删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

丙烯腈暴露通过NF-κB信号通路诱导大鼠脑组织氧化应激

本站小编 Free考研考试/2021-12-30

张瑞萍,
魏倩,
高霞,
赵粉线,
薛红丽,
李芝兰,
兰州大学公共卫生学院, 兰州 730000
作者简介: 张瑞萍(1991-),女,硕士研究生,研究方向为生殖毒理学,E-mail:zhangrp15@lzu.edu.cn.
通讯作者: 李芝兰,lizhl@lzu.edu.cn

中图分类号: X171.5


Acrylonitrile Exposure Induced Oxidative Stress in Rat Brain Tissues through the NF-κB Signaling Pathway

Zhang Ruiping,
Wei Qian,
Gao Xia,
Zhao Fenxian,
Xue Hongli,
Li Zhilan,
School of Public Health, Lanzhou University, Lanzhou 730000, China
Corresponding author: Li Zhilan,lizhl@lzu.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要:探究丙烯腈(ACN)暴露对大鼠脑组织NF-κB信号通路相关基因和蛋白的影响。选取60只SPF级健康成年雄性SD大鼠,随机分为对照组(玉米油)、11.5 mg·kg-1 ACN组、23.0 mg·kg-1 ACN组、46.0 mg·kg-1 ACN组、N-乙酰半胱氨酸(NAC)组(46.0 mg·kg-1 ACN+300 mg·kg-1 NAC),灌胃染毒,每天1次,每周6次,连续28 d。通过分光光度法检测大鼠脑组织中谷胱甘肽(GSH)、丙二醛(MDA)含量以及谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)酶活性;ELISA法测定脑组织内炎症细胞因子浓度;RT-qPCR法检测脑组织中NF-κB信号通路相关基因IKKαIκB、NF-κB和TLR4 mRNA相对表达水平;Western Blot法检测脑组织NF-κB信号通路相关蛋白TLR4、NF-κB、IKKα、p-IKKα/β、IκBα和p-IκBα相对表达水平。ACN染毒后,与对照组相比,各暴露组大鼠脑组织MDA含量均升高(P<0.05);23.0 mg·kg-1和46.0 mg·kg-1的ACN暴露导致大鼠脑组织GSH含量降低(P<0.05);46.0 mg·kg-1的ACN导致GSH-Px活性下降(P<0.05);11.5 mg·kg-1的ACN暴露导致CAT活性下降(P<0.05)。而抗氧化剂NAC的加入后,使得大鼠脑组织SOD活性升高,MDA含量和CAT活性均下降(P<0.05)。与对照组比较,各暴露组大鼠脑组织TNF-α浓度均升高(P<0.05);23.0 mg·kg-1和46.0 mg·kg-1的ACN暴露导致IL-1β浓度均升高(P<0.05);46.0 mg·kg-1的ACN暴露导致IL-6浓度升高(P<0.05);而抗氧化剂NAC的加入后,使得大鼠脑组织中IL-6、IL-1β和TNF-α浓度水平均降低(P<0.05)。RT-qPCR结果表明,23.0 mg·kg-1和46.0 mg·kg-1ACN暴露导致大鼠脑组织IKKα和NF-κB mRNA表达均上调(P<0.05),46.0 mg·kg-1的ACN暴露导致TLR4 mRNA表达上调;而抗氧化剂NAC的加入后,大鼠脑组织IKKαNF-κB mRNA表达均下调(P<0.05)。Western Blot结果表明,各暴露组p-IKKα/β、IKKα和NF-κB蛋白相对表达量均升高(P<0.05);23.0 mg·kg-1和46.0 mg·kg-1的ACN暴露导致p-IκBα蛋白相对表达量升高(P<0.05),46.0 mg·kg-1 ACN暴露导致TLR4 mRNA和蛋白相对表达水平升高;而抗氧化剂NAC的加入后,大鼠脑组织中p-IKKα/β和NF-κB蛋白相对表达量均升高(P<0.05)。结果表明,ACN通过诱导大鼠脑组织氧化/抗氧化失衡和炎症反应,进而激活NF-κB信号通路,NAC干预可拮抗ACN诱导脑组织发生氧化应激,抑制NF-κB的活化。
关键词: 丙烯腈/
大鼠/
氧化应激/
炎症反应/
NF-κB信号通路

