删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于过碳酸钠的类Fenton体系对亚甲基蓝的降解动力学

本站小编 Free考研考试/2021-12-31

白青青1,,
吴小宁2,
王倩2,
李蓉1
1.西安工业大学建筑工程学院,西安 710021
2.西安工业大学材料与化工学院,西安 710021
基金项目: 国家自然科学基金资助项目(51608412)
陕西省自然科学基础研究计划项目(2016JQ2034)




Kinetics of degradation of methylene blue in a Fenton-like system based on sodium percarbonate

BAI Qingqing1,,
WU Xiaoning2,
WANG Qian2,
LI Rong1
1.School of Civil and Architecture Engineering, Xi′an Technological University, Xi′an 710021, China
2.School of Materials Science and Chemical Engineering, Xi′an Technological University, Xi′an 710021, China

-->

摘要
HTML全文
(0)(0)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要:采用改良低温结晶法制备过碳酸钠(sodium percarbonate,SPC),对其进行XRD表征,并用以作为氧化剂构建类Fenton体系(SPC/Fe2+)降解亚甲基蓝(MB),对其降解的影响因素及反应动力学进行了研究。结果表明,在该体系中,当溶液初始pH分别为2~10时,亚甲基蓝的去除率在1 min时均可达到97%以上,说明该体系可高效去除水体中的亚甲基蓝,反应速率快,且过碳酸钠的使用可以拓宽Fenton反应的pH范围。该反应的最佳工艺条件为0.75 g·L-1硫酸亚铁,300 mg·L-1过碳酸钠,亚甲基蓝去除率在反应10 min后可达99.0%。亚甲基蓝在该体系中的降解遵循二级反应动力学方程,反应速率常数分别为64.50×10-3 L·(mol·s)-1,快于Fenton体系的17.83×10-3 L·(mol·s)-1。该体系反应活化能为16.6 kJ·mol-1,远小于Fenton体系(46.234 kJ·mol-1),说明以过碳酸钠为氧化剂更有利于非均相类Fenton反应的发生。
关键词: 过碳酸钠/
类Fenton反应/
反应速率常数/
反应活化能

Abstract:Sodium percarbonate(SPC) was prepared using low temperature crystallization method and characterized with XRD. SPC was used as oxidant to establish a heterogeneous Fenton system for the removal of methylene blue(MB), and the influences factors and kinetics of the reaction were investigated. The results indicated that 97% removal of MB can be obtained at 1 min, with initial solution pH in the range from 2 to 10, which indicated that MB can be removed efficiently at fast rates and pH window of SPC/Fe2+ system can be enlarged. The optimal condition was determined to be 0.75 g·L-1FeSO4·7H2O, 300 mg·L-1SPC, and 99.0% removal of MB can be reached at 10 min. The removal of MB followed pseudo second-order kinetic and the reaction rate was determined to be 64.50×10-3 L·(mol·s)-1,much faster than that 17.83×10-3 L·(mol·s)-1of Fenton reaction. Also, the reaction activation energy 16.6 kJ·mol-1 was much lower than that 46.234 kJ·mol-1 of Fenton reaction, indicating that Fenton reaction was easier to occur using SPC instead of H2O2 as oxidant.
Key words:sodium percarbonate/
Fenton-like reaction/
reaction rate constants/
reaction activation energies.

