肪酸含量,而除C16~C18碳链脂肪酸外的其他脂肪酸组分则随光照强度的增加逐渐增加。

English Abstract






--> --> --> 参考文献 (22)
相关话题/生物 细胞 北京 技术 培养