靳亚茹,
刘红玲
南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023
作者简介: 宋静文(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:jingwensong@yeah.net.
基金项目: 国家自然科学基金资助项目(21677073);国家重点研发项目(2018YFC1801505);国家科技重大专项(2017ZX07301002,2018ZX07208001)中图分类号: X171.5
Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor
Song Jingwen,Jin Yaru,
Liu Hongling
State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:2,4,4’-三溴联苯醚(BDE-28)在环境中普遍存在,且在长江流域多种水生生物中检出。目前,国内外对高溴代PBDEs(如BDE-47、BDE-99等)的水生脊椎动物内分泌干扰效应报道较多,而BDE-28的有关研究则相对较少。将斑马鱼胚胎暴露于2、20和200 μg·L-1的BDE-28后,借助q-RT-PCR方法对幼鱼8个重要受体包括雄激素受体(AR)、甲状腺激素受体(TR)、芳香烃受体(AhR)、雌激素受体(ER)、糖皮质激素受体(GR)、孕烷X受体(PXR)、盐皮质激素受体(MR)和过氧化物酶体增殖物激活受体(PPAR)相关基因的转录水平进行了研究。结果表明,BDE-28暴露可导致AR、TR和AhR的基因下调,其中核心受体AR和TR在低中高3种浓度下的下调倍数分别为3.03、2.64、10.10和2.21、2.18、2.31,芳香烃受体基因2(ahr2)在暴露于2和20 μg·L-1的BDE-28后,下调倍数分别为12.65和9.23,而雌激素受体(er1)基因在低中高浓度显著上调,上调倍数分别为12.29、12.67和15.87,雌激素受体(er2a)基因在2和20 μg·L-1 BDE-28下的上调倍数分别为10.83和17.19。进一步采用分子对接和分子动力学模拟的方法研究BDE-28与AR、TR、AhR和ER之间的相互作用。结果显示,BDE-28与这些受体通过疏水和氢键等相互作用稳定结合,动力学模拟后骨架原子的均方根偏差(RMSD)在5 ns后较稳定。由此可知,BDE-28通过AR、TR、AhR和ER受体介导产生内分泌干扰效应。
关键词: BDE-28/
斑马鱼/
内分泌干扰/
核受体/
分子对接/
分子动力学模拟
Abstract:2,4,4’-tribromodiphenyl ether (BDE-28) is ubiquitous in the environment and has been found in a variety of aquatic organisms in Yangtze River basin. Compared with high brominated PBDEs (such as BDE-47, BDE-99), research on endocrine disrupting effect of BDE-28 was few in aquatic vertebrates. In our study, zebrafish embryos were exposed to 2, 20 and 200 μg·L-1 BDE-28, and the transcriptional profiles of 41 genes associated with 8 important receptors were investigated with a q-RT-PCR assay, including androgen receptor (AR), thyroid hormone receptor (ThR), aryl hydrocarbon receptor (AhR), estrogen receptor (ER), glucocorticoid receptor (GR), pregnane X receptor (PXR), mineralocorticoid receptor (MR) and peroxisome proliferator activated receptor (PPAR). Genes related to AR, ThR and AhR were significantly down-regulated while genes related to ER were significantly up-regulated. Genes of AR and TR were down-regulated by 3.03-, 2.64-, 10.10- and 2.21-, 2.18-, 2.31-fold after exposure to 2, 20 and 200 μg·L-1 BDE-28, respectively, while the aryl hydrocarbon receptor 2 gene (ahr2) was down-regulated by 12.65-fold at 2 μg·L-1 BDE-28 and 9.23-fold at 20 μg·L-1 BDE-28. Estrogen receptor (er1) gene was significantly up-regulated by 12.29-, 12.67- and 15.87-fold, respectively, at 2, 20 and 200 μg·L-1 BDE-28, and estrogen receptor (er2a) gene was induced by 10.83- and 17.19-fold, respectively, at 2 and 20 μg·L-1 BDE-28. The possible interactions between BDE-28 and these four receptors were further studied by using molecular docking and molecular dynamics simulation. The simulation showed that BDE-28 bound stably to these receptors through hydrophobic interactions and hydrogen bonds. Also, the relative root means square deviation (RMSD) of the backbone atoms became steady after 5 ns in the simulation. It can be concluded that BDE-28 causes endocrine disruption through AR, TR, AhR and ER-mediated pathways.
