删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

(2【-逻*辑*与-】plus;1)-dimensional coupled Boussinesq equations for Rossby waves in two-layer cylindrica

本站小编 Free考研考试/2022-01-02

婵炴垶鎸撮崑鎾绘煛婢舵ê鐏犻柕鍫濈埣閹崇娀宕滄担鍦殸闂備浇妫勫畷顒€顫濋妸鈺佺煑妞ゆ牗鐟ょ花鏉库槈閺冣偓濠㈡﹢宕哄畝鍕殌闁告劦浜為崺鈥斥槈閹惧瓨灏紒妤冨枔閹风娀骞戦幇顔哄亽闂佸搫鍊归悷杈╂閿燂拷
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懄缁嬪﹪鏁傞懖鈺冾槱婵☆偆澧楅敋缂併劑浜舵俊瀛樻媴缁涘缍婃俊顐ゅ閸垶鍩€椤戣法顦﹂柛娆忕箲缁鸿棄螖閸曨厹鍋掗梺鍝勫€归悷杈╂濮樿泛鐭楀┑鐘插€搁崸濠冾殽閻愬樊鍤熸繝鈧埄鍐跨矗婵鐗忕粈澶嬬箾閹寸姵鏆╂繛璇ф嫹547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墾閹凤拷
Zheyuan Yu1, Zongguo Zhang2, Hongwei Yang,1,∗∗1College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, China
2School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China

First author contact: Author to whom any correspondence should be addressed.
Received:2021-06-3Revised:2021-07-6Accepted:2021-08-19Online:2021-10-01
Fund supported:* Nature Science Foundation of Shandong Province of China.ZR2018MA017


Abstract
In this paper, the existence and propagation characteristics of Rossby waves in a two-layer cylindrical fluid are studied. Firstly, based on the dimensionless baroclinic quasi-geostrophic vortex equations including exogenous and dissipative, we derive new (2+1)-dimensional coupled Boussinesq equations describing wave propagation in polar coordinates by employing a multiscale analysis and perturbation method. Then, the Lie symmetries and conservation laws of the coupled Boussinesq equations are analyzed. Subsequently, by using the $(G^{\prime} /G)$-expansion method, the exact solutions of the (2+1)-dimensional coupled Boussinesq equations are obtained. Finally, the effects of coupling term coefficients on the propagation characteristics of Rossby waves are analyzed.
Keywords: Rossby waves;(2+1)-dimensional coupled Boussinesq equations;two-layer cylindrical fluid


PDF (918KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Zheyuan Yu, Zongguo Zhang, Hongwei Yang. (2+1)-dimensional coupled Boussinesq equations for Rossby waves in two-layer cylindrical fluid*. Communications in Theoretical Physics, 2021, 73(11): 115005- doi:10.1088/1572-9494/ac1ef7

1. Introduction

In many large fluid systems, such as atmospheric and oceanic systems, stratification often occurs due to temperature, particle concentration and density. The stratification of a fluid mainly comes from the non-uniform distribution of power, density and other factors in a certain dimension [1]. Therefore, the characteristics, structure, function, and dynamic development process in time and space of a stratified flow are different from and much more complicated than those of a homogeneous fluid [24]. On the one hand, the fluid in a stratified flow usually has many layers, but most of the theoretical studies on fluid systems examine single-layer fluids. On the other hand, the number of layers of a stratified flow is often limited, and current research does not involve the direction of an infinite number of layers and continuity. Therefore, the stratified flow is simplified to a two-layer fluid system for the convenience of further research [5].

As early as the 19th century, Helmholtz and Kelvin analyzed the stability of stratified flow interfaces. Shortly thereafter, Boussinesq studied the effect of density changes on a stratified flow and proposed the famous Boussinesq approximation. These theories have laid a solid foundation for the development of stratified flow research. In the 20th century, Jeffreys, Keulegan, Yi Jiaxun, Turner, Schiller and others promoted the continued development of understanding of stratified flows. In the 1970s, the first international conference on stratified flows was held in the Soviet Union, which marked a new height in the study of stratified flows [68].

As a result of the rotation of the Earth and the spherical effect, the ocean atmosphere produces a large, permanent fluctuation with a long history of life [911]. This kind of wave has the characteristic of organized consistency in structure, and the isolated wave characteristic of stable large amplitude, so it is called a Rossby wave [12, 13].

