陈钦畅,
谭皓月,
郭婧,
于南洋,,
史薇,
于红霞
污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023
作者简介: 黄付晏(1996-),女,硕士研究生,研究方向为计算毒理学,E-mail:hfuyan2332@163.com.
通讯作者: 于南洋,yuny@nju.edu.cn ;
基金项目: 国家重点研发计划(2018YFC1801604,2018YFC1801503);国家自然科学基金面上项目(21577058);江苏省优秀青年基金资助项目(BK20170077);国家水体污染控制与治理科技重大专项(2017ZX07202-001,2017ZX07602-002)中图分类号: X171.5
Review on the Effects of Endocrine Disrupting Chemicals on Dimerization of Nuclear Receptors
Huang Fuyan,Chen Qinchang,
Tan Haoyue,
Guo Jing,
Yu Nanyang,,
Shi Wei,
Yu Hongxia
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Corresponding author: Yu Nanyang,yuny@nju.edu.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:环境内分泌干扰物(endocrine disrupting chemicals,EDCs)可模仿或拮抗天然激素与核受体结合,干扰核受体的同源或异源二聚,进而通过共调节因子的招募调控转录活性,最终引起内分泌干扰效应。目前研究主要针对EDCs与核受体的结合过程,忽视了其对核受体二聚化过程的影响,而该过程的阻断可直接导致转录失活。EDCs对于不同核受体二聚化的影响不同,只有激动剂EDCs能够促进雄激素受体(androgen receptor,AR)的同源二聚化,而雌激素受体(estrogen receptor,ER)在与具有激动或拮抗活性的EDCs结合后都可诱导ER二聚体的形成,但二聚化类型不同。通过检索ToxCast和Tox21数据库发现多达227种EDCs可以诱导ER二聚化,相比于ERα-ERα同源二聚体(6.09%~7.38%的活性率),EDCs更易诱导ERα-ERβ异源二聚体(11.25%~12.22%的活性率)和ERβ-ERβ同源二聚体(10.02%~11.69%的活性率)。EDCs也能够差异性诱导其他核受体如维生素D受体(vitamin D receptor,VDR)与维甲酸X受体(retinoid X receptor,RXR)形成的异源二聚体,不同类型的二聚体对于研究EDCs转录活性的生理学相关性具有重要意义。基于经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)报告的参考化学品研究发现,相比于配受体结合活性,二聚活性与转录活性之间有着更好的相关关系。本文从EDCs介导的核受体二聚化转录机制、二聚化与转录活性间的关系以及二聚化研究方法三方面,总结EDCs对核受体二聚化的影响,以期为深入理解EDCs的分子作用机制,推进化合物的内分泌干扰风险评估提供参考。
关键词: 内分泌干扰物/
核受体/
同源二聚体/
异源二聚体/
转录机制/
荧光共振能量转移/
双分子荧光互补
Abstract:Many environmental chemicals can mediate nuclear receptor (NR), causing endocrine disrupting effects on human. Endocrine disrupting chemicals (EDCs) can bind NR as a ligand by imitating or antagonizing natural hormones to form NR-ligand complex. The complex as homodimer or heterodimer in the nucleus, ultimately regulating transcription activity through the recruitment of coregulators. At present, studies on EDCs mainly focus on the process of NR-ligand binding, while few concentrate on nuclear receptor dimerization. The dimerization of NR plays a decisive role in transcription activity, and blocking the dimerization process will cause transcription inactivation. The effects of EDCs on dimerization of nuclear receptors are different. Only the agonist can promote the homodimerization of androgen receptor (AR), while estrogen receptor (ER) can induce the formation of ER dimer after binding with agonists or antagonists, but the dimerization types are different. Searching ToxCast and Tox21 databases, it is found that up to 227 EDCs can induce dimerization of estrogen receptor (ER). Compared with ERα-ERα homodimer (6.09%~7.38% active rate), EDCs are more likely to induce ERα-ERβ heterodimer (11.25%~12.22% active rate) and ERβ-ERβ homodimer (10.02%~11.69% active rate). EDCs can also differentially induce the formation of heterodimer between other nuclear receptors such as vitamin D receptor (VDR) and retinoid X receptor (RXR). Different dimers are of great significance for studying the physiological correlation of transcription activity of EDCs. Based on the reference chemicals reported by OECD, it is found that there is a better correlation between dimerization activity and transcription activity than NR-ligand binding. In this paper, the effects of EDCs on NR dimerization are summarized from three aspects: the transcription mechanism of NR dimerization mediated by EDCs, the relationship between NR dimerization and transcription activity, and the research methods of NR dimerization, in order to provide reference for an in-depth understanding of the molecular mechanism and the promotion of risk assessment of EDCs.
