删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

根表铁膜对凤眼莲吸收环丙沙星的影响

本站小编 Free考研考试/2021-12-30

冯岚1,2,
严岩3,
韩建刚4,5,6
1. 南京林业大学土木工程学院, 南京 210037;
2. Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA;
3. 江苏省环境科学研究院太湖水污染防治研究中心, 南京 210042;
4. 南京林业大学环境与生物学院, 南京 210037;
5. 南京林业大学南方现代林业协同创新中心, 南京 210037;
6. 江苏洪泽湖湿地生态系统国家定位观测研究站, 洪泽 223100
作者简介: 冯岚(1985-),女,博士,副教授,研究方向为工程环境、森林生态,E-mail:fenglan0108@126.com.
基金项目: 国家自然科学基金资助项目(42007151);国家重点研发计划课题(2017YFC0505803);江苏省高校自然科学研究面上项目(19KJB610015);江苏高校哲学社会科学研究项目(2019SJA0108);南京林业大学大学生实践创新训练计划项目(2019NFUSPITP0473)


中图分类号: X171.5


Effect of Root Surface Iron Membrane on Absorption of Ciprofloxacin by Eichhornia crassipes

Feng Lan1,2,
Yan Yan3,
Han Jiangang4,5,6
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA;
3. Taihu Water Pollution Prevention and Control Research Center, Jiangsu Provincial Academy of Environmental Science, Nanjing 210042, China;
4. College of Environment and Biology, Nanjing Forestry University, Nanjing 210037, China;
5. Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China;
6. National Positioning Observation and Research Station of Hongze Lake Wetland Ecosystem, Jiangsu Province, Hongze 223100, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探讨铁离子不同浓度处理下水生植物根表铁膜形成及其对环丙沙星(ciprofloxacin,CIP)吸收的影响,采用室内模拟试验,分析100 μg·L-1 CIP胁迫下不同浓度铁离子(0、10、20、50、100和150 mg·L-1)对凤眼莲根系生理生化及CIP富集量的影响。结果表明,不同浓度铁离子对凤眼莲根系孔隙度和泌氧量无显著影响,而根系活力随着铁离子浓度增加呈上升趋势;铁离子促进凤眼莲根表铁膜形成,150 mg·L-1铁离子处理下凤眼莲根表铁膜量最大,且根表吸附CIP含量最多,而根系中吸收CIP含量显著降低。铁离子对凤眼莲根系生理生化无显著影响,而有利于凤眼莲根表铁膜量增加,促进根系表面CIP的吸附作用,阻碍根系对CIP的吸收作用,降低CIP对植物造成的伤害。
关键词: 环丙沙星/
凤眼莲/
根表铁膜/
铁离子

Abstract:The formation of iron membrane on the root surface of aquatic plants and its effect on the absorption of ciprofloxacin (CIP) are two critical issues for phytoremediation of antibiotic pollution. To address these two issues, this study presented experimental results under different concentrations of iron ions (0, 10, 20, 50, 100, and 150 mol ·L-1) under the stress of 0.1mg·L-1 CIP. The effects of different concentrations of iron ions on the physiological and biochemical characteristics of roots and the concentration of CIP in roots were studied. Tests showed that: (i) Different concentrations of iron had no significant effect on the porosity and oxygen production of roots, but the root activity increased with the increase of iron concentration. (ii) Iron ions promoted the formation of iron membrane on root surface of lotus. The amount of iron membrane on root surface of Eichhornia crassipes and the absorbed CIP content on root surface both reached the peak at the iron ion concentration of 150 mg·L-1. (iii) The accumulated CIP content in root decreased significantly with the increase of iron ions. (iv) Iron ion had no significant effect on the physiological and biochemical characteristics of the root, whereas it was beneficial to increase the amount of iron membrane on the root surface, promote the adsorption of CIP on the root surface, hinder the uptake of CIP in root, and reduce the damage caused by CIP to the plant.
Key words:ciprofloxacin/
Eichhornia crassipes/
iron membrane/
iron ions.

