刘艳菊1,2,,,
郭青云1,
杨峥1,
钟震宇1,
李俊芳1,
单云芳1,
孟玉萍1,
王欣欣2
1. 北京麋鹿生态实验中心, 北京 100076;
2. 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心), 北京 100089
作者简介: 程志斌(1983-),男,硕士,副研究员,研究方向为环境毒理和动物生态学,E-mail:czb@milupark.org.cn.
通讯作者: 刘艳菊,liuyanju@hotmail.com ;
基金项目: 国家自然科学基金资助项目(41475133)中图分类号: X171.5
Subchronic Exposure to Diesel Engine Exhaust Induced Pulmonary Inflammation Response, Oxidative Stress and Cell Apoptosis in Mice
Cheng Zhibin1,Liu Yanju1,2,,,
Guo Qingyun1,
Yang Zheng1,
Zhong Zhenyu1,
Li Junfang1,
Shan Yunfang1,
Meng Yuping1,
Wang Xinxin2
1. Beijing Milu Ecological Research Center, Beijing 100076, China;
2. Institute of Analysis and Testing, Beijing Academy of Science and Technology(Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
Corresponding author: Liu Yanju,liuyanju@hotmail.com ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:柴油车尾气暴露对动物呼吸系统和其他器官造成损害,其长期或短期暴露的健康风险受到关注,然而柴油车尾气长期暴露引起的生物毒性机制仍不清楚。本研究通过自制暴露箱模拟柴油车尾气环境,研究了每日不同暴露时间条件下(0.5、1和2 h),长期暴露(95 d)对雄性小鼠肺组织炎症反应、氧化损伤和细胞凋亡的作用,探讨长期暴露于柴油车尾气对成年雄性小鼠肺组织损伤的生物毒性及机制,评估柴油车尾气的毒性效应。结果表明:(1)亚慢性暴露箱内柴油车尾气PM2.5中,有机碳(OC)浓度最高,占所测PM2.5总化学物质浓度的51.95%;其次是元素碳(EC),占45.78%;再次是阴离子和阳离子,分别占1.29%和0.95%;暴露箱内NO2浓度为3.705 mg·m-3,CO浓度为104.087 mg·m-3,均超过《环境空气质量标准》(GB3095—2012)的标准。(2)组织病理观察结果表明,3个柴油暴露组肺充血均比对照组严重,大量淋巴细胞和中性粒细胞浸润,肺泡间质增生明显,损伤程度随时间呈梯度加重。(3)TUNEL染色实验结果显示,1 h柴油暴露组的细胞凋亡率显著高于对照组和0.5 h柴油暴露组。(4)与对照组相比,1 h柴油暴露组和2 h柴油暴露组的乳酸脱氢酶(LDH)均显著升高,说明柴油车尾气亚慢性暴露引起小鼠肺部炎症损伤;1 h柴油暴露组和2 h柴油暴露组的总抗氧化能力(T-AOC)活性、2 h柴油暴露组的谷胱甘肽过氧化物酶(GSH-Px)活性均显著下降,说明柴油车尾气亚慢性暴露可引起小鼠肺组织氧化应激。(5)与对照组相比,3个柴油暴露组的Bax和Bcl-2的表达水平及Bcl-2/Bax指数虽然无显著性差异,但柴油暴露组Bax和Bcl-2表达及Bcl-2/Bax指数均异常。这说明,柴油车尾气亚慢性暴露会导致小鼠肺组织病理损伤,且损伤程度随着暴露时间的增加而增加;导致细胞凋亡率升高,且存在时间效应。进一步探讨机制发现,柴油车尾气亚慢性暴露会导致小鼠肺组织LDH活性显著异常,T-AOC、GSH-Px的活性显著降低,造成细胞凋亡,引起凋亡蛋白Bax和Bcl-2表达水平出现异常;化学成分分析表明,这可能与柴油车尾气中高浓度NO2、CO和多环芳烃(PAHs)等有毒气体及其细颗粒物中高浓度的OC、EC等污染物的作用有关。
关键词: 柴油车尾气/
小鼠/
亚慢性暴露/
炎症反应/
氧化损伤/
细胞凋亡
Abstract:Exposure to diesel engine exhaust (DEE) causes damage to the animal respiratory system and other organs, and the health risks of long-term or short-term exposure are of concern. However, the biotoxicology mechanism caused by long-term exposure to DEPs remains unclear. This study aims to explore the biotoxicity and mechanism of long-term exposure to DEPs on lung tissue in adult male mice and to assess the toxic effects of diesel vehicle exhaust. We exposed adult male mice to DEE via homemade chambers over a period of 95 d and assessed the effects of lung inflammation, oxidative damage and cell death (apoptosis). We created three exposure groups (DEEG), with mice in each group being exposed for 0.5, 1 and 2 h respectively each day, and one blank control group (BCG). The results show that: (1) Among the chemical species of PM2.5 analyzed in the subchronic exposure chamber, the organic carbon (OC) concentration is the highest, accounting for 51.95% of the total mass of PM2.5, followed by elemental carbon (EC), accounting for 45.78%, and then anion and cation, accounting for 1.29% and 0.95%, respectively. Concentrations of NO2 and CO are 3.705 mg·m-3 and 104.087 mg·m-3 respectively, both exceeding the Ambient Air Quality Standards (GB3095—2012) in China. (2) Histopathological observation showed that the pulmonary congestion was more severe in the three DEEGs than that of the BCG, including a large number of lymphocytes and neutrophils infiltrated, and obvious alveolar interstitial hyperplasia, with the degree of damage increased gradually with time. (3) TUNEL staining showed that the apoptotic index (AI) of the 1 h DEEG was significantly higher than that of the BCG and 0.5 h DEEG. (4) Compared with the BCG, lactate dehydrogenase (LDH) levels in the 1 h DEEG and 2 h DEEG significantly increased, indicating that exposure to diesel exhaust had induced mouse lung inflammation damage. In addition, total antioxidant capacity (T-AOC) activity in 1 h DEEG and 2 h DEEG and glutathione peroxidase (GSH-Px) activity in 2 h DEEG significantly declined, indicating that exposure to diesel exhaust had induced mouse lung oxidative stress. (5) Though there were no significant difference between DEEGs and BCG, the expression levels of Bax and Bcl-2 as well as the Bcl-2/Bax ratios were distinct in the three DEEGs. We concluded that subchronic exposure to diesel engine exhaust does lead to pathological injury of lung tissue in mice, and the degree of injury increases with exposure time, which leads to higher rates of apoptosis. Further investigation identified several mechanisms of pathology, including significantly elevated LDH activity in mouse lung tissue, significantly decreased activity of T-AOC, GSH-Px, resulting in cell apoptosis, and abnormal expression of apoptotic protein Bax and Bcl-2. Chemical composition analysis shows that this may be related to the high concentration of toxic gases such as NO2, CO, polycyclic aromatic hydrocarbons (PAHs) and high concentration of OC, EC and other pollutants in fine diesel exhaust particles.
Key words:diesel engine exhaust/
mice/
subchronic exposure/
inflammatory factor/
oxidative stress/
apoptosis.
Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222 |
Betha R, Behera S N, Balasubramanian R. 2013 Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335 |
Liu C, Hsu P C, Lee H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6:6205 |
Guo X R, Zhao L J, Chen D S, et al. Air quality improvement and health benefit of PM2.5 reduction from the coal cap policy in the Beijing-Tianjin-Hebei (BTH) region, China[J]. Environmental Science and Pollution Research International, 2018, 25(32):32709-32720 |
程志斌, 刘艳菊, 亓学奎, 等. 北京不同污染天气PM2.5和PM10染毒对大鼠生理病理参数的影响[J]. 生态毒理学报, 2018, 13(3):226-240Cheng Z B, Liu Y J, Qi X K, et al. Influence of PM2.5 and PM10 exposure on physiological and pathological parameters of rats under different polluted weather in Beijing[J]. Asian Journal of Ecotoxicology, 2018, 13(3):226-240(in Chinese) |
Wang Y S, Yao L, Wang L L, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and Eastern China[J]. Science China Earth Sciences, 2014, 57(1):14-25 |
Goel R, Guttikunda S K. Evolution of on-road vehicle exhaust emissions in Delhi[J]. Atmospheric Environment, 2015, 105:78-90 |
Amato F, Alastuey A, Karanasiou A, et al. AIRUSE-LIFE+:A harmonized PM speciation and source apportionment in five southern European cities[J]. Atmospheric Chemistry and Physics, 2016, 16(5):3289-3309 |
Zin W A, Silva A G L S, Magalhães C B, et al. Eugenol attenuates pulmonary damage induced by diesel exhaust particles[J]. Journal of Applied Physiology, 2012, 112(5):911-917 |
Gaga E O, Arı A, Akyol N, et al. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey[J]. Science of the Total Environment, 2018, 643:1285-1296 |
Krivoshto I N, Richards J R, Albertson T E, et al. The toxicity of diesel exhaust:Implications for primary care[J]. Journal of the American Board of Family Medicine, 2008, 21(1):55-62 |
Zheng X M, Wang G L, Bin P, et al. Time-course effects of antioxidants and phase Ⅱ enzymes on diesel exhaust particles-induced oxidative damage in the mouse lung[J]. Toxicology and Applied Pharmacology, 2019, 366:25-34 |
Ehsanifar M, Tameh A A, Farzadkia M, et al. Exposure to nanoscale diesel exhaust particles:Oxidative stress, neuroinflammation, anxiety and depression on adult male mice[J]. Ecotoxicology and Environmental Safety, 2019, 168:338-347 |
Nemmar A, Karaca T, Beegam S, et al. Prolonged pulmonary exposure to diesel exhaust particles exacerbates renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure[J]. Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2016, 38(5):1703-1713 |
Hemmingsen J G, Møller P, Jantzen K, et al. Controlled exposure to diesel exhaust and traffic noise-Effects on oxidative stress and activation in mononuclear blood cells[J]. Mutation Research, 2015, 775:66-71 |
Chen M J, Liang S, Zhou H F, et al. Prenatal and postnatal mothering by diesel exhaust PM2.5-exposed dams differentially program mouse energy metabolism[J]. Particle and Fibre Toxicology, 2017, 14(1):3 |
Li Q, Kim M, Liu Y, et al. Quantitative assessment of human health risks induced by vehicle exhaust polycyclic aromatic hydrocarbons at Zhengzhou via multimedia fugacity models with cancer risk assessment[J]. Science of the Total Environment, 2018, 618:430-438 |
Feng S L, Gao D, Liao F, et al. The health effects of ambient PM2.5 and potential mechanisms[J]. Ecotoxicology and Environmental Safety, 2016, 128:67-74 |
Crane R, Klaver Z, Li F, et al. Reduction of PM2.5 components and associated cardiovascular health effects via air filtration systems[J]. Innovation in Aging, 2018, 2(Suppl.1):886 |