Key words:endocrine disrupting chemicals/
nuclear receptor/
homodimer/
heterodimer/
transcription mechanism/
resonance energy transfer/
bimolecular fluorescence complementation.
Gronemeyer H, Gustafsson J A, Laudet V. Principles for modulation of the nuclear receptor superfamily[J]. Nature Reviews Drug Discovery, 2004, 3(11):950-964 |
Gore A C, Chappell V A, Fenton S E, et al. EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):E1-E150 |
Gore A C, Chappell V A, Fenton S E, et al. Executive summary to EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):593-602 |
Chen L G, Zhang W P, Hua J H, et al. Dysregulation of intestinal health by environmental pollutants:Involvement of the estrogen receptor and aryl hydrocarbon receptor[J]. Environmental Science & Technology, 2018, 52(4):2323-2330 |
Soto A M, Sonnenschein C. Environmental causes of cancer:Endocrine disruptors as carcinogens[J]. Nature Reviews Endocrinology, 2010, 6(7):363-370 |
Melzer D, Osborne N J, Henley W E, et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women[J]. Circulation, 2012, 125(12):1482-1490 |
Legler J, Fletcher T, Govarts E, et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union[J]. The Journal of Clinical Endocrinology and Metabolism, 2015, 100(4):1278-1288 |
Mustieles V, Pérez-Lobato R, Olea N, et al. Bisphenol A:Human exposure and neurobehavior[J]. Neurotoxicology, 2015, 49:174-184 |
Trasande L, Zoeller R T, Hass U, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union:An updated analysis[J]. Andrology, 2016, 4(4):565-572 |
Attina T M, Hauser R, Sathyanarayana S, et al. Exposure to endocrine-disrupting chemicals in the USA:A population-based disease burden and cost analysis[J]. The Lancet Diabetes & Endocrinology, 2016, 4(12):996-1003 |
Chen Q C, Tan H Y, Yu H X, et al. Activation of steroid hormone receptors:Shed light on the in silico evaluation of endocrine disrupting chemicals[J]. Science of the Total Environment, 2018, 631-632:27-39 |
Leduc A M, Trent J O, Wittliff J L, et al. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11273-11278 |
Chakraborty S, Cole S, Rader N, et al. In silico design of peptidic inhibitors targeting estrogen receptor alpha dimer interface[J]. Molecular Diversity, 2012, 16(3):441-451 |
Helsen C, Kerkhofs S, Clinckemalie L, et al. Structural basis for nuclear hormone receptor DNA binding[J]. Molecular and Cellular Endocrinology, 2012, 348(2):411-417 |
Louw A. GR dimerization and the impact of GR dimerization on GR protein stability and half-life[J]. Frontiers in Immunology, 2019, 10:1693 |
Iwabuchi E, Miki Y, Ono K, et al. In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA)[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 165(Pt B):159-169 |
Chandra V, Wu D L, Li S, et al. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission[J]. Nature Communications, 2017, 8(1):868 |
Zheng W L, Lu Y, Tian S Y, et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR[J]. Journal of Biological Chemistry, 2018, 293(32):12535-12541 |
Wang Y M, Ong S S, Chai S C, et al. Role of CAR and PXR in xenobiotic sensing and metabolism[J]. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8(7):803-817 |
Ahmadian M, Suh J M, Hah N, et al. PPARγ signaling and metabolism:The good, the bad and the future[J]. Nature Medicine, 2013, 19(5):557-566 |
Evans R M, Mangelsdorf D J. Nuclear receptors, RXR, and the big Bang[J]. Cell, 2014, 157(1):255-266 |
Manolagas S C, O'Brien C A, Almeida M. The role of estrogen and androgen receptors in bone health and disease[J]. Nature Reviews Endocrinology, 2013, 9(12):699-712 |
