

1华南师范大学心理学院, 光与身心健康实验室, 广州 510631
2华南师范大学, 国家绿色光电子国际联合研究中心, 广州 510006
3华南师范大学, 华南先进光电子研究院, 广东省光信息材料与技术重点实验室&彩色动态电子纸显示技术研究所, 广州510006
收稿日期:
2019-10-14出版日期:
2020-09-15发布日期:
2020-07-24通讯作者:
汝涛涛,周国富E-mail:taotao.ru@scnu.edu.cn;guofu.zhou@m.scnu.edu.cn基金资助:
* 全国教育科学规划教育部青年课题(EBA190467);国家重点研发计划项目(2016YFB0401202);广东省光信息材料与技术重点实验室(2017B030301007);广州市哲学社科规划2019年度羊城青年学人课题(2019GZQN19);国家高等学校学科创新引智计划111引智基地项目和广州市科技计划的资助(2019050001)Effect of sleep restriction on cognitive function and its underlying mechanism
QIAN Liu1,2, Ru Taotao2,3(

1Lab of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
2National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
3Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Received:
2019-10-14Online:
2020-09-15Published:
2020-07-24Contact:
Ru Taotao,ZHOU Guofu E-mail:taotao.ru@scnu.edu.cn;guofu.zhou@m.scnu.edu.cn摘要/Abstract
摘要: 睡眠限制已然成为现代社会人们普遍面临的问题, 其对个体身心机能的影响备受研究者关注。众多研究表明, 睡眠限制会对注意功能、执行功能和长时记忆等不同认知领域的心理加工产生差异化影响, 且影响程度与任务类型、睡眠限制的严重程度、年龄和性别等因素相关。研究者们提出了4种主要的作用假说:唤醒假说、注意控制假说、警觉性假说以及前额皮层易感性假说。未来研究需要从关注个体间差异、使用动脉自旋标记灌注功能磁共振成像技术以及重视轻度睡眠限制的影响等角度进行深化和扩展。
图/表 1

图1睡眠限制对认知功能影响的整合性理论框架

参考文献 96
[1] | Aguirre, G. K., Detre, J. A., Zarahn, E., & Alsop, D. C. (2002). Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage, 15(3), 488-500. doi: 10.1006/nimg.2001.0990 doi: 10.1006/nimg.2001.0990URLpmid: 11848692 |
[2] | Alhola, P., & Polo-Kantola, P. (2007). Sleep deprivation: Impact on cognitive performance. Neuropsychiatric Disease and Treatment, 3(5), 553-567. URLpmid: 19300585 |
[3] | Anderson, C., & Horne, J. A. (2006). Sleepiness enhances distraction during a monotonous task. Sleep, 29(4), 573-576. doi: 10.1093/sleep/29.4.573 doi: 10.1093/sleep/29.4.573URLpmid: 16676792 |
[4] | Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2, 89-195. doi: 10.1016/ S0079-7421(08)60422-3 |
[5] | Baker, F. C., & Driver, H. S. (2007). Circadian rhythms, sleep, and the menstrual cycle. Sleep Medicine, 8(6), 613-622. doi: 10.1016/j.sleep.2006.09.011 URLpmid: 17383933 |
[6] | Balkin, T. J., Rupp, T., Picchioni, D., & Wesensten, N. J. (2008). Sleep loss and sleepiness: Current issues. Chest, 134(3), 653-660. doi: 10.1378/chest.08-1064 URLpmid: 18779203 |
[7] | Banks, S., & Dinges, D. F. (2007). Behavioral and physiological consequences of sleep restriction. Journal of Clinical Sleep Medicine, 3(5), 519-528. URLpmid: 17803017 |
[8] | Banks, S., van Dongen, H. P. A., Maislin, G., & Dinges, D. F. (2010). Neurobehavioral dynamics following chronic sleep restriction: Dose-response effects of one night for recovery. Sleep, 33(8), 1013-1026. doi: 10.1093/sleep/33.8.1013 URLpmid: 20815182 |
[9] | Beebe, D. W., Difrancesco, M. W., Tlustos, S. J., McNally, K. A., & Holland, S. K. (2009). Preliminary fMRI findings in experimentally sleep-restricted adolescents engaged in a working memory task. Behavioral and Brain Functions, 5, 9. doi: 10.1186/1744-9081-5-9 doi: 10.1186/1744-9081-5-9URLpmid: 19228430 |
[10] | Binks, P. G., Waters, W. F., & Hurry, M. (1999). Short-term total sleep deprivations does not selectively impair higher cortical functioning. Sleep, 22(3), 328-334. doi: 10.1093/ sleep/22.3.328 URLpmid: 10341383 |
