删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

视觉注意捕获的快速脱离假说与信号抑制假说

本站小编 Free考研考试/2022-01-01

张帆1, 陈艾睿2, 董波2, 王爱君1(), 张明1,2()
1苏州大学心理学系, 心理与行为科学研究中心, 苏州 215123
2苏州科技大学心理学系, 苏州 215009
收稿日期:2020-04-06出版日期:2021-01-15发布日期:2020-11-23
通讯作者:王爱君,张明E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn

基金资助:* 国家自然科学基金项目(31871092);国家自然科学基金项目(31700939);教育部人文社会科学研究项目(20YJC190002)

Rapid disengagement hypothesis and signal suppression hypothesis of visual attentional capture

ZHANG Fan1, CHEN Airui2, DONG Bo2, WANG Aijun1(), ZHANG Ming1,2()
1Department of Psychology, Soochow University; Research Center for Psychology and Behavioral Sciences, Suzhou 215123, China
2Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
Received:2020-04-06Online:2021-01-15Published:2020-11-23
Contact:WANG Aijun,ZHANG Ming E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn






摘要/Abstract


摘要: 快速脱离假说和信号抑制假说都是将传统的自下而上捕获和自上而下控制结合起来的混合模式假说。快速脱离假说认为突显干扰物总能在第一时间自下而上地捕获注意, 当突显干扰物与任务要求不符时, 注意会迅速脱离该位置。信号抑制假说认为突显干扰物都会产生“注意我”的信号, 当突显干扰物与任务要求不符时, 该信号会被自上而下地抑制以阻止注意捕获发生。前者相关的研究多采用空间线索提示范式和眼动脱离范式, 实验中被试采取独子探测策略, 而后者相关的研究多采用额外单例范式的变式, 实验中被试采取特征探测策略。未来研究应采用不同的刺激类型和实验方法进一步为两个假说提供证据支持, 同时要关注奖赏、训练等因素对“捕获-脱离”和“信号-抑制”的影响。