加载中
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
Du J, Zhao H X, Liu S S, et al. Antibiotics in the coastal water of the South Yellow Sea in China:Occurrence, distribution and ecological risks[J]. Science of the Total Environment, 2017, 595:521-527
Guan Y D, Wang B, Gao Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China:A review[J]. Pedosphere, 2017, 27(1):42-51
Wang W X, Gu X H, Zhou L J, et al. Antibiotics in crab ponds of Lake Guchenghu basin, China:Occurrence, temporal variations, and ecological risks[J]. International Journal of Environmental Research and Public Health, 2018, 15(3):548
Qin Y W, Wen Q, Ma Y Q, et al. Antibiotics pollution in Gonghu Bay in the period of water diversion from Yangtze River to Taihu Lake[J]. Environmental Earth Sciences, 2018, 77(11):1-11
Kümmerer K. Antibiotics in the aquatic environment:A review:Part Ⅰ[J]. Chemosphere, 2009, 75(4):417-434
Xu J, Zhang Y, Zhou C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497-498:267-273
Thuy H T T, Nga L P, Loan T T C. Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming[J]. Environmental Science and Pollution Research, 2011, 18(6):835-841
Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary:Occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175:22-29
Picó Y, Andreu V. Fluoroquinolones in soil:Risks and challenges[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4):1287-1299
McClellan K, Halden R U. Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey[J]. Water Research, 2010, 44(2):658-668
Elmolla E S, Chaudhuri M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution[J]. Desalination, 2010, 256(1-3):43-47
Fu H, Li X B, Wang J, et al. Activated carbon adsorption of quinolone antibiotics in water:Performance, mechanism, and modeling[J]. Journal of Environmental Sciences, 2017, 56:145-152
Sharma V, Vinoth Kumar R, Pakshirajan K, et al. Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution[J]. Powder Technology, 2017, 321:259-269
焦杏春, 陈素华, 沈伟然, 等. 水稻根系对多环芳烃的吸着与吸收[J]. 环境科学, 2006, 27(4):760-764Jiao X C, Chen S H, Shen W R, et al. Sorption and absorption of PAHs to rice roots[J]. Environmental Science, 2006, 27(4):760-764(in Chinese)
Dan A, Yang Y, Dai Y N, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology, 2013, 146:363-370
Mendelssohn I A, Kleiss B A, Wakeley J S. Factors controlling the formation of oxidized root channels:A review[J]. Wetlands, 1995, 15(1):37-46
刘春英, 陈春丽, 弓晓峰, 等. 湿地植物根表铁膜研究进展[J]. 生态学报, 2014, 34(10):2470-2480Liu C Y, Chen C L, Gong X F, et al. Progress in research of iron plaque on root surface of wetland plants[J]. Acta Ecologica Sinica, 2014, 34(10):2470-2480(in Chinese)
钟顺清. 湿地植物根表铁膜对磷、铅迁移转化及植物有效性影响的机理探讨[D]. 杭州:浙江大学, 2009:15-16 Zhong S Q. Mechanism of iron plaque effect on phosphorus and lead transformation and its bioavailability[D]. Hangzhou:Zhejiang University, 2009:15-16(in Chinese)
廖德润, 刘超翔, 王振, 等. 兽用抗生素胁迫对空心菜的影响研究[J]. 环境科学学报, 2013, 33(9):2558-2564Liao D R, Liu C X, Wang Z, et al. Effects of veterinary antibiotics stress on Ipomoea aquatica Forsk[J]. Acta Scientiae Circumstantiae, 2013, 33(9):2558-2564(in Chinese)
文波龙. 钠盐梯度下苄嘧磺隆的湿地微界面生物地球化学过程模拟研究[D]. 北京:中国科学院大学, 2012:41-44 Wen B L. Simulation study on the interfacial process of bensulfuron methyl in wetland under salt stress[D]. Beijing:University of Chinese Academy of Sciences, 2012:41-44(in Chinese)