[11] | Boonstra, T. W., Stins, J. F., Daffertshofer, A., & Beek, P. J. (2007). Effects of sleep deprivation on neural functioning: An integrative review. Cellular and Molecular Life Sciences, 64(7-8), 934-946. doi: 10.1007/s00018-007-6457-8 URLpmid: 17347797 |
[12] | Carskadon, M. A., Harvey, K., & Dement, W. C. (1981). Acute restriction of nocturnal sleep in children. Perceptual and Motor Skills, 53(1), 103-112. doi: 10.2466/pms.1981. 53.1.103 |
[13] | Cedernaes, J., Sand, F., Liethof, L., Lampola, L., Hassanzadeh, S., Axelsson, E. K., ... Benedict, C. (2016). Learning and sleep-dependent consolidation of spatial and procedural memories are unaltered in young men under a fixed short sleep schedule. Neurobiology of Learning and Memory, 131, 87-94. doi: 10.1016/j.nlm.2016.03.012 doi: 10.1016/j.nlm.2016.03.012URLpmid: 26995308 |
[14] | Chee, M. W. L., & Choo, W. C. (2004). Functional imaging of working memory after 24 hr of total sleep deprivation. Journal of Neuroscience, 24(19), 4560-4567. doi: 10.1523/ Jneurosci.0007-04.2004 doi: 10.1523/JNEUROSCI.0007-04.2004URLpmid: 15140927 |
[15] | Chee, M. W. L., Chuah, L. Y., Venkatraman, V., Chan, W. Y., Philip, P., & Dinges, D. F. (2006). Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. Neuroimage, 31(1), 419-428. doi: 10.1016/j.neuroimage.2005.12.001 URLpmid: 16427321 |
[16] | Cohen-Zion, M., Shabi, A., Levy, S., Glasner, L., & Wiener, A. (2016). Effects of partial sleep deprivation on information processing speed in adolescence. Journal of the International Neuropsychological Society, 22(4), 388-398. doi: 10.1017/S1355617716000072 URLpmid: 26892867 |
[17] | Corsi-Cabrera, M., Sanchez, A. I., del-Rio-Portilla, Y., Villanueva, Y., & Perez-Garci, E. (2003). Effect of 38 h of total sleep deprivation on the waking EEG in women: Sex differences. International Journal of Psychophysiology, 50(3), 213-224. doi: 10.1016/s0167-8760(03)00168-5 doi: 10.1016/s0167-8760(03)00168-5URLpmid: 14585490 |
[18] | Cote, K. A., Milner, C. E., Osip, S. L., Baker, M. L., & Cuthbert, B. P. (2008). Physiological arousal and attention during a week of continuous sleep restriction. Physiology & Behavior, 95(3), 353-364. doi: 10.1016/j.physbeh.2008. 06.016 doi: 10.1016/j.physbeh.2008.06.016URLpmid: 18655799 |
[19] | Cousins, J. N., Sasmita, K., & Chee, M. W. L. (2018). Memory encoding is impaired after multiple nights of partial sleep restriction. Journal of Sleep Research, 27(1), 138-145. doi: 10.1111/JSR.12578 URLpmid: 28677325 |
[20] | Cunningham, J. E. A., Jones, S. A. H., Eskes, G. A., & Rusak, B. (2018). Acute sleep restriction has differential effects on components of attention. Frontiers in Psychiatry, 9, 499. doi: 10.3389/fpsyt.2018.00499 doi: 10.3389/fpsyt.2018.00499URLpmid: 30425658 |
[21] | de Bruin, E. J., van Run, C., Staaks, J., & Meijer, A. M. (2017). Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review. Sleep Medicine Reviews, 32, 45-57. doi: 10.1016/j.smrv.2016.02.006 doi: 10.1016/j.smrv.2016.02.006URLpmid: 27039223 |
[22] | de Dreu, M. J., Schouwenaars, I. T., Rutten, G. M., Ramsey, N. F., & Jansma, J. M. (2019). Brain activity associated with expected task difficulty. Frontiers in Human Neuroscience, 13, 286. doi: 10.3389/fnhum.2019.00286 URLpmid: 31555110 |