[1] 储衡清, 周晓林. (2004). 注意捕获与自上而下的加工过程. 心理科学进展, 12(5), 680-687.
[2] 张明, 王爱君. (2012). 视觉搜索中基于工作记忆内容的注意捕获与抑制. 心理科学进展, 20(12), 1899-1907.
doi: 10.3724/SP.J.1042.2012.01899URL
[3] Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention Perception & Psychophysics, 72(2), 342-352.
[4] Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention Perception & Psychophysics, 74(6), 1183-1198.
[5] Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68.
doi: 10.1016/j.biopsych.2010.07.024URL
[6] Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.
doi: 10.1016/j.tics.2012.06.010URL
[7] Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74-83.
doi: 10.1016/j.biopsycho.2016.10.004URLpmid: 27756581
[8] Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention Perception & Psychophysics, 72(2), 326-341.
[9] Biggs, A. T., Kreager, R. D., Gibson, B. S., Villano, M., & Crowell, C. R. (2012). Semantic and affective salience: The role of meaning and preference in attentional capture and disengagement. Journal of Experimental Psychology: Human Perception & Performance, 38(2), 531-541.
doi: 10.1037/a0027394URLpmid: 22390289
[10] Blakely, D. P., Wright, T. J., Dehili, V. M., Boot, W. R., & Brockmole, J. R. (2012). Characterizing the time course and nature of attentional disengagement effects. Vision Research, 56, 38-48.
doi: 10.1016/j.visres.2012.01.010URL
[11] Boot, W. R., & Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18(4), 481-491.
doi: 10.1080/13506280903356780URL
[12] Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208(4), 621-631.
doi: 10.1007/s00221-010-2510-1URL
[13] Brockmole, J. R., & Boot, W. R. (2009). Should I stay or should I go? Attentional disengagement from visually unique and unexpected items at fixation. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 808-815.
doi: 10.1037/a0013707URL
[14] Burra, N., & Kerzel, D. (2014). The distractor positivity (pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685-696.
doi: 10.1111/psyp.12215URL
[15] Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how and where. Current Opinion in Psychology, 29, 135-147.
doi: 10.1016/j.copsyc.2019.02.004URLpmid: 30856512
[16] Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15(6), 637-646.
doi: 10.1080/13506280701317968URL
[17] Cosman, J. D., Atreya, P. V., & Woodman, G. F. (2015). Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 145, 73-76.
doi: 10.1016/j.cognition.2015.08.010URLpmid: 26319971
[18] Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F., & Schall, J. D. (2018). Prefrontal control of visual distraction. Current Biology, 28(3), 414-420.
doi: 10.1016/j.cub.2017.12.023URLpmid: 29358071
[19] Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event- related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433.
doi: 10.1162/jocn.2008.20099URLpmid: 18303979
[20] Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27, 86-95.
doi: 10.3758/s13423-019-01672-zURLpmid: 31848910
[21] Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception & Psychophysics, 81(5), 1405-1414.
[22] Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64(5), 741-753.
doi: 10.3758/bf03194741URLpmid: 12201333
[23] Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847-858.
doi: 10.1037//0096-1523.24.3.847URLpmid: 9627420
[24] Folk, C. L., & Remington, R. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14(4-8), 445-465.
doi: 10.1080/13506280500193545URL
[25] Folk, C. L., & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135(2), 103-105.
doi: 10.1016/j.actpsy.2010.04.012URL
[26] Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030-1044.
URLpmid: 1431742
[27] Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception & Performance, 20(2), 317-329.
doi: 10.1037//0096-1523.20.2.317URLpmid: 8189195
[28] Fortier-Gauthier, U., Dell'Acqua, R., & Jolic?ur, P. (2013). The “red-alert” effect in visual search: Evidence from human electrophysiology. Psychophysiology, 50(7), 671-679.
doi: 10.1111/psyp.12050URL
[29] Gao, Y., & Theeuwes, J. (2019). Learning to suppress a distractor is not affected by working memory load. Psychonomic Bulletin & Review, 27(8), 96-104.
doi: 10.3758/s13423-019-01679-6URL
[30] Gaspar, J. M., Christie, G. J., Prime, D. J., Jolic?ur, P., & Mcdonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13), 3693-3698.
doi: 10.1073/pnas.1523471113URL
[31] Gaspar, J. M., & McDonald, J. J. (2014). Suppression of Salient Objects Prevents Distraction in Visual Search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014URL
[32] Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4), 227-246.
URLpmid: 31745389
[33] Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913URLpmid: 26420441
[34] Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention Perception & Psychophysics, 79(1), 45-62.
[35] Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280.
doi: 10.1162/jocn_a_01279URLpmid: 29762104
[36] Gaspelin, N., & Luck, S. J. (2018b). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology. Human Perception and Performance, 44(4), 626-644.
doi: 10.1037/xhp0000484URLpmid: 29035072
[37] Gaspelin, N., & Luck, S. J. (2018c). The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends in Cognitive Sciences, 22(1), 79-92.
doi: 10.1016/j.tics.2017.11.001URLpmid: 29191511
[38] Geng, J. J., & Diquattro, N. E. (2010). Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. Journal of Vision, 10(6), 5, 1-12.
doi: 10.1167/10.4.13URLpmid: 20465333
[39] Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
doi: 10.1177/0963721414525780URL
[40] Glickman, M., & Lamy, D. (2017). Attentional capture by irrelevant emotional distractor faces is contingent on implicit attentional settings. Cognition & Emotion, 32(2), 303-314.
doi: 10.1080/02699931.2017.1301883URLpmid: 28281398
[41] Gong, M., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26), 6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017URLpmid: 28539425
[42] Gong, M., Yang, F., & Li, S. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7), 942-953.
doi: 10.1111/ejn.13174URLpmid: 26797805
[43] Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760-775.
doi: 10.1162/jocn.2009.21039URLpmid: 18564048
[44] Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789-796.
doi: 10.1007/s00221-009-2094-9URL
[45] Hu, L., Ding, Y., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9), e13393.
doi: 10.1111/psyp.13393URLpmid: 31087676
[46] Ipata, A. E., Gee, A. L., Gottlieb, J., Bisley, J. W., & Goldberg, M. E. (2006). Lip responses to a popout stimulus are reduced if it is overtly ignored. Nature Neuroscience, 9(8), 1071-1076.
doi: 10.1038/nn1734URLpmid: 16819520
[47] Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1713-1730.
doi: 10.1037/a0032251URLpmid: 23527999
[48] Lega, C., Ferrante, O., Marini, F., Santandrea, E., Cattaneo, L., & Chelazzi, L. (2019). Probing the neural mechanisms for distractor filtering and their history-contingent modulation by means of TMS. Journal of Neuroscience, 39(38), 7591-7603.
doi: 10.1523/JNEUROSCI.2740-18.2019URLpmid: 31387915
[49] Livingstone, A. C., Christie, G. J., Wright, R. D., & McDonald, J. J. (2017). Signal enhancement, not active suppression, follows the contingent capture of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 219-224.
doi: 10.1037/xhp0000339URLpmid: 28134549
[50] Marini, F., Demeter, E., Roberts, K. C., Chelazzi, L., & Woldorff, M. G. (2016). Orchestrating proactive and reactive mechanisms for filtering distracting information: Brain-behavior relationships revealed by a mixed-design fMRI study. Journal of Neuroscience, 36(3), 988-1000.
doi: 10.1523/JNEUROSCI.2966-15.2016URLpmid: 26791226
[51] Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention Perception & Psychophysics, 74(8), 1590-1605.
[52] Moher, J., Lakshmanan, B. M., Egeth, H. E., & Ewen, J. B. (2014). Inhibition drives early feature-based attention. Psychological Science, 25(2), 315-324.
doi: 10.1177/0956797613511257URLpmid: 24390823
[53] Roque, N. A., Wright, T. J., & Boot, W. R. (2016). Do different attention capture paradigms measure different types of capture? Attention Perception & Psychophysics, 78(7), 2014-2030.
[54] Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012URL
[55] Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention Perception & Psychophysics, 72(6), 1455-1470.
[56] Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
doi: 10.1080/13506285.2011.603709URL
[57] Schoeberl, T., Goller, F., & Ansorge, U. (2018). Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing. Psychonomic Bulletin & Review, 26, 241-249.
URLpmid: 29959614
[58] Sun, M., Wang, E., Huang, J., Zhao, C., Guo, J., Li, D., ... Song, Y. (2018). Attentional selection and suppression in children and adults. Developmental Science, 21(6), e12684.
doi: 10.1111/desc.12684URLpmid: 29761932
[59] Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606.
doi: 10.3758/bf03211656URLpmid: 1620571
[60] Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65-70.
doi: 10.3758/bf03206462URLpmid: 15116988
[61] Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77-99.
doi: 10.1016/j.actpsy.2010.02.006URLpmid: 20507828
[62] Theeuwes, J., de Vries, G. J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735-746.
doi: 10.3758/bf03194810URLpmid: 12956581
[63] Tran, D. M. D. (2020). Commentary: Probing the neural mechanisms for distractor filtering and their history- contingent modulation by means of TMS. Frontiers in Neuroscience, 14, 365.
doi: 10.3389/fnins.2020.00365URLpmid: 32351362
[64] van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception & Performance, 30(4), 746-759.
doi: 10.1037/0096-1523.30.4.749URLpmid: 15305440
[65] Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4URLpmid: 22696250
[66] Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81(6), 1813-1821.
[67] Wang, B., & Theeuwes, J. (2018). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860-870.
[68] Wang, L., Yu, H., & Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision, 13(3), 5, 1-13.
URLpmid: 23283692
[69] Wright, T. J., Boot, W. R., & Brockmole, J. R. (2015). Functional fixedness: The functional significance of delayed disengagement based on attention set. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 17-21.
doi: 10.1037/xhp0000016URLpmid: 25384235
[70] Wright, T. J., Boot, W. R., & Jones, J. L. (2015). Exploring the breadth of the top-down representations that control attentional disengagement. The Quarterly Journal of Experimental Psychology, 68(5), 993-1006.
doi: 10.1080/17470218.2014.973888URLpmid: 25295752
[71] Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676-681.
doi: 10.1037//0096-1523.19.3.676URLpmid: 8331320
[72] Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95-107.
doi: 10.1037//0096-1523.20.1.95URLpmid: 8133227