Rossby waves are very common in rotating fluids. Such fluctuations had been theorized in the late 19th century, but were not observed in the ocean until the late 20th century. In 1964, Long first theoretically proved the existence of Rossby waves based on the Korteweg–De Vries (KdV) equation and its solution [14]. Subsequently, in 1976, Benny extended Long's conclusion and found the relationship between Rossby wave velocity and amplitude [15]. In 1978, Redekopp and Weidman proved the existence of Rossby waves in zonal flows [16]. In 1984, Akylas obtained the forced KdV equation of Rossby waves [17]. In 1992, Liu Shishi analyzed the influence of dimensions on Rossby waves [18]. In 1995, Rodhead established the envelope Rossby wave model and studied the blocking interaction [19]. In 2006, Zhao Qiang et al deduced the Petviashvili equation of Rossby waves [20]. In 2020, Yang Liangui et al studied topographic Rossby waves and obtained a Gardner evolution equation [21].

The local symmetry approach is regarded as one of the most crucial methods for seeking invariant solutions. Lie point symmetry is included in the local symmetries. The process of finding exact solutions of lower-dimensional equations cannot continue without Lie symmetry transformation and the obtaining of conservation laws [22, 23]. Due to the limitation of the local symmetry approach, more attention has been paid to the nonlocal symmetries method. The nonlocal symmetry for a number of partial differential equations becomes the Lie point symmetry in the process localization [24, 25].

In this paper, the existence and propagation characteristics of Rossby waves in a two-layer cylindrical fluid are studied. Firstly, based on the dimensionless baroclinic quasi-geostrophic vortex equations including exogenous and dissipative, new (2+1)-dimensional coupled Boussinesq equations describing wave propagation in polar coordinates are established by a multiscale analysis and perturbation method [26, 27]. Secondly, the Lie symmetries and conservation laws of the (2+1)-dimensional coupled Boussinesq equations are analyzed by using a Lie group analysis method [2830]. Thirdly, by using the $(G^{\prime} /G)$-expansion method [31], the exact solution of the (2+1)-dimensional coupled Boussinesq equations is obtained. Finally, the effects of coupling term coefficients on the propagation characteristics of Rossby waves are analyzed.