Park J, Park E H, Schauer J J, et al. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea[J]. Environment International, 2018, 117:276-283 |
严小甜, 丁志山. PM2.5暴露致机体损伤及其机制研究进展[J]. 生态毒理学报, 2019, 14(2):71-80Yan X T, Ding Z S. A review of organism injury and mechanisms from exposure to PM2.5[J]. Asian Journal of Ecotoxicology, 2019, 14(2):71-80(in Chinese) |
Park E J, Roh J, Kang M S, et al. Biological responses to diesel exhaust particles (DEPs) depend on the physicochemical properties of the DEPs[J]. PLoS One, 2011, 6(10):e26749 |
Sato H, Sone H, Sagai M, et al. Increase in mutation frequency in lung of Big Blue rat by exposure to diesel exhaust[J]. Carcinogenesis, 2000, 21(4):653-661 |
Durga M, Nathiya S, Devasena T. In vitro evaluation of cytotoxicity, oxidative stress, DNA damage and inflammation induced by diesel exhaust particles in human A549 lung cells and murine RAW 264.7 macrophages[J]. International Journal of Pharmacy and Pharmaceutical Sciences, 2014, 6(10):105-110 |
Kaewamatawong T, Shimada A, Morita T, et al. Acute and subacute pulmonary effects of diesel exhaust particles in mice:Pathological changes and translocation pathways to the circulation[J]. Thai Journal of Veterinary Medicine, 2009, 39(4):311-318 |
Liu Q Y, Liu Y J, Yin J X, et al. Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing[J]. Atmospheric Environment, 2014, 91:85-94 |
Liu Y J, Zhang T T, Liu Q Y, et al. Seasonal variation of physical and chemical properties in TSP, PM10 and PM2.5 at a roadside site in Beijing and their influence on atmospheric visibility[J]. Aerosol and Air Quality Research, 2014, 14(3):954-969 |
王欣欣, 刘庆阳, 刘艳菊, 等. 二级热脱附-气相色谱-质谱联用测定大气可吸入颗粒物中的16种多环芳烃[J]. 色谱, 2010, 28(9):849-853Wang X X, Liu Q Y, Liu Y J, et al. Determination of 16 polycyclic aromatic hydrocarbons in airborne particle samples using two-step thermal desorption and gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2010, 28(9):849-853(in Chinese) |
汪正东, 于云江, 向明灯, 等. 四溴双酚A亚慢性呼吸暴露对Wistar雄性大鼠的毒性效应[J]. 生态毒理学报, 2016, 11(1):337-344Wang Z D, Yu Y J, Xiang M D, et al. Toxicity effects of tetrabromobisphenol A in male Wistar rats following subchronic inhalation exposure[J]. Asian Journal of Ecotoxicology, 2016, 11(1):337-344(in Chinese) |
杨玲, 徐欣欣, 田烨, 等. 柴油车尾气对小鼠肺部氧化应激作用及气道炎症变化的研究[J]. 中华危重症医学杂志(电子版), 2016, 9(4):229-233 Yang L, Xu X X, Tian Y, et al. Effect of diesel engine exhaust on oxidative stress and airway inflammation in the lung of mice[J]. Chinese Journal of Critical Care Medicine (Electronic Edition), 2016, 9(4):229-233(in Chinese) |
何胡军, 徐钱, 丁书茂, 等. 甲醛诱导Hela细胞凋亡的研究[J]. 生态毒理学报, 2006, 1(3):214-220He H J, Xu Q, Ding S M, et al. Study on apoptosis of Hela cell induced by formaldehyde[J]. Asian Journal of Ecotoxicology, 2006, 1(3):214-220(in Chinese) |
Wang J S, Tseng C Y, Chao M W. Diesel exhaust particles contribute to endothelia apoptosis via autophagy pathway[J]. Toxicological Sciences, 2017, 156(1):72-83 |
Fernandes-Alnemri T, Yu J W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA[J]. Nature, 2009, 458(7237):509-513 |
Zhou W, Tian D D, He J, et al. Exposure scenario:Another important factor determining the toxic effects of PM2.5 and possible mechanisms involved[J]. Environmental Pollution, 2017, 226:412-425 |
Cuevas A K, Niu J P, Zhong M H, et al. Metal rich particulate matter impairs acetylcholine-mediated vasorelaxation of microvessels in mice[J]. Particle and Fibre Toxicology, 2015, 12:14 |