Abstract:To investigate the acrylonitrile (ACN) induced alterations of genes and proteins related to NF-κB signaling pathway in rat's brain, 60 SPF SD male rats were orally administrated with 11.5, 23.0 and 46.0 mg·kg-1 ACN, and pretreated with 300 mg·kg-1 NAC+46 mg·kg-1 ACN, respectively. ACN or N-acetylcysteine (NAC) was diluted in corn oil and administrated once per day, 6 d per week for total 28 d. Vehicle control group was orally administrated with the same volume of corn oil at the same dosing frequency. At the end of the experiments, rats were euthanized and brain tissue was isolated for further examination. The contents of glutathione (GSH) and malondialdehyde (MDA), and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) were measured by biochemical kit according to the kit's instruction. The levels of inflammatory cytokines IL-6, IL-1β and TNF-α were determined by ELISA. Real-time PCR was used to detect the mRNA expression levels of IKKα, IκB and NF-κB. Western Blot was used to detect the protein expression of NF-κB, IKKα, p-IKKα/β, IκBα and p-IκBα in brain tissue. Compared with the control group, the MDA content in each ACN single treated group increased, while GSH content and GSH-Px activity decreased in dose dependent manner (P<0.05). Pretreated with antioxidant NAC, the SOD content increased, while the MDA content and CAT activity decreased (P<0.05) accordingly. Compared with the control group, the level of IL-1β and TNF-α increased in the exposure group of 23.0 mg·kg-1 and 46.0 mg·kg-1 ACN (P<0.05), and the level of IL-6 increased in the 46.0 mg·kg-1 ACN group (P<0.05). Pretreated with antioxidant NAC, the level of inflammatory cytokines IL-6, IL-1β and TNF-α in brain tissue decreased (P<0.05). Compared with the control group, the relative mRNA expression of IKKα and NF-κB was upregulated in the 23.0 mg·kg-1 and 46.0 mg·kg-1 ACN group (P<0.05), and the TLR4 mRNA expression increased in the 46.0 mg·kg-1 ACN group. Pretreated with antioxidant NAC, the IKKα and NF-κB mRNA expression in brain tissue was downregulated (P<0.05). Compared with the control group, the protein expression of p-IKKα/β, IKKα and NF-κB in ACN single treated groups was increased (P<0.05), and the protein expression of p-IκBα was increased in the 23.0 mg·kg-1 and 46.0 mg·kg-1 ACN treatment group (P<0.05). In addition, the protein expression and mRNA expression of TLR4 were increased when rats were exposed to 46.0 mg·kg-1 ACN. Pretreated with antioxidant NAC, the protein expression of p-IKKα/β and NF-κB in brain tissue increased (P<0.05). ACN activates NF-κB signaling pathway by inducing oxidative/antioxidative imbalance and inflammatory response in rat brain tissue. NAC pretreatment can antagonize can-induced oxidative stress in brain tissue thus inhibit the activation of NF-κB.
Key words:acrylonitrile/
rat/
oxidative stress/
inflammatory response/
NF-κB signal pathway.