[23] | Demos, K. E., Hart, C. N., Sweet, L. H., Mailloux, K. A., Trautvetter, J., Williams, S. E., ... McCaffery, J. M. (2016). Partial sleep deprivation impacts impulsive action but not impulsive decision-making. Physiology & Behavior, 164, 214-219. doi: 10.1016/j.physbeh.2016.06.003 URLpmid: 27267950 |
[24] | Dijk, D. J. (2009). Regulation and functional correlates of slow wave sleep. Journal of Clinical Sleep Medicine, 5(2), S6-S15. |
[25] | Dijk, D. J., & Archer, S. N. (2010). PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Medicine Reviews, 14(3), 151-160. doi: 10.1016/j.smrv.2009.07.002 URLpmid: 19716732 |
[26] | Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers, 17(6), 652-655. doi: 10.3758/BF03200977 |
[27] | Drummond, S. P. A., Brown, G. G., Salamat, J. S., & Gillin, J. C. (2004). Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep, 27(3), 445-451. URLpmid: 15164897 |
[28] | Drummond, S. P. A., Meloy, M. J., Yanagi, M. A., Orff, H. J., & Brown, G. G. (2005). Compensatory recruitment after sleep deprivation and the relationship with performance. Psychiatry Research-Neuroimaging, 140(3), 211-223. doi: 10.1016/j.pscychresns.2005.06.007 |
[29] | Duffy, J. F., Willson, H. J., Wang, W., & Czeisler, C. A. (2009). Healthy older adults better tolerate sleep deprivation than young adults. Journal of the American Geriatrics Society, 57(7), 1245-1251. doi: 10.1111/J.1532-5415.2009. 02303.X URLpmid: 19460089 |
[30] | Durmer, J. S., & Dinges, D. F. (2005). Neurocognitive consequences of sleep deprivation. Seminars in Neurology, 25(1), 117-129. doi: 10.1055/s-2005-867080 doi: 10.1055/s-2005-867080URLpmid: 15798944 |
[31] | Eysenck, H. J. (1963). Biological Basis of Personality. Nature, 199, 1031-1034. doi: 10.1038/1991031a0 doi: 10.1038/1991031a0URLpmid: 14066934 |
[32] | Fallone, G., Acebo, C., Arnedt, J. T., Seifer, R., & Carskadon, M. A. (2001). Effects of acute sleep restriction on behavior, sustained attention, and response inhibition in children. Perceptual and Motor Skills, 93(1), 213-229. doi: 10.2466/pms.2001.93.1.213 URLpmid: 11693688 |
[33] | Friston, K. J., Josephs, O., Zarahn, E., Holmes, A. P., Rouquette, S., & Poline, J. B. (2000). To smooth or not to smooth?: Bias and efficiency in fMRI time-series analysis. Neuroimage, 12(2), 196-208. doi: 10.1006/nimg.2000.0609 doi: 10.1006/nimg.2000.0609URLpmid: 10913325 |
[34] | Fujiwara, Y., Matsuda, T., Kanamoto, M., Tsuchida, T., Tsuji, K., Kosaka, N., ... Kimura, H. (2017). Comparison of long-labeled pseudo-continuous arterial spin labeling (ASL) features between young and elderly adults: Special reference to parameter selection. Acta Radiologica, 58(1), 84-90. doi: 10.1177/0284185116632387 URLpmid: 26893213 |
[35] | Goel, N., Abe, T., Braun, M. E., & Dinges, D. F. (2014). Cognitive workload and sleep restriction interact to influence sleep homeostatic responses. Sleep, 37(11), 1745-1756. doi: 10.5665/sleep.4164 doi: 10.5665/sleep.4164URLpmid: 25364070 |
