删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

畜牧场中磺胺类抗生素及其抗性基因的空间分布规律

本站小编 Free考研考试/2021-12-30

綦峥,,
杨红,
张铁林,
齐越,
凌娜
哈尔滨商业大学药物工程技术研究中心, 哈尔滨 150076
作者简介: 綦峥(1981-),女,博士,副研究员,硕士研究生导师,研究方向为环境毒理学,E-mail:18645039597@163.com.
通讯作者: 綦峥,18645039597@163.com ;
基金项目: 国家自然科学基金资助项目(41702368);黑龙江省自然科学基金资助项目(LH2019D007);黑龙江省省属高等学校基本科研业务费资助项目(2020CX09,2020CX10,2020CX38);中央支持地方高校改革发展基金优秀青年人才项目(2020YQ12)


中图分类号: X171.5


Spatial Distribution of Sulfonamides and Its Antibiotic Resistance Genes in Livestock Farm

Qi Zheng,,
Yang Hong,
Zhang Tielin,
Qi Yue,
Ling Na
Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China
Corresponding author: Qi Zheng,18645039597@163.com ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了解畜牧场内磺胺类抗生素及抗性基因的污染物空间分布情况、分布规律及相关性,选取某畜牧场的10 cm和50 cm深度的土壤样品共20个及5个粪便样品,分别对样品中13种磺胺类抗生素的浓度和3种磺胺类抗性基因(sul1、sul2sul3)的丰度进行定量分析,并用地理信息系统优化采样并对污染物空间分布进行可视化分析。结果表明,垂直浓度的空间分布规律为粪便 > 10 cm深度土壤 > 50 cm深度土壤,水平浓度的空间分布主要集中在畜牧场的东南部。3种抗性基因在10 cm和50 cm深度土层中均有检出,其基因相对丰度分布情况为10 cm深度土壤>50 cm深度土壤,且抗生素对抗性基因的表达压力相似。本研究为抗生素和抗性基因污染的精准分析和深入研究畜牧场周边环境中抗性基因的传播规律提供基础数据。
关键词: 磺胺类抗生素/
抗生素抗性基因/
畜牧场/
液相色谱-串联质谱法/
实时荧光定量PCR法

Abstract:In order to analyze the spatial distribution and correlation of sulfonamides (SAs) and their antibiotic resistance genes (ARGs), a livestock farm was taken as a case study, and 20 soil samples including 10-cm and 50-cm depth and 5 manure samples were collected. 13 kinds of SAs and 3 ARGs (sul1, sul2 and sul3) were quantitatively detected respectively, and Geographic Information System (GIS) was used to optimize sampling and visualize the spatial distribution. The spatial distribution of vertical concentrations were as followed:manure > 10 cm-depth soil > 50 cm-depth soil. The spatial distribution of horizontal concentrations were mainly concentrated in the southeast. 3 ARGs were detected in 10-cm and 50-cm depth soil layers. The distribution of ARGs relative abundance was 10 cm-depth soil> 50 cm-depth soil, and the expression pressure of antibiotic antagonistic genes was similar. It provides basic data for accurate analysis of antibiotic and resistance gene pollution and in-depth study of the spread of resistance genes in the surrounding environment of the livestock farms.
Key words:sulfonamides/
antibiotic resistance genes/
livestock farm/
liquid chromatography-mass spectrometry/
real-time quantitative PCR.

