近日,北京大学物理学院量子材料科学中心、电子显微镜实验室高鹏研究员课题组与中国科学院物理研究所白雪冬研究员、东京大学Yuichi Ikuhara教授等合作,在SrTiO3中发现了室温下的二维AFD相。他们利用对氧原子敏感的成像及定量原子像分析技术,解析了SrTiO3 Σ13晶界的原子结构,并在皮米(1 pm=10-12 m)精度上定量测量其结构畸变。据此发现,在该晶界附近,相邻的氧八面体向相反方向旋转,表明产生了局域的AFD相。常规的SrTiO3室温相是立方结构,不存在氧八面体旋转,而晶界附近的氧八面体旋转角可高达~6.7°,大于已公开报道的低温下AFD相的旋转角。原子尺度的电子能量损失谱学分析显示,这种局域的AFD序很可能是由于晶界附近的氧空位提供了电子掺杂,导致钛(Ti)离子半径变大,从而导致氧八面体膨胀而发生旋转。值得一提的是,这种沿着晶界平面的室温AFD相的厚度只有6个晶胞,然而另外两个方向则具有厘米尺寸,因此有望被制备成二维的光电导通道,在信息传输领域具有潜在的应用价值。
这项工作反映出晶界工程是设计新奇物相的一种有效手段。在复杂氧化物材料中,晶格、电荷等序参量之间通常存在强耦合作用;而在这些材料的界面(如晶界、位错等)缺陷处,平移对称性破缺打破了化学键的连续性,改变了晶格与其它序参量的耦合作用,进而使相应缺陷衍生出体材料所不具备的新奇物相。因此,有可能通过晶界工程创造出一些新奇的低维物相。

SrTiO3Σ13晶界附近的AFD相:(a)晶界附近Ti、O原子位置图像,图中箭头和连线标识了晶界附近TiO6八面体的旋转,而远离晶界处的SrTiO3相是常规的立方结构;(b)晶界附近AFD相的原子结构示意图;(c)晶格尺度TiO6八面体旋转(θh)分布图
上述研究工作以“Two-dimensional room-temperature giant antiferrodistortive SrTiO3 at a grain boundary(利用晶界工程实现钛酸锶在室温下的二维反铁畸变相)”为题,于2021年6月4日在线发表于《物理评论快报》(Physical Review Letters, 126, 225702 (2021))。物理学院2020级博士研究生韩博为第一作者,高鹏为通讯作者。相关工作得到国家重点研发计划、国家自然科学基金、广东省重点领域研发计划,以及量子物质科学协同创新中心、北京大学轻元素先进材料研究中心、北京大学电子显微镜实验室、日本文部科学省和学术振兴会等支持。