[36] | Grade, M., Hernandez Tamames, J. A., Pizzini, F. B., Achten, E., Golay, X., & Smits, M. (2015). A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology, 57(12), 1181-1202. doi: 10.1007/s00234- 015-1571-z URLpmid: 26351201 |
[37] | Hagemann, D., Hewig, J., Walter, C., Schankin, A., Danner, D., & Naumann, E. (2009). Positive evidence for Eysenck’s arousal hypothesis: A combined EEG and MRI study with multiple measurement occasions. Personality and Individual Differences, 47(7), 717-721. doi: 10.1016/j.paid.2009.06.009 doi: 10.1016/j.paid.2009.06.009URL |
[38] | Harrison, Y., & Horne, J. A. (2000). The impact of sleep deprivation on decision making: A review. Journal of Experimental Psychology: Applied, 6(3), 236-249. doi: 10.1037/1076-898x.6.3.236 URLpmid: 11014055 |
[39] | Harrison, Y., Horne, J. A., & Rothwell, A. (2000). Prefrontal neuropsychological effects of sleep deprivation in young adults — A model for healthy aging? Sleep, 23(8), 1067-1073. doi: 10.1093/sleep/23.8.1f URLpmid: 11145321 |
[40] | Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O., DonCarlos, L., ... Adams Hillard, P. J. (2015). National Sleep Foundation's sleep time duration recommendations: Methodology and results summary. Sleep Health, 1(1), 40-43. doi: 10.1016/j.sleh.2014.12.010 URLpmid: 29073412 |
[41] | Hudson, A. N., van Dongen, H. P. A., & Honn, K. A. (2020). Sleep deprivation, vigilant attention, and brain function: A review. Neuropsychopharmacology, 45(1), 21-30. doi: 10.1038/s41386-019-0432-6 doi: 10.1038/s41386-019-0432-6URLpmid: 31176308 |
[42] | Jarraya, S., Jarraya, M., Chtourou, H., & Souissi, N. (2014). Effect of time of day and partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biological Rhythm Research, 45(2), 183-191. doi: 10.1080/09291016.2013.787685 |
[43] | Jiang, F., vanDyke, R. D., Zhang, J., Li, F., Gozal, D., & Shen, X. (2011). Effect of chronic sleep restriction on sleepiness and working memory in adolescents and young adults. Journal of Clinical and Experimental Neuropsychology, 33(8), 892-900. doi: 10.1080/13803395.2011.570252 doi: 10.1080/13803395.2011.570252URLpmid: 21950514 |
[44] | Killgore, W. D. S. (2010). Effects of sleep deprivation on cognition. Progress in Brain Research, 185, 105-129. doi: 10.1016/B978-0-444-53702-7.00007-5 doi: 10.1016/B978-0-444-53702-7.00007-5URLpmid: 21075236 |
[45] | Lahti, T., Sysi-Aho, J., Haukka, J., & Partonen, T. (2011). Work-related accidents and daylight saving time in Finland. Occupational Medicine-Oxford, 61(1), 26-28. doi: 10.1093/occmed/kqq167 |
[46] | Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870-900. doi: 10.1037/a0030694 doi: 10.1037/a0030694URLpmid: 23163491 |
[47] | Lee, J., Manousakis, J., Fielding, J., & Anderson, C. (2015). Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility. Sleep, 38(5), 765-775. doi: 10.5665/sleep.4672 URLpmid: 25515101 |
[48] | Leong, R. L. F., Koh, S. Y. J., Tandi, J., Chee, M. W. L., & Lo, J. C. (2017). Multiple nights of partial sleep deprivation do not affect prospective remembering at long delays. Sleep Medicine, 44, 19-23. doi: 10.1016/j.sleep. 2017.09.037 URLpmid: 29530364 |