Zhou W, Slingerland J M. Links between oestrogen receptor activation and proteolysis:Relevance to hormone-regulated cancer therapy[J]. Nature Reviews Cancer, 2014, 14(1):26-38 |
Otte K, Kranz H, Kober I, et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol[J]. Molecular and Cellular Biology, 2003, 23(3):864-872 |
Huang W, Peng Y, Kiselar J, et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains[J]. Nature Communications, 2018, 9(1):3520 |
Schwabe J W, Chapman L, Finch J T, et al. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA:How receptors discriminate between their response elements[J]. Cell, 1993, 75(3):567-578 |
Tamrazi A, Carlson K E, Daniels J R, et al. Estrogen receptor dimerization:Ligand binding regulates dimer affinity and dimer dissociation rate[J]. Molecular Endocrinology, 2002, 16(12):2706-2719 |
De Bosscher K, Desmet S J, Clarisse D, et al. Nuclear receptor crosstalk-defining the mechanisms for therapeutic innovation[J]. Nature Reviews Endocrinology, 2020, 16(7):363-377 |
Forman B M, Umesono K, Chen J, et al. Unique response pathways are established by allosteric interactions among nuclear hormone receptors[J]. Cell, 1995, 81(4):541-550 |
Kurokawa R, Yu V C, Näär A, et al. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers[J]. Genes & Development, 1993, 7(7B):1423-1435 |
Leblanc B P, Stunnenberg H G. 9-cis retinoic acid signaling:Changing partners causes some excitement[J]. Genes & Development, 1995, 9(15):1811-1816 |
Gampe R T, Montana V G, Lambert M H, et al. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors[J]. Molecular Cell, 2000, 5(3):545-555 |
Eiler S, Gangloff M, Duclaud S, et al. Overexpression, purification, and crystal structure of native ER alpha LBD[J]. Protein Expression and Purification, 2001, 22(2):165-173 |
Takacs M, Petoukhov M V, Atkinson R A, et al. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism[J]. PLoS One, 2013, 8(7):e67810 |
Nadal M, Prekovic S, Gallastegui N, et al. Structure of the homodimeric androgen receptor ligand-binding domain[J]. Nature Communications, 2017, 8:14388 |
Williams S P, Sigler P B. Atomic structure of progesterone complexed with its receptor[J]. Nature, 1998, 393(6683):392-396 |
Bledsoe R K, Madauss K P, Holt J A, et al. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor[J]. The Journal of Biological Chemistry, 2005, 280(35):31283-31293 |
Claessens F, Joniau S, Helsen C. Comparing the rules of engagement of androgen and glucocorticoid receptors[J]. Cellular and Molecular Life Sciences, 2017, 74(12):2217-2228 |
Savory J G, Préfontaine G G, Lamprecht C, et al. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces[J]. Molecular and Cellular Biology, 2001, 21(3):781-793 |
Deckers J, Bougarne N, Mylka V, et al. Co-activation of glucocorticoid receptor and peroxisome proliferator-activated receptor-γ in murine skin prevents worsening of atopic March[J]. The Journal of Investigative Dermatology, 2018, 138(6):1360-1370 |
Panet-Raymond V, Gottlieb B, Beitel L K, et al. Interactions between androgen and estrogen receptors and the effects on their transactivational properties[J]. Molecular and Cellular Endocrinology, 2000, 167(1-2):139-150 |
Miranda T B, Voss T C, Sung M H, et al. Reprogramming the chromatin landscape:Interplay of the estrogen and glucocorticoid receptors at the genomic level[J]. Cancer Research, 2013, 73(16):5130-5139 |
Fan W W, Evans R. PPARs and ERRs:Molecular mediators of mitochondrial metabolism[J]. Current Opinion in Cell Biology, 2015, 33:49-54 |
Pratt W B, Galigniana M D, Morishima Y, et al. Role of molecular chaperones in steroid receptor action[J]. Essays in Biochemistry, 2004, 40:41-58 |
Dull A, Goncharova E, Hager G, et al. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2010, 122(5):341-351 |