2. Derivation of the (2+1)-dimensional coupled Boussinesq equations

With the emergence of various global marine pollution problems, Rossby waves in two-layer fluids have attracted increasing attention. The Rossby waves in a two-layer cylindrical fluid are rarely seen in previous articles. In this paper, we study Rossby waves in polar coordinates. The dimensionless barotropic quasi-geostrophic vortex equations with exogeny and dissipation are considered as:$\begin{eqnarray}\begin{array}{l}\left[\displaystyle \frac{\partial }{\partial t}+\displaystyle \frac{1}{r}\displaystyle \frac{\partial {\psi }_{A}}{\partial r}\displaystyle \frac{\partial }{\partial \theta }-\displaystyle \frac{1}{r}\displaystyle \frac{\partial {\psi }_{A}}{\partial \theta }\displaystyle \frac{\partial }{\partial r}\right]\\ \left[\displaystyle \frac{1}{r}\displaystyle \frac{\partial }{\partial r}\left(r\displaystyle \frac{\partial {\psi }_{A}}{\partial r}\right)+\displaystyle \frac{1}{{r}^{2}}\displaystyle \frac{{\partial }^{2}{\psi }_{A}}{\partial {\theta }^{2}}\right.\\ \left.+\,{F}_{1}({\psi }_{B}-{\psi }_{A})+f+\displaystyle \frac{f}{{\rho }_{s}}\displaystyle \frac{\partial }{\partial z}\left(\displaystyle \frac{{\rho }_{s}}{s}\displaystyle \frac{\partial {\psi }_{A}}{\partial z}\right)\right]=0,\\ \left[\displaystyle \frac{\partial }{\partial t}+\displaystyle \frac{1}{r}\displaystyle \frac{\partial {\psi }_{B}}{\partial r}\displaystyle \frac{\partial }{\partial \theta }-\displaystyle \frac{1}{r}\displaystyle \frac{\partial {\psi }_{B}}{\partial \theta }\displaystyle \frac{\partial }{\partial r}\right]\\ \left[\displaystyle \frac{1}{r}\displaystyle \frac{\partial }{\partial r}\left(r\displaystyle \frac{\partial {\psi }_{B}}{\partial r}\right)+\displaystyle \frac{1}{{r}^{2}}\displaystyle \frac{{\partial }^{2}{\psi }_{B}}{\partial {\theta }^{2}}\right.\\ \left.+\,{F}_{2}({\psi }_{A}-{\psi }_{B})+f+\displaystyle \frac{f}{{\rho }_{s}}\displaystyle \frac{\partial }{\partial z}\left(\displaystyle \frac{{\rho }_{s}}{s}\displaystyle \frac{\partial {\psi }_{B}}{\partial z}\right)\right]=0,\end{array}\end{eqnarray}$where ${\psi }_{A}$ and ${\psi }_{B}$ are the stream functions, F1 and F2 are the coupling constants between the two-layer cylindrical fluid, f represents the Coriolis parameter, $s={N}^{2}/f$, N represents the level of layer stability, and ${\rho }_{s}={\rho }_{s}(z)$ represents density. The original equations (1) can be expanded to$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{r}{\psi }_{{Art}}+{\psi }_{{Arrt}}+\displaystyle \frac{1}{{r}^{2}}{\psi }_{A\theta \theta t}+{F}_{1}({\psi }_{{Bt}}-{\psi }_{{At}})\\ +\,\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{{Azt}}+\displaystyle \frac{f}{s}{\psi }_{{Azzt}}-\displaystyle \frac{1}{r}{\psi }_{A\theta }\left[-\displaystyle \frac{1}{{r}^{2}}{\psi }_{{Ar}}\right.\\ +\,\displaystyle \frac{1}{r}{\psi }_{{Arr}}+{\psi }_{{Arrr}}+\displaystyle \frac{1}{{r}^{2}}{\psi }_{{Ar}\theta \theta }\\ +\,\left.{F}_{1}({\psi }_{{Br}}-{\psi }_{{Ar}})+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{{Arz}}+\displaystyle \frac{f}{s}{\psi }_{{Arzz}}\right]\\ +\,\displaystyle \frac{1}{r}{\psi }_{{Ar}}\left[\displaystyle \frac{1}{r}{\psi }_{{Ar}\theta }+{\psi }_{{Arr}\theta }+\displaystyle \frac{1}{{r}^{2}}{\psi }_{A\theta \theta \theta }\right.\\ +\,\left.{F}_{1}({\psi }_{B\theta }-{\psi }_{A\theta })+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{A\theta z}+\displaystyle \frac{f}{s}{\psi }_{A\theta {zz}}\right]=0,\\ \displaystyle \frac{1}{r}{\psi }_{{Brt}}+{\psi }_{{Brrt}}+\displaystyle \frac{1}{{r}^{2}}{\psi }_{B\theta \theta t}+{F}_{2}({\psi }_{{At}}-{\psi }_{{Bt}})\\ +\,\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{{Bzt}}+\displaystyle \frac{f}{s}{\psi }_{{Bzzt}}-\displaystyle \frac{1}{r}{\psi }_{B\theta }\left[-\displaystyle \frac{1}{{r}^{2}}{\psi }_{{Br}}\right.\\ +\,\displaystyle \frac{1}{r}{\psi }_{{Brr}}+{\psi }_{{Brrr}}+\displaystyle \frac{1}{{r}^{2}}{\psi }_{{Br}\theta \theta }\\ \left.+\,{F}_{2}({\psi }_{{Ar}}-{\psi }_{{Br}})+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{{Brz}}+\displaystyle \frac{f}{s}{\psi }_{{Brzz}}\right]\\ +\,\displaystyle \frac{1}{r}{\psi }_{{Br}}\left[\displaystyle \frac{1}{r}{\psi }_{{Br}\theta }+{\psi }_{{Brr}\theta }+\displaystyle \frac{1}{{r}^{2}}{\psi }_{B\theta \theta \theta }\right.\\ +\,\left.{F}_{2}({\psi }_{A\theta }-{\psi }_{B\theta })+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\psi }_{B\theta z}+\displaystyle \frac{f}{s}{\psi }_{B\theta {zz}}\right]=0.\end{array}\end{eqnarray}$

