删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

我国人群有机磷阻燃剂暴露评估及其健康风险

本站小编 Free考研考试/2021-12-30

张晓华,
赵繁荣,
胡建英,
地表过程分析与模拟教育部重点实验室, 北京大学城市与环境学院, 北京 100871
作者简介: 张晓华(1996-),女,硕士研究生,研究方向为环境毒理和风险评价,E-mail:zhangxiaohua@pku.edu.cn.
通讯作者: 胡建英,hujy@urban.pku.edu.cn
基金项目: 国家自然科学基金委创新研究群体项目(41821005)


中图分类号: X171.5


Exposure Assessment and Health Risk of Organophosphate Flame Retardants in General Population in China

Zhang Xiaohua,
Zhao Fanrong,
Hu Jianying,
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Corresponding author: Hu Jianying,hujy@urban.pku.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要:有机磷阻燃剂的使用量呈现不断增加的趋势,但目前对我国人群有机磷阻燃剂的暴露特征及其健康风险研究甚少。为评估有机磷阻燃剂的暴露水平,本研究采集了全国8个城市中共600名普通成年人的尿液样本,用LC-MS-MS检测了11种有机磷酸酯代谢产物的浓度。研究表明,11种代谢产物均在尿液当中检出,磷酸二(2-氯乙基)酯(BCEP)的检出率及检出浓度最高,我国人群尿液样品中有机磷酸酯代谢产物浓度及组成特征呈现区域性差异,8个城市的总浓度范围在5.80~26.28 ng·mL-1之间,深圳市以磷酸二丁酯(DnBP)为主要检出物质,其余地区以BCEP为主要检出物质,芳香类有机磷酸酯的代谢产物在深圳市的浓度比例高于其他7个城市。对8个城市检出率>60%的6种有机磷酸酯代谢产物尿液浓度数据的归一化处理表明,2-乙基-5-羟基己基二苯基磷酸酯(5-OH-EHDPP)、4-羟基苯基二苯基磷酸酯(4-OH-TPHP)、磷酸二(2-氯乙基)酯(BCEP)、磷酸二(1,3-二氯异丙基)酯(BDCIPP)、磷酸二丁酯(DnBP)和磷酸二苯酯(DPHP)的全国浓度几何均值分别为(0.03±2.75)、(0.08±2.77)、(4.78±2.77)、(0.12±2.77)、(0.83±2.77)和(0.25±2.75) ng·mL-1。根据流行病学调查数据,计算得到以血液总胆固醇升高为终点的基准剂量为0.21 ng·mL-1(5-OH-EHDPP)及0.93 ng·mL-1(4-OH-TPHP),我国人群暴露EHDPP和TPHP导致血液总胆固醇浓度升高的健康风险分别为2.72%和0.80%。
关键词: 有机磷阻燃剂/
血液总胆固醇升高/
内暴露评估/
健康风险分析

Abstract:With increasing production of organophosphate flame retardants (OPFRs), a few studies focused on their human exposure and health risks in population in China. In this study, we collected 600 urinary samples from general population across eight cities in China, and the urinary concentrations of 11 metabolites of OPFRs were detected using LC-MS-MS. The 11 metabolites were all detected in urinary samples, and bis(2-chloroethyl) phosphate (BCEP) showed the highest detection frequency and concentration. Concentrations and the composition of urinary OPFRs metabolites showed obvious differences across regions, with the total concentration ranging from 5.80 to 26.28 ng·mL-1. Di-n-butyl phosphate (DnBP) was the major metabolite in Shenzhen, while BCEP was the major in the other cities. The contribution of the metabolites of aryl-organophosphate to the total concentration in Shenzhen was higher than that in other cities. The geometric mean concentrations for 6 metabolites at national level were estimated by normalization method, including 2-ethyl-5-hydroxyhexyl diphenyl phosphate (5-OH-EHDPP), 4-hydroxyphenyl diphenyl phosphate (4-OH-TPHP), bis(2-chloroethyl) phosphate (BCEP), bis(l,3-dichloro-2-propyl) phosphate (BDCIPP), di-n-butyl phosphate (DnBP) and diphenyl phosphate (DPHP), of which detection frequencies were more than 60%. Their geometric means were (0.03±2.75), (0.08±2.77), (4.78±2.77), (0.12±2.77), (0.83±2.77) and (0.25±2.75) ng·mL-1, respectively. Based on the results of an epidemiological study on the association between urinary concentration of 5-OH-EHDPP and 4-OH-TPHP with the elevated blood total cholesterol, BMDL5 (lower limit of the 95% confidence interval for benchmark dose with benchmark response of 5%) was calculated to be 0.21 ng·mL-1 for 5-OH-EHDPP and 0.93 ng·mL-1 for 4-OH-TPHP. Thus, the probability of the elevated blood total cholesterol level among Chinese population due to exposure to EHDPP and TPHP were 2.72% and 0.80%, respectively.
Key words:organophosphate flame retardants/
elevated blood total cholesterol/
internal exposure assessment/
health risk assessment.

