删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

聚苯乙烯微塑料长期暴露对海水青鳉(Oryzias melastigma)亲代生长、繁殖及子代发育的影响

本站小编 Free考研考试/2021-12-30

靳非1,
田淼2,
穆景利3,,,
王莹1,
丛艺1,
王菊英1,,
1. 国家海洋环境监测中心, 大连 116023;
2. 大连海洋大学, 大连 116023;
3. 闽江学院, 福州 350108
作者简介: 靳非(1984-),男,硕士,工程师,研究方向为鱼类生态毒理学,E-mail:fjin@nmemc.org.cn.
通讯作者: 穆景利,jinglimu@126.com ; 王菊英,jywang@nmemc.org.cn
基金项目: 国家重点研发计划资助项目(2016YFC1402201);国家自然科学基金面上项目(41776118)


中图分类号: X171.5


Effects of Polystyrene Microplastics on Growth and Reproduction of Parental Generation and Development of Filial Generation of Marine Medaka (Oryzias melastigma) after a Long-term Exposure

Jin Fei1,
Tian Miao2,
Mu Jingli3,,,
Wang Ying1,
Cong Yi1,
Wang Juying1,,
1. National Marine Environment Monitoring Center, Dalian 116023, China;
2. Dalian Ocean University, Dalian 116023, China;
3. Minjiang University, Fuzhou 350108, China
Corresponding authors: Mu Jingli,jinglimu@126.com ; Wang Juying,jywang@nmemc.org.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(43)
相关文章
施引文献
资源附件(0)
访问统计

摘要:微塑料污染是近年来受到国际社会广泛关注的海洋环境问题之一,由微塑料造成的生态和人类健康风险不容小觑,但微塑料对鱼类的长期危害目前尚无定论。为评估微塑料颗粒对海洋鱼类的长期影响,选取塑料生产和环境中常见的聚苯乙烯(polystyrene,PS)为研究对象,对海水青鳉(Oryzias melastigma ) 60 dph (days post hatching,dph)幼鱼进行了为期50 d的长期暴露,系统研究PS暴露对海水青鳉亲代的生长、繁殖和子代胚胎发育等的影响。结果显示,在粒径为10 μm、浓度为1×104 particles·L-1和1×105 particles·L-1暴露条件下,PS处理组亲代体长和体质量的改变与对照组相比无显著差异,PS暴露未显著影响亲代性成熟进程和受精过程;PS暴露未显著影响子代胚胎心率和孵化时间,但能显著降低子代孵化率,造成胚胎发育畸形。上述结果表明,PS长期暴露对亲代生长和繁殖未产生明显影响,但对子代的胚胎发育具有不利影响,研究结果为科学评估海洋微塑料污染的生态风险提供了重要参考。
关键词: 聚苯乙烯/
海水青鳉/
长期效应/
生长/
繁殖/
胚胎发育

Abstract:Microplastic pollution is one of the marine environmental issues that have received widely concerns by the international society in recent years. The risks of ecology and human health caused by microplastics should not be underestimated. However, the long-term impacts of microplastics on fish are still inconclusive. This study selected polystyrene (PS, 10 μm) microplastics as reference toxicant which were commonly found in plastic productions and environments. An exposure duration of 50 d of PS microplastics was conducted for the 60 dph (days post hatching) juveniles of marine medaka (Oryzias melastigma) to evaluate the long-term effects of microplastics on marine fish. The effects of PS exposure on the growth and reproduction of parental generation and the embryonic development of offspring were systematically explored. The results showed that under the exposure concentrations of 1×104 particles·L-1 and 1×105 particles·L-1 of 10 μm PS, the body length and body mass of parental fishes in exposure groups were not significantly different from those in the control group. In addition, parental maturation and fertilization process were not significantly affected by PS exposure either. Although polystyrene exposure did not significantly affect the heart rate and hatching time of offspring embryos, it could significantly reduce the hatching rate of offspring and cause deformity of embryos. These results indicated that long-term exposure to polystyrene microplastics had no significant influence on parental growth and reproduction, but affected embryo development instead. This study provided an important reference for scientific evaluation of the ecological risks of marine microplastic pollution.
Key words:polystyrene/
Oryzias melastigma/
chronic effects/
growth/
reproduction/
embryonic development.