To derive the coupled Boussinesq equations, the stream functions ${\psi }_{A}$ and ${\psi }_{B}$ are rewritten into two parts. One is the fundamental stream function, and the other is the disturbed stream function. Hence, the stream functions have the following form:$\begin{eqnarray}\begin{array}{l}{\psi }_{A}={\phi }_{{A}_{0}}(r)+{\phi }_{A}(r,\theta ,z,t)\\ =\,({U}_{{A}_{0}}+{c}_{0}r)+{\phi }_{A}(r,\theta ,z,t),\\ {\psi }_{B}={\phi }_{{B}_{0}}(r)+{\phi }_{B}(r,\theta ,z,t)\\ =\,({U}_{{B}_{0}}+{c}_{0}r)+{\phi }_{B}(r,\theta ,z,t).\end{array}\end{eqnarray}$Assuming that the effect of coupling constants on Rossby waves is not strong, we can introduce the following transformations:$\begin{eqnarray}{F}_{1}=\varepsilon {F}_{A},\quad {F}_{2}=\varepsilon {F}_{B},\end{eqnarray}$where ϵ is a small parameter. We also set the stretched variables as$\begin{eqnarray}\vartheta =\varepsilon \theta ,\quad R={\varepsilon }^{2}r,\quad Z={\varepsilon }^{2}z,\quad T={\varepsilon }^{2}t.\end{eqnarray}$Then, we expand the perturbation stream functions into the following form:$\begin{eqnarray}\begin{array}{l}{\phi }_{A}=\varepsilon {\phi }_{{A}_{1}}(r,\theta ,z,t)+{\varepsilon }^{2}{\phi }_{{A}_{2}}(r,\theta ,z,t)\\ +\,{\varepsilon }^{3}{\phi }_{{A}_{3}}(r,\theta ,z,t)+o({\varepsilon }^{4}),\\ {\phi }_{B}=\varepsilon {\phi }_{{B}_{1}}(r,\theta ,z,t)+{\varepsilon }^{2}{\phi }_{{B}_{2}}(r,\theta ,z,t)\\ +\,{\varepsilon }^{3}{\phi }_{{B}_{3}}(r,\theta ,z,t)+o({\varepsilon }^{4}).\end{array}\end{eqnarray}$

Substituting the stream functions (3), transformations (4), stretched variables (5), and perturbation stream functions (6) into equations (2), two polynomials about the small parameter ϵ can be obtained. Taking the coefficients of ${\varepsilon }^{2}$, we have$\begin{eqnarray}{\varepsilon }^{2}:\left\{\begin{array}{l}\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{1r\vartheta }}+{\phi }_{{A}_{1{rr}\vartheta }}\right]-\displaystyle \frac{1}{r}{\phi }_{{A}_{1\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0{rr}}}+{\phi }_{{A}_{0{rrr}}}\right]=0,\\ \displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{1r\vartheta }}+{\phi }_{{B}_{1{rr}\vartheta }}\right]-\displaystyle \frac{1}{r}{\phi }_{{B}_{1\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0{rr}}}+{\phi }_{{B}_{0{rrr}}}\right]=0.\end{array}\right.\end{eqnarray}$It can be observed that equations (7) can be integrated with respect to ϑ. The integration results in a set of equations that relate only to r,$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{1r}}+{\phi }_{{A}_{1{rr}}}\right]-\displaystyle \frac{1}{r}{\phi }_{{A}_{1}}\\ \left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0{rr}}}+{\phi }_{{A}_{0{rrr}}}\right]=0,\\ \displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{1r}}+{\phi }_{{B}_{1{rr}}}\right]-\displaystyle \frac{1}{r}{\phi }_{{B}_{1}}\\ \left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0{rr}}}+{\phi }_{{B}_{0{rrr}}}\right]=0.\end{array}\end{eqnarray}$Hence, we assume ${\phi }_{{A}_{1}}$ and ${\phi }_{{B}_{1}}$ have separate variable forms as$\begin{eqnarray}\begin{array}{rcl}{\phi }_{{A}_{1}} & = & A(R,\vartheta ,T)M(r,Z),\\ {\phi }_{{B}_{1}} & = & B(R,\vartheta ,T)N(r,Z).\end{array}\end{eqnarray}$By substituting equations (9) into (8), we get$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{r}{M}_{r}+{M}_{{rr}}+p(r)M=0,\\ p(r)=\displaystyle \frac{\tfrac{1}{{r}^{2}}{\phi }_{{A}_{0r}}-\tfrac{1}{r}{\phi }_{{A}_{0{rr}}}-{\phi }_{{A}_{0{rrr}}}}{{\phi }_{{A}_{0r}}},\\ \displaystyle \frac{1}{r}{N}_{r}+{N}_{{rr}}+q(r)N=0,\\ q(r)=\displaystyle \frac{\tfrac{1}{{r}^{2}}{\phi }_{{B}_{0r}}-\tfrac{1}{r}{\phi }_{{B}_{0{rr}}}-{\phi }_{{B}_{0{rrr}}}}{{\phi }_{{B}_{0r}}}.\end{array}\end{eqnarray}$