加载中
Hartmann P C, Bürgi D, Giger W. Organophosphate flame retardants and plasticizers in indoor air[J]. Chemosphere, 2004, 57(8):781-787
Meeker J D, Stapleton H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environmental Health Perspectives, 2010, 118(3):318-323
Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in air from various indoor environments[J]. Journal of Environmental Monitoring, 2005, 7(8):814-819
Wan W N, Zhang S Z, Huang H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China[J]. Environmental Pollution, 2016, 214:349-353
Ding J J, Shen X L, Liu W P, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China[J]. Science of the Total Environment, 2015, 538:959-965
Butt C M, Congleton J, Hoffman K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers[J]. Environmental Science & Technology, 2014, 48(17):10432-10438
Cooper E M, Covaci A, Nuijs A L N, et al. Analysis of the flame retardant metabolites bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2011, 401(7):2123-2132
Zhao F R, Chen M, Gao F M, et al. Organophosphorus flame retardants in pregnant women and their transfer to chorionic villi[J]. Environmental Science & Technology, 2017, 51(11):6489-6497
Zhao F R, Kang Q Y, Zhang X H, et al. Urinary biomarkers for assessment of human exposure to monomeric aryl phosphate flame retardants[J]. Environment International, 2019, 124:259-264
Pellizzari E D, Woodruff T J, Boyles R R, et al. Identifying and prioritizing chemicals with uncertain burden of exposure:Opportunities for biomonitoring and health-related research[J]. Environmental Health Perspectives, 2019, 127(12):126001
Li Y, Kang Q Y, Chen R C, et al. 2-ethylhexyl diphenyl phosphate and its hydroxylated metabolites are anti-androgenic and cause adverse reproductive outcomes in male Japanese medaka (Oryzias latipes)[J]. Environmental Science & Technology, 2020, 54(14):8919-8925
Hu W X, Gao F M, Zhang H, et al. Activation of peroxisome proliferator-activated receptor gamma and disruption of progesterone synthesis of 2-ethylhexyl diphenyl phosphate in human placental choriocarcinoma cells:Comparison with triphenyl phosphate[J]. Environmental Science & Technology, 2017, 51(7):4061-4068
Li Y, Wang C, Zhao F, et al. Environmentally relevant concentrations of the organophosphorus flame retardant triphenyl phosphate impaired testicular development and reproductive behaviors in Japanese medaka (Oryzias latipes)[J]. Environmental Science & Technology Letters, 2018, 5(11):649-654
Li Y, Chen R C, He J W, et al. Triphenyl phosphate at environmental levels retarded ovary development and reduced egg production in Japanese medaka (Oryzias latipes)[J]. Environmental Science & Technology, 2019, 53(24):14709-14715
Hu W X, Jia Y T, Kang Q Y, et al. Screening of house dust from Chinese homes for chemicals with liver X receptors binding activities and characterization of atherosclerotic activity using an in vitro macrophage cell line and ApoE-/-mice[J]. Environmental Health Perspectives, 2019, 127(11):117003
Hu W X, Kang Q Y, Zhang C H, et al. Triphenyl phosphate modulated saturation of phospholipids:Induction of endoplasmic reticulum stress and inflammation[J]. Environmental Pollution, 2020, 263:114474
Farzadfar F, Danaei G, Namdaritabar H, et al. National and subnational mortality effects of metabolic risk factors and smoking in Iran:A comparative risk assessment[J]. The Lancet, 2013, 381:S47
Moran A, Gu D, Zhao D, et al. Risk factor trends and future cardiovascular disease in China:Forecasts from the coronary heart disease policy model-China[J]. Circulation, 2010, 122(2):E184
Jarosińska D, Biesiada M, Muszyńska-Graca M. Environmental burden of disease due to lead in urban children from Silesia, Poland[J]. Science of the Total Environment, 2006, 367(1):71-79
Zhao F R, Li Y, Zhang S Y, et al. Association of aryl organophosphate flame retardants triphenyl phosphate and 2-ethylhexyl diphenyl phosphate with human blood triglyceride and total cholesterol levels[J]. Environmental Science & Technology Letters, 2019, 6(9):532-537
van den Eede N, Neels H, Jorens P G, et al. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1303:48-53