[49] | Li, C. Y., Huang, D. Q., Qi, J. L., Chang, H. S., Meng, Q. Q., Wang, J., ... Zhang, X. (2017). Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction. Brain Imaging and Behavior, 11(4), 954-963. doi: 10.1007/s11682-016- 9570-1 URLpmid: 27444729 |
[50] | Lim, J., & Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences, 1129, 305-322. doi: 10.1196/annals.1417.002 URLpmid: 18591490 |
[51] | Lim, J., & Dinges, D. F. (2010). A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychological Bulletin, 136(3), 375-389. doi: 10.1037/ a0018883 URLpmid: 20438143 |
[52] | Lo, J. C., Bennion, K. A., & Chee, M. W. L. (2016). Sleep restriction can attenuate prioritization benefits on declarative memory consolidation. Journal of Sleep Research, 25(6), 664-672. doi: 10.1111/jsr.12424 URLpmid: 27291639 |
[53] | Lo, J. C., Chong, P. L. H., Ganesan, S., Leong, R. L. F., & Chee, M. W. L. (2016). Sleep deprivation increases formation of false memory. Journal of Sleep Research, 25(6), 673-682. doi: 10.1111/jsr.12436 URLpmid: 27381857 |
[54] | Lo, J. C., Ong, J. L., Leong, R. L. F., Gooley, J. J., & Chee, M. W. L. (2016). Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep, 39(3), 687-698. doi: 10.5665/sleep.5552 doi: 10.5665/sleep.5552URLpmid: 26612392 |
[55] | Lowe, C. J., Safati, A., & Hall, P. A. (2017). The neurocognitive consequences of sleep restriction: A meta-analytic review. Neuroscience and Biobehavioral Reviews, 80, 586-604. doi: 10.1016/j.neubiorev.2017.07.010 URLpmid: 28757454 |
[56] | Magill, R. A., Waters, W. F., Bray, G. A., Volaufova, J., Smith, S. R., Lieberman, H. R., ... Ryan, D. H. (2003). Effects of tyrosine, phentermine, caffeine D-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutritional Neuroscience, 6(4), 237-246. doi: 10.1080/1028415031000120552 doi: 10.1080/1028415031000120552URLpmid: 12887140 |
[57] | McCoy, J. G., & Strecker, R. E. (2011). The cognitive cost of sleep lost. Neurobiology of Learning and Memory, 96(4), 564-582. doi: 10.1016/j.nlm.2011.07.004 URLpmid: 21875679 |
[58] | Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Direction in Psychological Science, 21(1), 8-14. doi: 10.1177/0963721411429458 |
[59] | Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. doi: 10.1006/COGP. 1999.0734 URLpmid: 10945922 |
[60] | Miyata, S., Noda, A., Iwamoto, K., Kawano, N., Banno, M., Tsuruta, Y., ... Ozaki, N. (2015). Impaired cortical oxygenation is related to mood disturbance resulting from three nights of sleep restriction. Sleep and Biological Rhythms, 13(4), 387-394. doi: 10.1111/SBR.12130 |
[61] | Miyata, S., Noda, A., Ozaki, N., Hara, Y., Minoshima, M., Iwamoto, K., ... Koike, Y. (2010). Insufficient sleep impairs driving performance and cognitive function. Neuroscience Letters, 469(2), 229-233. doi: 10.1016/j.neulet.2009.12.001 URLpmid: 19969042 |
[62] | Mu, Q., Mishory, A., Johnson, K. A., Nahas, Z., Kozel, F. A., Yamanaka, K., ... George, M. S. (2005). Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep, 28, 433-446. doi: 10.1093/sleep/28.4.433 doi: 10.1093/sleep/28.4.433URLpmid: 16171288 |
[63] | Munch, M., Knoblauch, V., Blatter, K., Schroder, C., Schnitzler, C., Krauchi, K., ... Cajochen, C. (2004). The frontal predominance in human EEG delta activity after sleep loss decreases with age. European Journal of Neuroscience, 20(5), 1402-1410. doi: 10.1111/j.1460-9568.2004.03580.x URLpmid: 15341612 |