[1]隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999.
[2]黄元娜, 李云箫, 李纾. 为什么被选的和被拒的会是同一个备择选项?[J]. 心理科学进展, 2021, 29(6): 1010-1021.
[3]李雅宁, 田杨阳, 吴琦, 冷海州, 蒋重清, 杨伊生. 面孔社会知觉中的表情效应[J]. 心理科学进展, 2021, 29(6): 1022-1029.
[4]梁笑, 康静梅, 王丽娟. 个体近似数量系统与其数学能力之间的关系:发展研究的证据[J]. 心理科学进展, 2021, 29(5): 827-837.
[5]于文勃, 王璐, 程幸悦, 王天琳, 张晶晶, 梁丹丹. 语言经验对概率词切分的影响[J]. 心理科学进展, 2021, 29(5): 787-795.
[6]肖承丽, 隋雨檠, 肖苏衡, 周仁来. 空间交互研究新视角:多重社会因素的影响[J]. 心理科学进展, 2021, 29(5): 796-805.
[7]汪钰涵, 马国杰, 庄想灵. 手机分心对行人过街中信息加工及行为的影响[J]. 心理科学进展, 2021, 29(5): 806-814.
[8]尹俊婷, 王冠, 罗俊龙. 威胁对创造力的影响:认知与情绪双加工路径[J]. 心理科学进展, 2021, 29(5): 815-826.
[9]何蔚祺, 李帅霞, 赵东方. 群体面孔情绪感知的神经机制[J]. 心理科学进展, 2021, 29(5): 761-772.
[10]赵宏明, 董燕萍. 口译员的认知转换优势[J]. 心理科学进展, 2021, 29(4): 625-634.
[11]张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651.
[12]叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706.
[13]张亚坤, 陈宁, 陈龙安, 施建农. 让智慧插上创造的翅膀:创造动力系统的激活及其条件[J]. 心理科学进展, 2021, 29(4): 707-722.
[14]白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746.
[15]周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5292
相关话题/心理 科学 信号 干扰 实验