van den Eede N, Maho W, Erratico C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions[J]. Toxicology Letters, 2013, 223(1):9-15
Ballesteros-Gómez A, Erratico C A, Eede N V D, et al. In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes[J]. Toxicology Letters, 2015, 232(1):203-212
Crump K S. Calculation of benchmark doses from continuous data[J]. Risk Analysis, 1995, 15(1):79-89
Suwazono Y, Sand S, Vahter M, et al. Benchmark dose for cadmium-induced renal effects in humans[J]. Environmental Health Perspectives, 2006, 114(7):1072-1076
Murata K, Budtz-Jorgensen E, Grandjean P. Benchmark dose calculations for methylmercury-associated delays on evoked potential latencies in two cohorts of children[J]. Risk Analysis, 2002, 22(3):465-474
Murata K, Weihe P, Budtz-Jørgensen E, et al. Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury[J]. The Journal of Pediatrics, 2004, 144(2):177-183
Jacobson J L, Janisse J, Banerjee M, et al. A benchmark dose analysis of prenatal exposure to polychlorinated biphenyls[J]. Environmental Health Perspectives, 2002, 110(4):393-398
Crump K S, Van Landingham C, Shamlaye C, et al. Benchmark concentrations for methylmercury obtained from the Seychelles Child Development Study[J]. Environmental Health Perspectives, 2000, 108(3):257-263
Budtz-Jørgensen E, Grandjean P, Keiding N, et al. Benchmark dose calculations of methylmercury-associated neurobehavioural deficits[J]. Toxicology Letters, 2000, 112-113:193-199
Lachenmeier D W, Kanteres F, Rehm J. Epidemiology-based risk assessment using the benchmark dose/margin of exposure approach:The example of ethanol and liver cirrhosis[J]. International Journal of Epidemiology, 2011, 40(1):210-218
United States Environmental Protection Agency (US EPA). Benchmark dose technical guidance[R]. Washington DC:US EPA, 2012
Bokkers B G H, Slob W. Deriving a data-based interspecies assessment factor using the NOAEL and the benchmark dose approach[J]. Critical Reviews in Toxicology, 2007, 37(5):355-373
European Food Safety Authority (EFSA). Update:Guidance on the use of the benchmark dose approach in risk assessment[R/OL].[2021-04-12]. https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4658
Knutsen H K, Alexander J. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA Journal, 2018, 16(12):e05194
Dong Z M, Hu J Y. Development of lead source-specific exposure standards based on aggregate exposure assessment:Bayesian inversion from biomonitoring information to multipathway exposure[J]. Environmental Science & Technology, 2012, 46(2):1144-1152
Chen Y, Fang J Z, Ren L, et al. Urinary metabolites of organophosphate esters in children in South China:Concentrations, profiles and estimated daily intake[J]. Environmental Pollution, 2018, 235:358-364
Dodson R E, van den Eede N, Covaci A, et al. Urinary biomonitoring of phosphate flame retardants:Levels in California adults and recommendations for future studies[J]. Environmental Science & Technology, 2014, 48(23):13625-13633
Zhang T, Bai X Y, Lu S Y, et al. Urinary metabolites of organophosphate flame retardants in China:Health risk from tris(2-chloroethyl) phosphate (TCEP) exposure[J]. Environment International, 2018, 121:1363-1371
Carignan C C, Mínguez-Alarcón L, Butt C M, et al. Urinary concentrations of organophosphate flame retardant metabolites and pregnancy outcomes among women undergoing in vitro fertilization[J]. Environmental Health Perspectives, 2017, 125(8):087018
Hoffman K, Daniels J L, Stapleton H M. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women[J]. Environment International, 2014, 63:169-172
Meeker J D, Cooper E M, Stapleton H M, et al. Urinary metabolites of organophosphate flame retardants:Temporal variability and correlations with house dust concentrations[J]. Environmental Health Perspectives, 2013, 121(5):580-585
United States Environmental Protection Agency (US EPA). ProUCL Version 4.00.02 User Guide[R]. Washington DC:US EPA, 2007
Schindler B K, Förster K, Angerer J. Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2009, 877(4):375-381

相关话题/城市 健康 物质 数据 资源