Kil S H, Kalinec F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in Guinea pig cochlear cells[J]. Hearing Research, 2013, 299:63-78 |
Nott S L, Huang Y F, Li X D, et al. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations[J]. The Journal of Biological Chemistry, 2009, 284(22):15277-15288 |
Tata J R. Signalling through nuclear receptors[J]. Nature Reviews Molecular Cell Biology, 2002, 3(9):702-710 |
Mangelsdorf D J, Thummel C, Beato M, et al. The nuclear receptor superfamily:The second decade[J]. Cell, 1995, 83(6):835-839 |
Gronemeyer H, Moras D. Nuclear receptors. How to finger DNA[J]. Nature, 1995, 375(6528):190-191 |
Chen Q C, Wang X X, Tan H Y, et al. Molecular initiating events of bisphenols on androgen receptor-mediated pathways provide guidelines for in silico screening and design of substitute compounds[J]. Environmental Science & Technology Letters, 2019, 6(4):205-210 |
Chen Q C, Wang X X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:In vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438 |
Bhhatarai B, Wilson D M, Price P S, et al. Evaluation of OASIS QSAR models using ToxCastTM in vitro estrogen and androgen receptor binding data and application in an integrated endocrine screening approach[J]. Environmental Health Perspectives, 2016, 124(9):1453-1461 |
Paul-Friedman K, Martin M, Crofton K M, et al. Limited chemical structural diversity found to modulate thyroid hormone receptor in the Tox21 chemical library[J]. Environmental Health Perspectives, 2019, 127(9):97009 |
Coriano C G, Liu F B, Sievers C K, et al. A computational-based approach to identify estrogen receptor α/β heterodimer selective ligands[J]. Molecular Pharmacology, 2018, 93(3):197-207 |
Powell E, Xu W. Intermolecular interactions identify ligand-selective activity of estrogen receptor alpha/beta dimers[J]. PNAS, 2008, 105(48):19012-19017 |
Depoix C, Delmotte M H, Formstecher P, et al. Control of retinoic acid receptor heterodimerization by ligand-induced structural transitions. A novel mechanism of action for retinoid antagonists[J]. The Journal of Biological Chemistry, 2001, 276(12):9452-9459 |
Putcha B D, Wright E, Brunzelle J S, et al. Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6084-6087 |
Collingwood T N, Butler A, Tone Y, et al. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor[J]. The Journal of Biological Chemistry, 1997, 272(20):13060-13065 |
Delfosse V, Grimaldi M, Pons J L, et al. Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes[J]. PNAS, 2012, 109(37):14930-14935 |
Osz J, Brélivet Y, Peluso-Iltis C, et al. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10):E588-E594 |
Judson R S, Houck K A, Watt E D, et al. On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity[J]. Regulatory Toxicology and Pharmacology:RTP, 2017, 91:39-49 |
Gounarides J S, Chen A D, Shapiro M J. Nuclear magnetic resonance chromatography:Applications of pulse field gradient diffusion NMR to mixture analysis and ligand-receptor interactions[J]. Journal of Chromatography B:Biomedical Sciences and Applications, 1999, 725(1):79-90 |
Benedetti R, Conte M, Carafa V, et al. Analysis of chromatin-nuclear receptor interactions by laser-chromatin immunoprecipitation[J]. Methods in Molecular Biology, 2014, 1204:25-34 |
Li S M, Armstrong C M, Bertin N, et al. A map of the interactome network of the metazoan C. elegans[J]. Science, 2004, 303(5657):540-543 |
Cui Y N, Zhang X, Yu M, et al. Techniques for detecting protein-protein interactions in living cells:Principles, limitations, and recent progress[J]. Science China Life Sciences, 2019, 62(5):619-632 |
Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology[J]. Physical Chemistry Chemical Physics:PCCP, 2009, 11(1):17-45 |
Feige J N, Gelman L, Tudor C, et al. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand[J]. The Journal of Biological Chemistry, 2005, 280(18):17880-17890 |
Schaufele F, Carbonell X, Guerbadot M, et al. The structural basis of androgen receptor activation:Intramolecular and intermolecular amino-carboxy interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(28):9802-9807 |
Yoshimura K, Muto Y, Shimizu M, et al. Phosphorylated retinoid X receptor alpha loses its heterodimeric activity with retinoic acid receptor beta[J]. Cancer Science, 2007, 98(12):1868-1874 |
Shrestha D, Jenei A, Nagy P, et al. Understanding FRET as a research tool for cellular studies[J]. International Journal of Molecular Sciences, 2015, 16(4):6718-6756 |
Hayes S, Malacrida B, Kiely M, et al. Studying protein-protein interactions:Progress, pitfalls and solutions[J]. Biochemical Society Transactions, 2016, 44(4):994-1004 |
Pfleger K D, Eidne K A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)[J]. Nature Methods, 2006, 3(3):165-174 |
Mulero M, Perroy J, Federici C, et al. Analysis of RXR/THR and RXR/PPARG2 heterodimerization by bioluminescence resonance energy transfer (BRET)[J]. PLoS One, 2013, 8(12):e84569 |
Grossmann C, Ruhs S, Langenbruch L, et al. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling[J]. Chemistry & Biology, 2012, 19(6):742-751 |
Giner X C, Cotnoir-White D, Mader S, et al. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2015, 29(10):4256-4267 |
Cotnoir-White D, El Ezzy M, Boulay P L, et al. Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11):E2653-E2662 |
Dragulescu-Andrasi A, Chan C T, De A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29):12060-12065 |
European Society of Endocrinology. Measurement of estrogen receptor alpha homodimerization caused by xenoestrogens using bimolecular fluorescence complementation[R]. Florence, Italy:European Society of Endocrinology, 2012 |
Xu D, Zhan Y, Qi Y F, et al. Androgen receptor splice variants dimerize to transactivate target genes[J]. Cancer Research, 2015, 75(17):3663-3671 |
Bedi S. Identification of novel ligands and structural requirements for heterodimerization of the liver X receptor alpha[D]. Dayton:Wright State University, 2017:206 |
Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500 |
Kodama Y, Hu C D. Bimolecular fluorescence complementation (BiFC):A 5-year update and future perspectives[J]. BioTechniques, 2012, 53(5):285-298 |
Karplus M, McCammon J A. Molecular dynamics simulations of biomolecules[J]. Nature Structural Biology, 2002, 9(9):646-652 |
Li Y, Perera L, Coons L A, et al. Differential in vitro biological action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA), BPAF, and BPS ligand-ERα complexes[J]. Environmental Health Perspectives, 2018, 126(1):017012 |
Zhuang S L, Bao L L, Linhananta A, et al. Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization[J]. Journal of Molecular Graphics and Modelling, 2013, 44:155-160 |
Sonoda M T, Martínez L, Webb P, et al. Ligand dissociation from estrogen receptor is mediated by receptor dimerization:Evidence from molecular dynamics simulations[J]. Molecular Endocrinology, 2008, 22(7):1565-1578 |
Chakraborty S, Willett H, Biswas P K. Insight into estrogen receptor beta-beta and alpha-beta homo- and heterodimerization:A combined molecular dynamics and sequence analysis study[J]. Biophysical Chemistry, 2012, 170:42-50 |
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization:Evidence from molecular dynamics simulations[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(20):13403-13420 |