Huang K L, Lee Y H, Chen H I, et al. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice[J]. Journal of Hazardous Materials, 2015, 297:304-312 |
Niu J, Liberda E N, Qu S, et al. The role of metal components in the cardiovascular effects of PM2.5[J]. PLoS One, 2013, 8(12):e83782 |
Rao K M K, Ma J Y C, Meighan T, et al. Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure[J]. Environmental Health Perspectives, 2005, 113(5):612-617 |
刘文彪, 董胜璋, 林忠宁, 等. 柴油车尾气颗粒物提取物对V79细胞的毒性[J]. 环境与健康杂志, 2005, 22(2):119-121Liu W B, Dong S Z, Lin Z N, et al. Toxic effect of exhaust particles extracts of diesel vehicles on V79 cell[J]. Journal of Environment and Health, 2005, 22(2):119-121(in Chinese) |
Yoshizaki K, Brito J M, Moriya H T, et al. Chronic exposure of diesel exhaust particles induces alveolar enlargement in mice[J]. Respiratory Research, 2015, 16(1):1-10 |
Luo B, Shi H X, Wang L N, et al. Rat lung response to PM2.5 exposure under different cold stresses[J]. International Journal of Environmental Research and Public Health, 2014, 11(12):12915-12926 |
Nemmar A, Subramaniyan D, Zia S, et al. Airway resistance, inflammation and oxidative stress following exposure to diesel exhaust particle in angiotensin Ⅱ-induced hypertension in mice[J]. Toxicology, 2012, 292(2-3):162-168 |
Nemmar A, Al-Salam S, Yuvaraju P, et al. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice[J]. Respiratory Physiology & Neurobiology, 2015, 215:51-57 |
余娜, 钟志勇, 唐小江, 等. 镉引起肾脏毒性的细胞凋亡通路[J]. 生态毒理学报, 2014, 9(3):407-412Yu N, Zhong Z Y, Tang X J, et al. Apoptotic pathways for cadmium-induced renal toxicity[J]. Asian Journal of Ecotoxicology, 2014, 9(3):407-412(in Chinese) |
閤静, 赵云, 黄佳伟, 等. PM2.5和甲醛联合暴露致小鼠肺损伤及其分子机制的研究[J]. 生态毒理学报, 2018, 13(3):87-93Ge J, Zhao Y, Huang J W, et al. Study on the lung damage in mice induced by a combined exposure of PM2.5 and formaldehyde and its molecular mechanism[J]. Asian Journal of Ecotoxicology, 2018, 13(3):87-93(in Chinese) |
Li C X, Zhang G F, Zhao L, et al. Metabolic reprogramming in cancer cells:Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer[J]. World Journal of Surgical Oncology, 2016, 14(1):15 |
宋桂芹, 徐志伟, 王文栋, 等. 阻断白介素-17对博来霉素诱导小鼠肺纤维化及肺组织Bax/Bcl-2表达的影响[J]. 南京医科大学学报:自然科学版, 2018, 38(3):317-321Song G Q, Xu Z W, Wang W D, et al. Influence of blocking of interleukin-17 on pulmonary fibrosis and expression of Bax/Bcl-2 in mice induced by bleomycin[J]. Acta Universitatis Medicinalis Nanjing:Natural Science, 2018, 38(3):317-321(in Chinese) |
Yun Y P, Lee J Y, Ahn E K, et al. Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line[J]. Toxicology in Vitro, 2009, 23(1):21-28 |
Behndig A F, Shanmuganathan K, Whitmarsh L, et al. Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium-an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects[J]. BMC Pulmonary Medicine, 2015, 15:99 |
Li R J, Kou X J, Geng H, et al. Effect of ambient PM2.5 on lung mitochondrial damage and fusion/fission gene expression in rats[J]. Chemical Research in Toxicology, 2015, 28(3):408-418 |
He M, Ichinose T, Yoshida S, et al. PM2.5-induced lung inflammation in mice:Differences of inflammatory response in macrophages and type Ⅱ alveolar cells[J]. Journal of Applied Toxicology, 2017, 37(10):1203-1218 |
Du M R, Hall G L, Franklin P, et al. Association between diesel engine exhaust exposure and lung function in Australian gold miners[J]. International Journal of Hygiene and Environmental Health, 2020, 226:113507 |