In order to get the relationship between the perturbation stream functions, we take the coefficients of ${\varepsilon }^{3}$:$\begin{eqnarray}{\varepsilon }^{3}:\left\{\begin{array}{l}\displaystyle \frac{1}{r}{\phi }_{{A}_{1{rT}}}+{\phi }_{{A}_{1{rrT}}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}[\displaystyle \frac{1}{r}{\phi }_{{A}_{2r\vartheta }}+{\phi }_{{A}_{2{rr}\vartheta }}+{F}_{A}({\phi }_{{B}_{1\vartheta }}-{\phi }_{{A}_{1\vartheta }})]\\ +\,\displaystyle \frac{1}{r}{\phi }_{{A}_{1r}}[\displaystyle \frac{1}{r}{\phi }_{{A}_{1r\vartheta }}+{\phi }_{{A}_{1{rr}\vartheta }}]-\displaystyle \frac{1}{r}{\phi }_{{A}_{2\vartheta }}[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0{rr}}}+{\phi }_{{A}_{0{rrr}}}]\\ -\displaystyle \frac{1}{r}{\phi }_{{A}_{1\vartheta }}[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{1r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{1{rr}}}+{\phi }_{{A}_{1{rrr}}}+{F}_{A}({\phi }_{{B}_{0r}}-{\phi }_{{A}_{0r}})]=0,\\ \displaystyle \frac{1}{r}{\phi }_{{B}_{1{rT}}}+{\phi }_{{B}_{1{rrT}}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}[\displaystyle \frac{1}{r}{\phi }_{{B}_{2r\vartheta }}+{\phi }_{{B}_{2{rr}\vartheta }}+{F}_{B}({\phi }_{{A}_{1\vartheta }}-{\phi }_{{B}_{1\vartheta }})]\\ +\,\displaystyle \frac{1}{r}{\phi }_{{B}_{1r}}[\displaystyle \frac{1}{r}{\phi }_{{B}_{1r\vartheta }}+{\phi }_{{B}_{1{rr}\vartheta }}]-\displaystyle \frac{1}{r}{\phi }_{{B}_{2\vartheta }}[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0{rr}}}+{\phi }_{{B}_{0{rrr}}}]\\ -\displaystyle \frac{1}{r}{\phi }_{{B}_{1\vartheta }}[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{1r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{1{rr}}}+{\phi }_{{B}_{1{rrr}}}+{F}_{B}({\phi }_{{A}_{0r}}-{\phi }_{{B}_{0r}})]=0.\end{array}\right.\end{eqnarray}$Substituting equations (9) and (10) into (11) and integrating with respect to ϑ, we get$\begin{eqnarray}\begin{array}{l}{\displaystyle \int }_{0}^{\vartheta }{A}_{T}d\vartheta \left[\displaystyle \frac{1}{r}{M}_{r}+{M}_{{rr}}\right]-\displaystyle \frac{1}{r}{A}^{2}M\\ \left[-\displaystyle \frac{1}{{r}^{2}}{M}_{r}+\displaystyle \frac{1}{r}{M}_{{rr}}+{M}_{{rrr}}\right]\\ +\,\displaystyle \frac{1}{r}{A}^{2}{M}_{r}\left[\displaystyle \frac{1}{r}{M}_{r}+{M}_{{rr}}\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}{F}_{A}{AM}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}{F}_{A}{BN}\\ +\,\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{2r}}+{\phi }_{{A}_{2{rr}}}\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{A}_{2}}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0{rr}}}+{\phi }_{{A}_{0{rrr}}}\right]=0,\\ {\displaystyle \int }_{0}^{\vartheta }{B}_{T}d\vartheta \left[\displaystyle \frac{1}{r}{N}_{r}+{N}_{{rr}}\right]\\ -\displaystyle \frac{1}{r}{B}^{2}N\left[-\displaystyle \frac{1}{{r}^{2}}{N}_{r}+\displaystyle \frac{1}{r}{N}_{{rr}}+{N}_{{rrr}}\right]\\ +\,\displaystyle \frac{1}{r}{B}^{2}{N}_{r}\left[\displaystyle \frac{1}{r}{N}_{r}+{N}_{{rr}}\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}{F}_{B}{BN}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}{F}_{B}{AM}\\ +\,\displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{2r}}+{\phi }_{{B}_{2{rr}}}\right]-\displaystyle \frac{1}{r}{\phi }_{{B}_{2}}\\ \left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0{rr}}}+{\phi }_{{B}_{0{rrr}}}\right]=0.\end{array}\end{eqnarray}$By observing equations (12) in the expression, we assume the functions ${\phi }_{{A}_{2}}$ and ${\phi }_{{B}_{2}}$ have separate variable forms as$\begin{eqnarray}\begin{array}{l}{\phi }_{{A}_{2}}=({m}_{1}U+{m}_{2}{A}^{2}+{m}_{3}A+{m}_{4}B)\\ (R,\vartheta ,T)M(r,z),\\ {\phi }_{{B}_{2}}=({m}_{5}V+{m}_{6}{B}^{2}+{m}_{7}A+{m}_{8}B)\\ (R,\vartheta ,T)N(r,z),\end{array}\end{eqnarray}$where $\tfrac{\partial U}{\partial \vartheta }=\tfrac{\partial A}{\partial T}$ and $\tfrac{\partial V}{\partial \vartheta }=\tfrac{\partial B}{\partial T}$, ${m}_{i}(i=1,2,\ldots ,8)$ can be obtained by substituting equations (13) into (12):$\begin{eqnarray}\begin{array}{l}{m}_{1r}=\displaystyle \frac{{n}_{1}}{{{rM}}^{2}},\,{n}_{1r}=\displaystyle \frac{{r}^{2}{M}^{2}}{{\phi }_{{A}_{0r}}}\left(\displaystyle \frac{1}{r}{M}_{r}+{M}_{{rr}}\right),\\ {m}_{2r}=\displaystyle \frac{{n}_{2}}{{{rM}}^{2}},\,{n}_{2r}=\displaystyle \frac{{{rM}}^{2}}{{\phi }_{{A}_{0r}}}\left[{M}_{r}\left(\displaystyle \frac{1}{r}{M}_{r}+{M}_{{rr}}\right)\right.\\ \left.-\,M\left(-\displaystyle \frac{1}{{r}^{2}}{M}_{r}+\displaystyle \frac{1}{r}{M}_{{rr}}+{M}_{{rrr}}\right)\right],\\ {m}_{3r}=\displaystyle \frac{{n}_{3}}{{{rM}}^{2}},\,{n}_{3r}=-\displaystyle \frac{{\phi }_{{B}_{0r}}}{{\phi }_{{A}_{0r}}}{F}_{A}{{rM}}^{3},\\ {m}_{4r}=\displaystyle \frac{{n}_{4}}{{{rM}}^{2}},\,{n}_{4r}={F}_{A}{{rM}}^{2}N,\\ {m}_{5r}=\displaystyle \frac{{n}_{5}}{{{rN}}^{2}},\,{n}_{5r}=\displaystyle \frac{{r}^{2}{N}^{2}}{{\phi }_{{B}_{0r}}}\left(\displaystyle \frac{1}{r}{N}_{r}+{N}_{{rr}}\right),\\ {m}_{6r}=\displaystyle \frac{{n}_{6}}{{{rN}}^{2}},\,{n}_{6r}=\displaystyle \frac{{{rN}}^{2}}{{\phi }_{{B}_{0r}}}\left[{N}_{r}\left(\displaystyle \frac{1}{r}{N}_{r}+{N}_{{rr}}\right)\right.\\ \left.-\,N\left(-\displaystyle \frac{1}{{r}^{2}}{N}_{r}+\displaystyle \frac{1}{r}{N}_{{rr}}+{N}_{{rrr}}\right)\right],\\ {m}_{7r}=\displaystyle \frac{{n}_{7}}{{{rN}}^{2}},\,{n}_{7r}={F}_{B}{{rMN}}^{2},\\ {m}_{8r}=\displaystyle \frac{{n}_{8}}{{{rN}}^{2}},\,{n}_{8r}=-\displaystyle \frac{{\phi }_{{A}_{0r}}}{{\phi }_{{B}_{0r}}}{F}_{B}{{rN}}^{3}.\end{array}\end{eqnarray}$