[64] | Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885-1901. doi: 10.1016/j.clinph.2006.01.017 doi: 10.1016/j.clinph.2006.01.017URLpmid: 16581292 |
[65] | Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89. doi: 10.1146/annurev-neuro- 062111-150525 URLpmid: 22524787 |
[66] | Pilcher, J. J., Band, D., Odle-Dusseau, H. N., & Muth, E. R. (2007). Human performance under sustained operations and acute sleep deprivation conditions: Toward a model of controlled attention. Aviation Space and Environmental Medicine, 78(5), B15-B24. |
[67] | Poudel, G. R., Innes, C. R. H., & Jones, R. D. (2013). Distinct neural correlates of time-on-task and transient errors during a visuomotor tracking task after sleep restriction. Neuroimage, 77, 105-113. doi: 10.1016/ j.neuroimage.2013.03.054 URLpmid: 23558102 |
[68] | Rao, H. Y., Gillihan, S. J., Wang, J. J., Korczykowski, M., Sankoorikal, G. M. V., Kaercher, K. A., ... Farah, M. J. (2007). Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biological Psychiatry, 62(6), 600-606. doi: 10.1016/j.biopsych.2006. 11.028 doi: 10.1016/j.biopsych.2006.11.028URLpmid: 17481593 |
[69] | Rao, H. Y., Wang, D. J. J., Tang, K., Pan, W., & Detre, J. A. (2007). Imaging brain activity during natural vision using CASL perfusion fMRI. Human Brain Mapping, 28(7), 593-601. doi: 10.1002/hbm.20288 doi: 10.1002/hbm.20288URLpmid: 17034034 |
[70] | Roehrs, T., Burduvali, E., Bonahoom, A., Drake, C., & Roth, T. (2003). Ethanol and sleep loss: A "dose" comparison of impairing effects. Sleep, 26(8), 981-985. doi: 10.1093/ sleep/26.8.981 URLpmid: 14746378 |
[71] | Saadat, H., Bissonnette, B., Tumin, D., Thung, A., Rice, J., Barry, N. D., & Tobias, J. (2016). Time to talk about work-hour impact on anesthesiologists: The effects of sleep deprivation on Profile of Mood States and cognitive tasks. Pediatric Anesthesia, 26(1), 66-71. doi: 10.1111/ PAN.12809 doi: 10.1111/pan.12809URLpmid: 26559496 |
[72] | Sadeh, A., Gruber, R., & Raviv, A. (2003). The effects of sleep restriction and extension on school-age children: What a difference an hour makes. Child Development, 74(2), 444-455. doi: 10.1111/1467-8624.7402008 URLpmid: 12705565 |
[73] | Santhi, N., Lazar, A. S., McCabe, P. J., Lo, J. C., Groeger, J. A., & Dijk, D. J. (2016). Sex differences in the circadian regulation of sleep and waking cognition in humans. Proceedings of the National Academy Sciences of the United States of America, 113(19), E2730-E2739. doi: 10.1073/ pnas.1521637113 |
[74] | Short, M. A., Weber, N., Reynolds, C., Coussens, S., & Carskadon, M. A. (2018). Estimating adolescent sleep need using dose-response modeling. Sleep, 41(4). doi: 10.1093/sleep/zsy011 URLpmid: 30215811 |
[75] | Smith, A., & Maben, A. (1993). Effects of sleep deprivation, lunch, and personality on performance, mood, and cardiovascular function. Physiology & Behavior, 54(5), 967-972. doi: 10.1016/0031-9384(93)90310-c URLpmid: 8248391 |