Kludze H K, DeLaune R D, Patrick W H Jr. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots[J]. Agronomy Journal, 1994, 86(3):483-487
Raskin I. A method for measuring leaf volume, density, thickness, and internal gas volume[J]. HortScience:A Publication of the American Society for Horticultural Science, 1983, 18:698-699
Taylor G J, Crowder A A, Rodden R. Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture[J]. American Journal of Botany, 1984, 71(5):666-675
Chen Y, Lin H, Yan W, et al. Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge[J]. Bioresource Technology, 2019, 294:122160
Chen Y, Lin H, Shen N, et al. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation[J]. Bioresource Technology, 2019, 278:266-271
Pan M, Wong C K C, Chu L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China[J]. Journal of Agricultural and Food Chemistry, 2014, 62(46):11062-11069
Ye Z H, Cheung K C, Wong M H. Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface[J]. Canadian Journal of Botany, 2001, 79(3):314-320
杨俊兴, 任红艳, 郭庆军, 等. 湿地植物通气组织和渗氧对其重金属吸收和耐性研究进展[J]. 土壤, 2014, 46(3):394-401Yang J X, Ren H Y, Guo Q J, et al. Effects of aerenchyma and radial oxygen loss of wetland plants on their heavy metal uptake and tolerance:A review[J]. Soils, 2014, 46(3):394-401(in Chinese)
汤苏晨, 程康睿. 根系结构对湿地植物根系释氧能力的影响[J]. 南水北调与水利科技, 2016, 14(4):112-116, 152 Tang S C, Cheng K R. Effects of root structure on the ability of root oxygen release in constructed wetland[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(4):112-116, 152(in Chinese)
张权, 杨柳燕, 高燕, 等. 湿生植物根系泌氧能力与其结构相关性研究[J]. 水资源保护, 2016, 32(4):117-121, 141 Zhang Q, Yang L Y, Gao Y, et al. Oxygen release abilities of wetland plants' roots and relation with root structures[J]. Water Resources Protection, 2016, 32(4):117-121, 141(in Chinese)
Pena A, Chmielova D, Lino C M, et al. Determination of fluoroquinolone antibiotics in surface waters from Mondego River by high performance liquid chromatography using a monolithic column[J]. Journal of Separation Science, 2007, 30(17):2924-2928
董雅致, 徐克章, 崔喜艳, 等. 不同年代大豆品种根系活力的变化及其与植株生物量的关系[J]. 植物生理学报, 2015, 51(3):345-353Dong Y Z, Xu K Z, Cui X Y, et al. Changes of root activity and its correlation with plant biomass of soybean cultivars released in different years[J]. Plant Physiology Journal, 2015, 51(3):345-353(in Chinese)
Chee-Sanford J C, Aminov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001, 67(4):1494-1502
Burken J G, Schnoor J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees[J]. Environmental Science & Technology, 1998, 32(21):3379-3385
Lu X, Gao Y, Luo J, et al. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes)[J]. Journal of Hazardous Materials, 2014, 280:389-398
陈帅, 邹海燕, 高方舟, 等. 抗生素、重金属和杀生剂抗性共选择机制[J]. 生态毒理学报, 2020, 15(2):1-10Chen S, Zou H Y, Gao F Z, et al. Co-selection mechanism of antibiotic, metal and biocide resistance[J]. Asian Journal of Ecotoxicology, 2020, 15(2):1-10(in Chinese)
Wei Z Y, Wang J H, Zhu L S, et al. Toxicity of enrofloxacin, copper and their interactions on soil microbial populations and ammonia-oxidizing Archaea and bacteria[J]. Scientific Reports, 2018, 8:5828

相关话题/植物 南京林业大学 环境科学 生理 生态