加载中
Zuckerman A J. IARC monographs on the evaluation of carcinogenic risks to humans[J]. Journal of Clinical Pathology, 1995, 48(7):691
陆荣柱, 王苏华, 邢光伟, 等. 丙烯腈染毒大鼠脑病理形态学改变及其对神经特异蛋白质表达的影响[J]. 毒理学杂志, 2007, 21(3):183-186Lu R Z, Wang S H, Xing G W, et al. Histopathology of neurotoxicity and expression of nerve specific proteins in male rats exposed to acrylonitrile[J]. Journal of Toxicology, 2007, 21(3):183-186(in Chinese)
Jacob S, Ahmed A E. Acrylonitrile-induced neurotoxicity in normal human astrocytes:Oxidative stress and 8-hydroxy-2'-deoxyguanosine formation[J]. Toxicology Mechanisms and Methods, 2003, 13(3):169-179
罗波艳, 张瑞萍, 王珂, 等. 丙烯腈暴露对大鼠脑组织损伤及iNOS/p38 MAPK信号通路关键蛋白表达的影响[J]. 生态毒理学报, 2018, 13(2):84-90Luo B Y, Zhang R P, Wang K, et al. The effects of acrylonitrile-exposure on brain tissue and the key protein expression of iNOS/p38 MAPK signaling pathway in rats[J]. Asian Journal of Ecotoxicology, 2018, 13(2):84-90(in Chinese)
Muto T, Sakurai H, Omae K, et al. Health profiles of workers exposed to acrylonitrile[J]. The Keio Journal of Medicine, 1992, 41(3):154-160
Kaneko K, Omae K. Effect of chronic exposure to acrylonitrile on subjective symptoms[J]. The Keio Journal of Medicine, 1992, 41(1):25-32
Dang Y H, Zhao Q L, Luo B Y, et al. Effects of acrylonitrile-induced oxidative stress on testicular apoptosis through activation of NF-κB signaling pathway in male Sprague Dawley rats[J]. American Journal of Translational Research, 2017, 9(9):4227-4235
高玲, 黄鹏, 潘慧, 等. 促炎性细胞因子诱导NF-κB激活促进神经细胞凋亡机制[J]. 中国病理生理杂志, 2005, 21(8):1648
Ray P D, Huang B W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling[J]. Cellular Signalling, 2012, 24(5):981-990
Sena L A, Chandel N S. Physiological roles of mitochondrial reactive oxygen species[J]. Molecular Cell, 2012, 48(2):158-167
Yang Y C, Lin H Y, Su K Y, et al. Rutin, a flavonoid that is a main component of Saussurea involucrata, attenuates the senescence effect in D-galactose aging mouse model[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012:980276
Mahalakshmi K, Pushpakiran G, Anuradha C V. Taurine prevents acrylonitrile-induced oxidative stress in rat brain[J]. Polish Journal of Pharmacology, 2003, 55(6):1037-1043
Renugadevi J, Prabu S M. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats[J]. Toxicology, 2009, 256(1-2):128-134
Chakraborti A, Gulati K, Ray A. Age related differences in stress-induced neurobehavioral responses in rats:Modulation by antioxidants and nitrergic agents[J]. Behavioural Brain Research, 2008, 194(1):86-91
金娜, 马国燕, 李福轮, 等. 丙烯腈染毒致小鼠脑组织氧化损伤的研究[J]. 环境与健康杂志, 2010, 27(12):1053-1055Jin N, Ma G Y, Li F L, et al. Effect of acrylonitrile on oxidative damage in brain tissues of mice[J]. Journal of Environment and Health, 2010, 27(12):1053-1055(in Chinese)
Hariharakrishnan J, Satpute R M, Prasad G B K S, et al. Oxidative stress mediated cytotoxicity of cyanide in LLC-MK2 cells and its attenuation by alpha-ketoglutarate and N-acetyl cysteine[J]. Toxicology Letters, 2009, 185(2):132-141
Satpute R M, Hariharakrishnan J, Bhattacharya R. Effect of alpha-ketoglutarate and N-acetyl cysteine on cyanide-induced oxidative stress mediated cell death in PC12 cells[J]. Toxicology and Industrial Health, 2010, 26(5):297-308
El-Sayed E S M, Abo-Salem O M, Abd-Ellah M F, et al. Hesperidin, an antioxidant flavonoid, prevents acrylonitrile-induced oxidative stress in rat brain[J]. Journal of Biochemical and Molecular Toxicology, 2008, 22(4):268-273
Huang Q Z, Aluise C D, Joshi G, et al. Potential in vivo amelioration by N-acetyl-L-cysteine of oxidative stress in brain in human double mutant APP/PS-1 knock-in mice:Toward therapeutic modulation of mild cognitive impairment[J]. Journal of Neuroscience Research, 2010, 88(12):2618-2629
Gonçalves J F, Fiorenza A M, Spanevello R M, et al. N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium[J]. Chemico-Biological Interactions, 2010, 186(1):53-60
Esmat A, El-Demerdash E, El-Mesallamy H, et al. Toxicity and oxidative stress of acrylonitrile in rat primary glial cells:Preventive effects of N-acetylcysteine[J]. Toxicology Letters, 2007, 171(3):111-118
Tong L Q, Balazs R, Soiampornkul R, et al. Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction[J]. Neurobiology of Aging, 2008, 29(9):1380-1393
Wang W Y, Tan M S, Yu J T, et al. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease[J]. Annals of Translational Medicine, 2015, 3(10):136
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4):783-801
李光照, 杭春华. Toll样受体在脑损伤中的作用机制和研究进展[J]. 医学研究生学报, 2010, 23(12):1319-1323Li G Z, Hang C H. Action mechanisms of Toll-like receptors in brain injury[J]. Journal of Medical Postgraduates, 2010, 23(12):1319-1323(in Chinese)
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5):637-650
Carmody R J. Nuclear factor-κB:Activation and regulation during Toll-like receptor signaling[J]. Cellular & Molecular Immunology, 2007, 4(1):31-41
Verstrepen L, Bekaert T, Chau T L, et al. TLR-4, IL-1R and TNF-R signaling to NF-kappaB:Variations on a common theme[J]. Cellular and Molecular Life Sciences, 2008, 65(19):2964-2978
王晓晨, 吉爱国. NF-κB信号通路与炎症反应[J]. 生理科学进展, 2014, 45(1):68-71
谭余庆, 张永祥. 蛋白激酶C和IkΒNFkΒ在免疫调节中的作用[J]. 免疫学杂志, 2000, 16(6):464-467
Sclabas G M, Fujioka S, Schmidt C, et al. NF-kappaB in pancreatic cancer[J]. International Journal of Gastrointestinal Cancer, 2003, 33(1):15-26

相关话题/组织 信号 健康 基因 生理