[76] | Stenuit, P., & Kerkhofs, M. (2008). Effects of sleep restriction on cognition in women. Biological Psychology, 77(1), 81-88. doi: 10.1016/j.biopsycho.2007.09.011 doi: 10.1016/j.biopsycho.2007.09.011URLpmid: 18006139 |
[77] | St-Onge, M. P., & Zuraikat, F. M. (2019). Reciprocal roles of sleep and diet in cardiovascular health: A review of recent evidence and a potential mechanism. Current Atherosclerosis Reports, 21(3), 11. doi: 10.1007/s11883-019-0772-z doi: 10.1007/s11883-019-0772-zURLpmid: 30747307 |
[78] | Stojanoski, B., Benoit, A., van den Berg, N., Ray, L. B., Owen, A. M., Zandi, A. S., ... Fogel, S. M. (2019). Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution. Sleep, 42(1). doi: 10.1093/sleep/zsy200 URLpmid: 31418028 |
[79] | Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759-765. doi: 10.1017/ S1355617711000695 URLpmid: 21729406 |
[80] | Thimm, M., Fink, G. R., Küst, J., Karbe, H., & Sturm, W. (2006). Impact of alertness training on spatial neglect: A behavioural and fMRI study. Neuropsychologia, 44(7), 1230-1246. doi: 10.1016/j.neuropsychologia.2005.09.008 doi: 10.1016/j.neuropsychologia.2005.09.008URLpmid: 16280140 |
[81] | Tkachenko, O., & Dinges, D. F. (2018). Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review. Neuroscience and Biobehavioral Reviews, 89, 29-48. doi: 10.1016/j.neubiorev.2018.03.017 URLpmid: 29563066 |
[82] | van der Heijden, K. B., Vermeulen, M. C. M., Donjacour, C. E. H. M., Gordijn, M. C. M., Hamburger, H. L., Meijer, A. M., ... Weysen, T. (2018). Chronic sleep reduction is associated with academic achievement and study concentration in higher education students. Journal of Sleep Research, 27(2), 165-174. doi: 10.1111/jsr.12596 doi: 10.1111/jsr.12596URLpmid: 28880425 |
[83] | van der Werf, Y. D., Altena, E., Schoonheim, M. M., Sanz-Arigita, E. J., Vis, J. C., de Rijke, W., & van Someren, E. J. W. (2009). Sleep benefits subsequent hippocampal functioning. Nature Neuroscience, 12(2), 122-123. doi: 10.1038/nn.2253 doi: 10.1038/nn.2253URLpmid: 19151712 |
[84] | van Dongen, H. P. A., Maislin, G., Mullington, J. M., & Dinges, D. F. (2003). The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26(2), 117-126. doi: 10.1093/sleep/26.2.117 URLpmid: 12683469 |
[85] | Vermeulen, M. C. M., Astill, R. G., Benjamins, J. S., Swaab, H., van Someren, E. J. W., & van der Heijden, K. B. (2016). Temperament moderates the association between sleep duration and cognitive performance in children. Journal of Experimental Child Psychology, 144, 184-198. doi: 10.1016/J.JECP.2015.11.014 doi: 10.1016/j.jecp.2015.11.014URLpmid: 26761147 |
[86] | Versace, F., Cavallero, C., de Min Tona, G., Mozzato, M., & Stegagno, L. (2006). Effects of sleep reduction on spatial attention. Biological Psychology, 71(3), 248-255. doi: 10. 1016/j.biopsycho.2005.04.003 URLpmid: 15978717 |
[87] | Voderholzer, U., Piosczyk, H., Holz, J., Landmann, N., Feige, B., Loessl, B., ... Nissen, C. (2011). Sleep restriction over several days does not affect long-term recall of declarative and procedural memories in adolescents. Sleep Medicine, 12(2), 170-178. doi: 10.1016/j.sleep.2010.07.017 doi: 10.1016/j.sleep.2010.07.017URLpmid: 21256802 |