In order to compute the relationship between the stream functions, we collect the coefficients of the parameter ${\varepsilon }^{4}$:$\begin{eqnarray}{\varepsilon }^{4}:\left\{\begin{array}{l}\displaystyle \frac{1}{r}{\phi }_{{A}_{2{rT}}}+{\phi }_{{A}_{2{rrT}}}+{F}_{A}({\phi }_{{B}_{1T}}-{\phi }_{{A}_{1T}})+\displaystyle \frac{1}{r}{\phi }_{{A}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{3r\vartheta }}+{\phi }_{{A}_{3{rr}\vartheta }}+{F}_{A}({\phi }_{{B}_{2\vartheta }}-{\phi }_{{A}_{2\vartheta }})\right.\\ \left.+\,\displaystyle \frac{1}{r}{\phi }_{{A}_{1R\vartheta }}+2{\phi }_{{A}_{1{Rr}\vartheta }}+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\phi }_{{A}_{1\vartheta Z}}+\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{1\vartheta \vartheta \vartheta }}\right]+\displaystyle \frac{1}{r}{\phi }_{{A}_{1r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{2r\vartheta }}+{\phi }_{{A}_{2{rr}\vartheta }}\right.\\ \left.+\,{F}_{A}({\phi }_{{B}_{1\vartheta }}-{\phi }_{{A}_{1\vartheta }})\right]+\displaystyle \frac{1}{r}{\phi }_{{A}_{2r}}\left[\displaystyle \frac{1}{r}{\phi }_{{A}_{1r\vartheta }}+{\phi }_{{A}_{1{rr}\vartheta }}\right]-\displaystyle \frac{1}{r}{\phi }_{{A}_{3\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{0{rr}}}\right.\\ \left.+\,{\phi }_{{A}_{0{rrr}}}\right]-\displaystyle \frac{1}{r}{\phi }_{{A}_{2\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{1r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{1{rr}}}+{\phi }_{{A}_{1{rrr}}}+{F}_{A}({\phi }_{{B}_{0r}}-{\phi }_{{A}_{0r}})\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{A}_{1\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{A}_{2r}}+\displaystyle \frac{1}{r}{\phi }_{{A}_{2{rr}}}+{\phi }_{{A}_{2{rrr}}}+{F}_{A}({\phi }_{{B}_{1r}}-{\phi }_{{A}_{1r}})\right]=0,\\ \displaystyle \frac{1}{r}{\phi }_{{B}_{2{rT}}}+{\phi }_{{B}_{2{rrT}}}+{F}_{B}({\phi }_{{A}_{1T}}-{\phi }_{{B}_{1T}})+\displaystyle \frac{1}{r}{\phi }_{{B}_{0r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{3r\vartheta }}+{\phi }_{{B}_{3{rr}\vartheta }}+{F}_{B}({\phi }_{{A}_{2\vartheta }}-{\phi }_{{B}_{2\vartheta }})\right.\\ \left.+\,\displaystyle \frac{1}{r}{\phi }_{{B}_{1R\vartheta }}+2{\phi }_{{B}_{1{Rr}\vartheta }}+\displaystyle \frac{f{\rho }_{{sz}}}{s{\rho }_{s}}{\phi }_{{B}_{1\vartheta Z}}+\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{1\vartheta \vartheta \vartheta }}\right]+\displaystyle \frac{1}{r}{\phi }_{{B}_{1r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{2r\vartheta }}+{\phi }_{{B}_{2{rr}\vartheta }}\right.\\ \left.+\,{F}_{B}({\phi }_{{A}_{1\vartheta }}-{\phi }_{{B}_{1\vartheta }})\right]+\displaystyle \frac{1}{r}{\phi }_{{B}_{2r}}\left[\displaystyle \frac{1}{r}{\phi }_{{B}_{1r\vartheta }}+{\phi }_{{B}_{1{rr}\vartheta }}\right]-\displaystyle \frac{1}{r}{\phi }_{{B}_{3\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{0r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{0{rr}}}+{\phi }_{{B}_{0{rrr}}}\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{B}_{1\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{2r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{2{rr}}}+{\phi }_{{B}_{2{rrr}}}+{F}_{B}({\phi }_{{A}_{1r}}-{\phi }_{{B}_{1r}})\right]\\ -\displaystyle \frac{1}{r}{\phi }_{{B}_{2\vartheta }}\left[-\displaystyle \frac{1}{{r}^{2}}{\phi }_{{B}_{1r}}+\displaystyle \frac{1}{r}{\phi }_{{B}_{1{rr}}}+{\phi }_{{B}_{1{rrr}}}+{F}_{B}({\phi }_{{A}_{0r}}-{\phi }_{{B}_{0r}})\right]=0.\end{array}\right.\end{eqnarray}$Substituting variable separation functions (9), identities (10), and variable separation functions (13) into equations (15), we obtain a set of equations about ${\phi }_{{A}_{3}}$ and ${\phi }_{{B}_{3}}$. Formerly, ${\phi }_{{A}_{3}}$ and ${\phi }_{{B}_{3}}$ would be set to zero or integrated with respect to variable ϑ from ${\vartheta }_{1}$ to ${\vartheta }_{2}$. However, in this article, we neither take ${\phi }_{{A}_{3}}={\phi }_{{B}_{3}}=0$ nor integrate with respect to variable ϑ from ${\vartheta }_{1}$ to ${\vartheta }_{2}$.