加载中
Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
傅海霞, 刘怡, 董志英, 等. 抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016, 34(4):60-63, 104 Fu H X, Liu Y, Dong Z Y, et al. Progress in research on ecological toxicity of combined pollution of antibiotics and heavy metals[J]. Environmental Engineering, 2016, 34(4):60-63, 104(in Chinese)
Pan X, Qiang Z M, Ben W W, et al. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China[J]. Chemosphere, 2011, 84(5):695-700
Blaser M J. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016, 352(6285):544-545
Aust M O, Godlinski F, Travis G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution, 2008, 156(3):1243-1251
陈昦, 董元华, 王辉, 等. 江苏省畜禽粪便中磺胺类药物残留特征[J]. 农业环境科学学报, 2008, 27(1):385-389Chen H, Dong Y H, Wang H, et al. Residual characteristics of sulfanilamide in animal feces in Jiangsu Province[J]. Journal of Agro-Environment Science, 2008, 27(1):385-389(in Chinese)
杨玖, 谷洁, 张友旺, 等. 磺胺甲噁唑对堆肥过程中酶活性及微生物群落功能多样性的影响[J]. 环境科学学报, 2014, 34(4):965-972Yang J, Gu J, Zhang Y W, et al. Effects of sulfamethoxazole on enzyme activity and microbial community functional diversity during pig manure composting[J]. Acta Scientiae Circumstantiae, 2014, 34(4):965-972(in Chinese)
Vittoria Pinna M, Castaldi P, Deiana P, et al. Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community[J]. Ecotoxicology and Environmental Safety, 2012, 84:234-242
Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
韩长赋. 加强东北黑土地保护推进农业绿色发展. 人民日报, 2018-02-05(7)
车占杉, 武志敏. 杜尔伯特蒙古族自治县发展草地畜牧业存在的问题及对策[J]. 现代畜牧科技, 2016(7):1-2
陈敬晶. 杜尔伯特蒙古族自治县湿地保护对策分析[J]. 科学技术创新, 2018(8):155-156
Zhang T, Li X Y, Wang M F, et al. Time-resolved spread of antibiotic resistance genes in highly polluted air[J]. Environment International, 2019, 127:333-339
张昊. 抗生素及其耐药性在畜禽粪便-土壤-蔬菜中的传播和转移[D]. 新乡:河南师范大学, 2018:17-52 Zhang H. Spread and transfer of antibiotics and antibiotic resistance in the livestock manure-soil-vegetable endophytic system[D]. Xinxiang:Henan Normal University, 2018:17-52(in Chinese)
寇宏, 吕世明, 谭艾娟, 等. 贵州省猪源大肠杆菌对磺胺类抗菌药物耐药性及耐药基因检测[J]. 中国兽医杂志, 2018, 54(9):75-78Kou H, Lv S M, Tan A J, et al. Detecting antibiotic resistance and resistance genes of sulfonamides in Escherichia coli isolated from swine farms in Guizhou Province[J]. Chinese Journal of Veterinary Medicine, 2018, 54(9):75-78(in Chinese)
Song H L, Li H, Zhang S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350:920-929
沈群辉. 养殖场及周边农田土壤抗生素抗性基因和重金属污染初步研究[D]. 上海:东华大学, 2013:12-21 Shen Q H. Preliminary studies on the pollution levels of antibiotic resistance genes and heavy metals in feedlots and agricultural soils adjacent to feedlots in Shanghai, China[D]. Shanghai:Donghua University, 2013:12-21(in Chinese)
Heuer H, Solehati Q, Zimmerling U, et al. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine[J]. Applied and Environmental Microbiology, 2011, 77(7):2527-2530
Tang X J, Lou C L, Wang S X, et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils:Evidence from four field experiments in south of China[J]. Soil Biology and Biochemistry, 2015, 90:179-187
Cerqueira F, Matamoros V, Bayona J, et al. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes[J]. Environmental Research, 2019, 170:16-25
Forsberg K J, Patel S, Gibson M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509(7502):612-616
Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2):790-800
Luo G, Li B, Li L G, et al. Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis[J]. Environmental Science & Technology, 2017, 51(7):4069-4080
Ma L P, Li A D, Yin X L, et al. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments[J]. Environmental Science & Technology, 2017, 51(10):5721-5728
Sun M M, Ye M, Wu J, et al. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China[J]. Environmental Pollution, 2015, 206:421-428
Chen B W, He R, Yuan K, et al. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils[J]. Environmental Pollution, 2017, 220(Pt B):1005-1013

相关话题/基因 土壤 空间 污染 药物