Key words:BDE-28/
zebrafish/
endocrine disruption/
nuclear receptor/
molecular docking/
molecular dynamics simulation.
Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7):2280-2286 |
Shen M, Yu Y, Zheng G J, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J]. Marine Pollution Bulletin, 2006, 10(52):1299-1304 |
Guo J Y, Wu F C, Mai B X, et al. Polybrominated diphenyl ethers in seafood products of South China[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22):9152-9158 |
Gao Z, Xu J, Xian Q, et al. Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China[J]. Chemosphere, 2009, 75(9):1273-1279 |
Usenko C Y, Robinson E M, Usenko S, et al. PBDE developmental effects on embryonic zebrafish[J]. Environmental Toxicology & Chemistry, 2011, 30(8):1865-1872 |
Shy C G, Huang H L, Chang-Chien G P, et al. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(6):643-648 |
Schriks M, Roessig J M, Murk A J, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay[J]. Environmental Toxicology and Pharmacology, 2007, 23(3):302-307 |
Vuong A M, Webster G M, Romano M E, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera:The HOME Study, Cincinnati, USA[J]. Environmental Health Perspectives, 2015, 123(10):1079-1085 |
Zhang L, Jin Y, Han Z, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology & Chemistry, 2018, 37(3):780-787 |
Liu C, Yan W, Zhou B, et al. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos[J]. Aquatic Toxicology, 2012, 118:108-115 |
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-A rapid access to atomic charges[J]. Tetrahedron, 1980, 36(22):3219-3228 |
Clark M, Cramer R D, Van Opdenbosch N. Validation of the general purpose TRIPOS 5.2 force field[J]. Journal of Computational Chemistry, 1989, 10(8):982-1012 |
Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2008, 37(suppl1):D387-D392 |
Liu H, Tang S, Zheng X, et al. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(3):1823-1833 |
Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins[J]. Nature Methods, 2012, 9(11):1069-1076 |
Wu B, Zhang Y, Kong J, et al. In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking[J]. Toxicology Letters, 2009, 191(1):69-73 |
Chen Q, Wang X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:in vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438 |
Davison S, Bell R. Androgen physiology[J]. Seminars in Reproductive Medicine, 2006, 24(2):71-77 |
Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds[J]. Environmental Health Perspectives, 2001, 109(4):399-407 |
Mercado-Feliciano M, Bigsby R M. The polybrominated diphenyl ether mixture DE-71 is mildly estrogenic[J]. Environmental Health Perspectives, 2008, 116(5):605-611 |
Noordermeer J, Klingensmith J, Perrimon N, et al. Dishevelled and armadillo act in the wingless signalling pathway in Drosophila[J]. Nature, 1994, 367(6458):80-83 |
Main K M, Kiviranta H, Virtanen H E, et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys[J]. Environmental Health Perspectives, 2007, 115(10):1519-1526 |
Muirhead E K, Skillman A D, Hook S E, et al. Oral exposure of PBDE-47 in fish:Toxicokinetics and reproductive effects in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)[J]. Environmental Science & Technology, 2006, 40(2):523-528 |
Yu Y J, Lin B G, Liang W B, et al. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China-A pilot study[J]. Chemosphere, 2018, 198:266-273 |
Bloom M, Spliethoff H, Vena J, et al. Environmental exposure to PBDEs and thyroid function among New York anglers[J]. Environmental Toxicology and Pharmacology, 2008, 25(3):386-392 |
Chevrier J, Harley K G, Bradman A, et al. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy[J]. Environmental Health Perspectives, 2010, 118(10):1444-1449 |
Chen J D, Evans R M. A transcriptional co-repressor that interacts with nuclear hormone receptors[J]. Nature, 1995, 377(6548):454-457 |
Sande S, Privalsky M L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors[J]. Molecular Endocrinology, 1996, 10(7):813-825 |
Visser T J. Pathways of thyroid hormone metabolism[J]. Acta Medica Austriaca, 1996, 23(1-2):10-16 |
Zhao X, Ren X, Ren B, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167 |
Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2009, 117(8):1210-1218 |