删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

BDE-28对斑马鱼核受体介导的内分泌干扰效应研究

本站小编 Free考研考试/2021-12-30

宋静文,
靳亚茹,
刘红玲
南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023
作者简介: 宋静文(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:jingwensong@yeah.net.
基金项目: 国家自然科学基金资助项目(21677073);国家重点研发项目(2018YFC1801505);国家科技重大专项(2017ZX07301002,2018ZX07208001)


中图分类号: X171.5


Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor

Song Jingwen,
Jin Yaru,
Liu Hongling
State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要:2,4,4’-三溴联苯醚(BDE-28)在环境中普遍存在,且在长江流域多种水生生物中检出。目前,国内外对高溴代PBDEs(如BDE-47、BDE-99等)的水生脊椎动物内分泌干扰效应报道较多,而BDE-28的有关研究则相对较少。将斑马鱼胚胎暴露于2、20和200 μg·L-1的BDE-28后,借助q-RT-PCR方法对幼鱼8个重要受体包括雄激素受体(AR)、甲状腺激素受体(TR)、芳香烃受体(AhR)、雌激素受体(ER)、糖皮质激素受体(GR)、孕烷X受体(PXR)、盐皮质激素受体(MR)和过氧化物酶体增殖物激活受体(PPAR)相关基因的转录水平进行了研究。结果表明,BDE-28暴露可导致AR、TR和AhR的基因下调,其中核心受体AR和TR在低中高3种浓度下的下调倍数分别为3.03、2.64、10.10和2.21、2.18、2.31,芳香烃受体基因2(ahr2)在暴露于2和20 μg·L-1的BDE-28后,下调倍数分别为12.65和9.23,而雌激素受体(er1)基因在低中高浓度显著上调,上调倍数分别为12.29、12.67和15.87,雌激素受体(er2a)基因在2和20 μg·L-1 BDE-28下的上调倍数分别为10.83和17.19。进一步采用分子对接和分子动力学模拟的方法研究BDE-28与AR、TR、AhR和ER之间的相互作用。结果显示,BDE-28与这些受体通过疏水和氢键等相互作用稳定结合,动力学模拟后骨架原子的均方根偏差(RMSD)在5 ns后较稳定。由此可知,BDE-28通过AR、TR、AhR和ER受体介导产生内分泌干扰效应。
关键词: BDE-28/
斑马鱼/
内分泌干扰/
核受体/
分子对接/
分子动力学模拟

Abstract:2,4,4’-tribromodiphenyl ether (BDE-28) is ubiquitous in the environment and has been found in a variety of aquatic organisms in Yangtze River basin. Compared with high brominated PBDEs (such as BDE-47, BDE-99), research on endocrine disrupting effect of BDE-28 was few in aquatic vertebrates. In our study, zebrafish embryos were exposed to 2, 20 and 200 μg·L-1 BDE-28, and the transcriptional profiles of 41 genes associated with 8 important receptors were investigated with a q-RT-PCR assay, including androgen receptor (AR), thyroid hormone receptor (ThR), aryl hydrocarbon receptor (AhR), estrogen receptor (ER), glucocorticoid receptor (GR), pregnane X receptor (PXR), mineralocorticoid receptor (MR) and peroxisome proliferator activated receptor (PPAR). Genes related to AR, ThR and AhR were significantly down-regulated while genes related to ER were significantly up-regulated. Genes of AR and TR were down-regulated by 3.03-, 2.64-, 10.10- and 2.21-, 2.18-, 2.31-fold after exposure to 2, 20 and 200 μg·L-1 BDE-28, respectively, while the aryl hydrocarbon receptor 2 gene (ahr2) was down-regulated by 12.65-fold at 2 μg·L-1 BDE-28 and 9.23-fold at 20 μg·L-1 BDE-28. Estrogen receptor (er1) gene was significantly up-regulated by 12.29-, 12.67- and 15.87-fold, respectively, at 2, 20 and 200 μg·L-1 BDE-28, and estrogen receptor (er2a) gene was induced by 10.83- and 17.19-fold, respectively, at 2 and 20 μg·L-1 BDE-28. The possible interactions between BDE-28 and these four receptors were further studied by using molecular docking and molecular dynamics simulation. The simulation showed that BDE-28 bound stably to these receptors through hydrophobic interactions and hydrogen bonds. Also, the relative root means square deviation (RMSD) of the backbone atoms became steady after 5 ns in the simulation. It can be concluded that BDE-28 causes endocrine disruption through AR, TR, AhR and ER-mediated pathways.
Key words:BDE-28/
zebrafish/
endocrine disruption/
nuclear receptor/
molecular docking/
molecular dynamics simulation.