加载中
[1] MALIK P K, SAHA S K.Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst[J].Separation and Purification Technology,2003,31(3):241-250
[2] TORRADES F.Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions[J].Dyes & Pigments,2014,100(1):184-189
[3] WANG Q, TIAN S L, NING P.Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene[J].Industrial & Engineering Chemistry Research,2013,53(2):643-649
[4] LAM F L Y, HU X.pH-insensitive bimetallic catalyst for the abatement of dye pollutants by photo-Fenton oxidation[J].Industrial & Engineering Chemistry Research,2013,52(20):6639-6646
[5] ZAHRIM A Y, TIZAOUI C, HILAL N.Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I.acid black 210 dye[J].Journal of Hazardous Materials,2010,182(1/2/3):624-630
[6] VENKATA M S, SURESH B P, NARESH K, et al.Acid azo dye remediation in anoxic-aerobic-anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory[J].Bioresource Technology,2012,119(3):362-372
[7] RODRIGUES C S D, MADEIRA L M, RUI A R B.Decontamination of an industrial cotton dyeing wastewater by chemical and biological processes[J].Industrial & Engineering Chemistry Research,2014,53(6):2412-2421
[8] RAMACHANDRAN G, KUMARASAMY T.Degradation of textile dyeing wastewater by a modified solar photo-Fenton process using steel scrap/H2O2[J].Clean-Soil, Air, Water,2013,41(3):267-274
[9] MALIK P K, SAHA S K.Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst[J].Separation & Purification Technology,2003,31(3):241-250
[10] 张旋,王启山.高级氧化技术在废水处理中的应用[J].水处理技术,2009,35(3):18-22
[11] LIU W, WANG Y, AI Z, et al.Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe(Ⅱ)/Fe(Ⅲ) cycle[J].ACS Applied Materials & Interfaces,2015,7(51):28534-28544
[12] SHI X G, TIAN A, YOU J H, et al.Fe2SiS4 nanoparticle:A new heterogeneous Fenton reagent[J].Materials Letters,2016,169:153-156
[13] FENG H M, ZHENG J C, LEI N Y, et al.Photo-assisted Fenton degradation of polystyrene[J].Environmental Science & Technology,2011,45(2):744-750
[14] KLAMERTH N,MALATO S,MALDONADO M I, et al.Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal wastewater[J].Environmental Science & Technology,2010,44(5):1792-1798
[15] KREMER M L.The Fenton reaction.Dependence of the rate on pH[J].Journal of Physical Chemical A,2003,107(11):1734-1741
[16] NAVALON S, DE M M, MARTIN R, et al.Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light[J].Journal of the American Chemical Society,2011,133(7):2218-2226
[17] HUANG W, BRIGANTE M, WU F, et al.Assessment of the Fe(Ⅲ)-EDDS complex in Fenton-like processes: From the radical formation to the degradation of bisphenol A[J].Environmental Science & Technology,2013,47(4):1952-1959
[18] WANG C G, LIU C H.Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process[J].Journal of Environmental Sciences,2014,26(6):1332-1339
[19] LYU Y Q, ZHENG S L, WANG S N, et al.Vibrational spectra and molecular dynamics of hydrogen peroxide molecules at quartz/water interfaces[J].Journal of Molecular Structure,2016,1113:70-78
[20] PLIEGO G, ZAZO J A, BLASCO S, et al.Treatment of highly polluted hazardous industrial wastewaters by combined coagulation-adsorption and high-temperature Fenton oxidation[J].Industrial & Engineering Chemistry Research,2012,51(7):2888-2896
[21] PIECZYKOLAN B, PTONKA I, BARBUSI'SKI K.Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate[J].Architecture Civil Engineering Environmant,2016,9(4):135-140
[22] CRAVOTTO G, DI C S, ONDRUSCHKA B, et al.Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves[J].Chemosphere,2007,69(8):1326-1329
[23] FU X R, GU X G, LU S G, et al.Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution[J].Chemical Engineer Journal,2015,267:25-33
[24] 王卫兵,赵跃强,孙鸿.过碳酸钠生产的最佳工艺条件研究[J].应用化工,2010,39(8):1215-1217
[25] PATEL V, KHATOON R, NIRMAL M, et al.Flotation-dissolution based spectrophotometric determination of ethion[J].Asian Journal of Chemistry,2016,285(5):957-957
[26] ZIKOWSKA D, KANIEWSKA A, LAMKIEWICZ J, et al.Determination of carrageenan by means of photometric titration with methylene blue and toluidine blue dyes[J].Carbohydrate Polymers,2017,165:1-6
[27] SUZUKI L C, KATO I T, PRATES R A, et al.Glucose modulates antimicrobial photodynamic inactivation of Candida albicans, in biofilms[J].Photodiagnosis & Photodynamic Therapy,2017,17:173-179
[28] SU C C, PUKDEE-ASA M, RATANATAMSKUL C, et al.Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process[J].Separation & Purification Technology,2011,83(1):100-105
[29] YANG H X, ZHOU M K, MENG Z D, et al.Hydrothermal synthesis of cubic mesocrystal CeO2 for visible photocatalytic degradation of rhodamine B[J].Korean Journal of Materials Research,2015,25(3):144-148
[30] XU X R, ZHAO Z Y, LI X Y, et al.Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent[J].Chemosphere,2004,55(1):73-79
[31] XU L J, WANG J L.A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J].Journal of Hazardous Materials,2011,186(1):256-264
[32] WANG S B.A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater[J].Dyes & Pigments,2008,76(3):714-720
[33] YOUSSEF N A, SHABAN S A, IBRAHIM F A, et al.Degradation of methyl orange using Fenton catalytic reaction[J].Egyptian Journal of Petroleum,2016,25(3):317-321
[34] 杨德敏,夏宏,袁建梅.臭氧氧化法处理焦化废水生化出水的反应动力学[J].环境工程学报,2014,8(1):32-37
[35] 袁基刚, 刘兴勇, 李敏.改性粉煤灰吸附沼液中氨氮的动力学和热力学研究[J].中国给水排水,2015,31(9):96-99
[36] 吴彦瑜,郑可,陈东宇,等.Fenton试剂氧化降解腐殖酸动力学[J].环境科学,2010,31(9):2085-2091
[37] 刘金泉.二氧化氯与多环芳烃污染物的反应活性及机理研究[D].哈尔滨:哈尔滨工业大学,2007