加载中
Plastics Europe. Plastics-The facts 2019:An analysis of European plastic production, demand and waste data[R]. Brussels:Plastics Europe, 2019
Rochman C M, Browne M A, Halpern B S, et al. Policy:Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436):169-171
Andrady A L, Neal M A. Applications and societal benefits of plastics[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):1977-1984
Barnes D K, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):1985-1998
Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment:A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102:165-176
Wang W F, Ge J, Yu X Y. Bioavailability and toxicity of microplastics to fish species:A review[J]. Ecotoxicology and Environmental Safety, 2020, 189:109913
Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 2013, 47(12):6646-6655
Sekirov I, Russell S L, Antunes L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3):859-904
von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20):11327-11335
Barboza L G A, Vieira L R, Branco V, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758)[J]. Aquatic Toxicology, 2018, 195:49-57
Bour A, Haarr A, Keiter S, et al. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves[J]. Environmental Pollution, 2018, 236:652-660
LeMoine C M R, Kelleher B M, Lagarde R, et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 243(Pt A):591-600
Martins A, Guilhermino L. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus[J]. Science of the Total Environment, 2018, 631-632:421-428
Rochman C M, Kurobe T, Flores I, et al. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 2014, 493:656-661
Sleight V A, Bakir A, Thompson R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish[J]. Marine Pollution Bulletin, 2017, 116(1-2):291-297
Tang J, Ni X Z, Zhou Z, et al. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis[J]. Environmental Pollution, 2018, 243(Pt A):66-74
Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83
Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.)[J]. Environmental Science & Technology, 2008, 42(13):5026-5031
Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
Wang J, Li Y J, Lu L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2019, 254(Pt B):113024
Franzellitti S, Canesi L, Auguste M, et al. Microplastic exposure and effects in aquatic organisms:A physiological perspective[J]. Environmental Toxicology and Pharmacology, 2019, 68:37-51
Cong Y, Jin F, Tian M, et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma)[J]. Chemosphere, 2019, 228:93-100
Chen T H, Chou S M, Tang C H, et al. Endocrine disrupting effects of domestic wastewater on reproduction, sexual behavior, and gene expression in the brackish medaka Oryzias melastigma[J]. Chemosphere, 2016, 150:566-575
Hong H Z, Shen R, Liu W X, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma[J]. Marine Pollution Bulletin, 2015, 101(1):110-118
Huang Q S, Dong S J, Fang C, et al. Deep sequencing-based transcriptome profiling analysis of Oryzias melastigma exposed to PFOS[J]. Aquatic Toxicology, 2012, 120-121:54-58
Huang Q S, Chen Y J, Chi Y L, et al. Immunotoxic effects of perfluorooctane sulfonate and di(2-ethylhexyl) phthalate on the marine fish Oryzias melastigma[J]. Fish & Shellfish Immunology, 2015, 44(1):302-306
Mu J L, Jin F, Ma X D, et al. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma)[J]. Environmental Toxicology and Chemistry, 2014, 33(11):2576-2583
Sun L B, Zuo Z H, Chen M, et al. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2015, 162:109-116
Wang M H, Wang Y Y, Wang J, et al. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury[J]. Aquatic Toxicology, 2011, 103(3-4):129-139
Wang X J, Song L L, Chen Y, et al. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma)[J]. Marine Environmental Research, 2017, 131:10-18
Yi X L, Leung K M Y. Assessing the toxicity of triphenyltin to different life stages of the marine medaka Oryzias melastigma through a series of life-cycle based experiments[J]. Marine Pollution Bulletin, 2017, 124(2):847-855
Kim B M, Kim J, Choi I Y, et al. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research[J]. Marine Environmental Research, 2016, 113:141-152
Sun J H, Xia S D, Ning Y, et al. Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the Yellow Seahorse, Hippocampus kuda Bleeker[J]. Marine Pollution Bulletin, 2019, 149:110510
Jakubowska M, Białowąs M, Stankevičiūte·M, et al. Effects of chronic exposure to microplastics of different polymer types on early life stages of sea trout Salmo trutta[J]. Science of the Total Environment, 2020, 740:139922
Mazurais D, Ernande B, Quazuguel P, et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae[J]. Marine Environmental Research, 2015, 112:78-85
Li Y J, Wang J, Yang G X, et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 2020, 385:121586
Naidoo T, Glassom D. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant concentrations of microplastic[J]. Marine Pollution Bulletin, 2019, 145:254-259
Yin L Y, Liu H Y, Cui H W, et al. Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2019, 380:120861
Assas M, Qiu X C, Chen K, et al. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish[J]. Marine Pollution Bulletin, 2020, 158:111446
Chen J C, Chen M Y, Fang C, et al. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma[J]. Marine Pollution Bulletin, 2020, 158:111349
Hicken C E, Linbo T L, Baldwin D H, et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish[J]. PNAS, 2011, 108(17):7086-7090
Prokić M D, Radovanović T B, Gavrić J P, et al. Ecotoxicological effects of microplastics:Examination of biomarkers, current state and future perspectives[J]. TrAC Trends in Analytical Chemistry, 2019, 111:37-46

相关话题/胚胎 生态 污染 海洋 环境