加载中
Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7):2280-2286
Shen M, Yu Y, Zheng G J, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J]. Marine Pollution Bulletin, 2006, 10(52):1299-1304
Guo J Y, Wu F C, Mai B X, et al. Polybrominated diphenyl ethers in seafood products of South China[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22):9152-9158
Gao Z, Xu J, Xian Q, et al. Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China[J]. Chemosphere, 2009, 75(9):1273-1279
Usenko C Y, Robinson E M, Usenko S, et al. PBDE developmental effects on embryonic zebrafish[J]. Environmental Toxicology & Chemistry, 2011, 30(8):1865-1872
Shy C G, Huang H L, Chang-Chien G P, et al. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(6):643-648
Schriks M, Roessig J M, Murk A J, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay[J]. Environmental Toxicology and Pharmacology, 2007, 23(3):302-307
Vuong A M, Webster G M, Romano M E, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera:The HOME Study, Cincinnati, USA[J]. Environmental Health Perspectives, 2015, 123(10):1079-1085
Zhang L, Jin Y, Han Z, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology & Chemistry, 2018, 37(3):780-787
Liu C, Yan W, Zhou B, et al. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos[J]. Aquatic Toxicology, 2012, 118:108-115
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-A rapid access to atomic charges[J]. Tetrahedron, 1980, 36(22):3219-3228
Clark M, Cramer R D, Van Opdenbosch N. Validation of the general purpose TRIPOS 5.2 force field[J]. Journal of Computational Chemistry, 1989, 10(8):982-1012
Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2008, 37(suppl1):D387-D392
Liu H, Tang S, Zheng X, et al. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(3):1823-1833
Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins[J]. Nature Methods, 2012, 9(11):1069-1076
Wu B, Zhang Y, Kong J, et al. In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking[J]. Toxicology Letters, 2009, 191(1):69-73
Chen Q, Wang X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:in vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438
Davison S, Bell R. Androgen physiology[J]. Seminars in Reproductive Medicine, 2006, 24(2):71-77
Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds[J]. Environmental Health Perspectives, 2001, 109(4):399-407
Mercado-Feliciano M, Bigsby R M. The polybrominated diphenyl ether mixture DE-71 is mildly estrogenic[J]. Environmental Health Perspectives, 2008, 116(5):605-611
Noordermeer J, Klingensmith J, Perrimon N, et al. Dishevelled and armadillo act in the wingless signalling pathway in Drosophila[J]. Nature, 1994, 367(6458):80-83
Main K M, Kiviranta H, Virtanen H E, et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys[J]. Environmental Health Perspectives, 2007, 115(10):1519-1526
Muirhead E K, Skillman A D, Hook S E, et al. Oral exposure of PBDE-47 in fish:Toxicokinetics and reproductive effects in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)[J]. Environmental Science & Technology, 2006, 40(2):523-528
Yu Y J, Lin B G, Liang W B, et al. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China-A pilot study[J]. Chemosphere, 2018, 198:266-273
Bloom M, Spliethoff H, Vena J, et al. Environmental exposure to PBDEs and thyroid function among New York anglers[J]. Environmental Toxicology and Pharmacology, 2008, 25(3):386-392
Chevrier J, Harley K G, Bradman A, et al. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy[J]. Environmental Health Perspectives, 2010, 118(10):1444-1449
Chen J D, Evans R M. A transcriptional co-repressor that interacts with nuclear hormone receptors[J]. Nature, 1995, 377(6548):454-457
Sande S, Privalsky M L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors[J]. Molecular Endocrinology, 1996, 10(7):813-825
Visser T J. Pathways of thyroid hormone metabolism[J]. Acta Medica Austriaca, 1996, 23(1-2):10-16
Zhao X, Ren X, Ren B, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167
Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2009, 117(8):1210-1218

相关话题/基因 干扰 资源 环境 受体