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1268
HTML全文浏览数:955
PDF下载数:352
施引文献:0
出版历程

刊出日期:2018-01-14




-->








基于过碳酸钠的类Fenton体系对亚甲基蓝的降解动力学

白青青1,,
吴小宁2,
王倩2,
李蓉1
1.西安工业大学建筑工程学院,西安 710021
2.西安工业大学材料与化工学院,西安 710021
基金项目: 国家自然科学基金资助项目(51608412) 陕西省自然科学基础研究计划项目(2016JQ2034)
关键词: 过碳酸钠/
类Fenton反应/
反应速率常数/
反应活化能
摘要:采用改良低温结晶法制备过碳酸钠(sodium percarbonate,SPC),对其进行XRD表征,并用以作为氧化剂构建类Fenton体系(SPC/Fe2+)降解亚甲基蓝(MB),对其降解的影响因素及反应动力学进行了研究。结果表明,在该体系中,当溶液初始pH分别为2~10时,亚甲基蓝的去除率在1 min时均可达到97%以上,说明该体系可高效去除水体中的亚甲基蓝,反应速率快,且过碳酸钠的使用可以拓宽Fenton反应的pH范围。该反应的最佳工艺条件为0.75 g·L-1硫酸亚铁,300 mg·L-1过碳酸钠,亚甲基蓝去除率在反应10 min后可达99.0%。亚甲基蓝在该体系中的降解遵循二级反应动力学方程,反应速率常数分别为64.50×10-3 L·(mol·s)-1,快于Fenton体系的17.83×10-3 L·(mol·s)-1。该体系反应活化能为16.6 kJ·mol-1,远小于Fenton体系(46.234 kJ·mol-1),说明以过碳酸钠为氧化剂更有利于非均相类Fenton反应的发生。

English Abstract






--> --> --> 参考文献 (37)
相关话题/西安工业大学 工艺 化工学院 建筑工程学院 基础