[88] | Wang, J. J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49(5), 796-802. doi: 10.1002/mrm.10437 doi: 10.1002/mrm.10437URLpmid: 12704760 |
[89] | Williams, H. L., Lubin, A., & Goodnow, J. J. (1959). Impaired performance with acute sleep loss. Psychological Monographs: General and Applied, 73(14), 1-26. doi: 10.1037/h0093749 |
[90] | Wright, Jr, K., P., & Badia, P. (1999). Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation. Behavioural Brain Research, 103(2), 185-194. doi: 10.1016/ s0166-4328(99)00042-x doi: 10.1016/s0166-4328(99)00042-xURLpmid: 10513586 |
[91] | Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482. doi: 10.1002/cne.920180503 |
[92] | Yoo, S. S., Hu, P. T., Gujar, N., Jolesz, F. A., & Walker, M. P. (2007). A deficit in the ability to form new human memories without sleep. Nature Neuroscience, 10(3), 385-392. doi: 10.1038/NN1851 URLpmid: 17293859 |
[93] | Yu, H., Lu, J., Jia, P., Liu, C., & Cheng, J. (2019). Experimental sleep restriction effect on adult body weight: A meta-analysis. Sleep and Breathing, 23(4), 1341-1350. doi: 10.1007/s11325-019-01828-0 doi: 10.1007/s11325-019-01828-0URLpmid: 30977011 |
[94] | Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neuroscience and Biobehavioral Reviews, 42, 180-192. doi: 10.1016/j.neubiorev.2014.02.005 URLpmid: 24568942 |
[95] | Zhang, L., Shao, Y., Liu, Z., Li, C., Chen, Y., & Zhou, Q. (2019). Decreased information replacement of working memory after sleep deprivation: Evidence from an event-related potential study. Frontiers in Neuroscience, 13, 408. doi: 10.3389/fnins.2019.00408 doi: 10.3389/fnins.2019.00408URLpmid: 31105518 |
[96] | Zitting, K. M., Münch, M. Y., Cain, S. W., Wang, W., Wong, A., Ronda, J. M., ... Duffy, J. F. (2018). Young adults are more vulnerable to chronic sleep deficiency and recurrent circadian disruption than older adults. Scientific Reports, 8(1), 11052. doi: 10.1038/s41598-018-29358-x doi: 10.1038/s41598-018-29358-xURLpmid: 30038272 |
相关文章 15
[1] | 包寒吴霜, 蔡华俭. 姓名对个体心理与行为的实际影响:证据和理论[J]. 心理科学进展, 2021, 29(6): 1067-1085. |
[2] | 于文华, 鲁忠义. 手势认知功能研究的新视角:“空间化”手势假设[J]. 心理科学进展, 2020, 28(3): 426-433. |
[3] | 杨瑜, 李鸣, 陈红. 母性应激对母性行为和心理功能的影响[J]. 心理科学进展, 2020, 28(1): 128-140. |
[4] | 谢家全, 谢昌颐, 杨文登. 饥饿对认知与社会行为的影响及其机制[J]. 心理科学进展, 2020, 28(1): 141-149. |
[5] | 赵鹤宾, 夏勉, 曹奔, 江光荣. 接触干预在减少精神障碍公众污名中的应用[J]. 心理科学进展, 2019, 27(5): 843-857. |
[6] | 汝涛涛, 李芸, 钱柳, 陈庆伟, 钟罗金, 李静华, 周国富. 环境光照的认知功效及其调节因素与作用机理[J]. 心理科学进展, 2019, 27(10): 1687-1702. |
[7] | 陆静怡, 尚雪松. 为他人做决策:多维度心理机制与决策体验[J]. 心理科学进展, 2018, 26(9): 1545-1552. |
[8] | 叶晓燕, 张得龙, 常松, 刘鸣. 视觉表象个体差异及其神经基础[J]. 心理科学进展, 2018, 26(7): 1186-1192. |
[9] | 叶晓燕, 张得龙, 倪冰, 董霁月, 蔡红杰. 基于心理旋转范式探讨视觉表象的个体差异[J]. 心理科学进展, 2017, 25(suppl.): 37-37. |
[10] | 任智, 邹夏, 钟沙沙, 刘伟. 吸烟:促进还是损害前瞻记忆?[J]. 心理科学进展, 2017, 25(9): 1521-1526. |
[11] | 张瑜, 林文娟, 王玮文. 中枢免疫失衡与认知功能障碍:聚焦TNFa的作用[J]. 心理科学进展, 2017, 25(12): 2036-2042. |
[12] | 赵丹;余林. 社会交往对老年人认知功能的影响[J]. 心理科学进展, 2016, 24(1): 46-54. |
[13] | 冯雪;彭凯平. 技能和风格:理性思维的两种测量途径[J]. 心理科学进展, 2015, 23(9): 1550-1559. |
[14] | 王妍;杨娟. 人格特质对个体心理性应激反应的调节作用[J]. 心理科学进展, 2015, 23(8): 1453-1460. |
[15] | 张秀平;杨晓虹;杨玉芳. 语篇理解中语义整合的神经机制及其影响因素[J]. 心理科学进展, 2015, 23(7): 1130-1141. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5148