Nonetheless, it is possible to arrive at some consistent and meaningful solutions. In this paper, we give only one possible choice of ${\phi }_{{A}_{3}}$ and ${\phi }_{{B}_{3}}$ as$\begin{eqnarray}\begin{array}{l}{\phi }_{{A}_{3}}={j}_{1}{U}_{T}+{j}_{2}{A}_{T}+{j}_{3}{B}_{T}+{j}_{4}{\left({A}^{2}\right)}_{T}\\ +\,{j}_{5}{A}_{\vartheta }U+{j}_{6}{A}_{\vartheta }+{j}_{7}{B}_{\vartheta }+{j}_{8}{\left({A}^{2}\right)}_{\vartheta }\\ +\,{j}_{9}{{AB}}_{\vartheta }+{j}_{10}{A}_{\vartheta }B+{j}_{11}{\left({B}^{2}\right)}_{\vartheta }\\ \,+\,{j}_{12}{\left({A}^{3}\right)}_{\vartheta }+{j}_{13}{A}_{R\vartheta }+{j}_{14}{A}_{\vartheta \vartheta \vartheta },\\ {\phi }_{{B}_{3}}={k}_{1}{V}_{T}+{k}_{2}{A}_{T}+{k}_{3}{B}_{T}+{k}_{4}{\left({B}^{2}\right)}_{T}\\ +\,{k}_{5}{B}_{\vartheta }V+{k}_{6}{A}_{\vartheta }+{k}_{7}{B}_{\vartheta }+{k}_{8}{\left({A}^{2}\right)}_{\vartheta }\\ +\,{k}_{9}{{AB}}_{\vartheta }+{k}_{10}{A}_{\vartheta }B+{k}_{11}{\left({B}^{2}\right)}_{\vartheta }\\ +\,{k}_{12}{\left({B}^{3}\right)}_{\vartheta }+{k}_{13}{B}_{R\vartheta }+{k}_{14}{B}_{\vartheta \vartheta \vartheta },\end{array}\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{l}{j}_{i}=M{\int }_{r}\frac{1}{r^{\prime} M{\left(r^{\prime} \right)}^{2}}{\int }_{r^{\prime} }{J}_{i}(y^{\prime} ){\rm{d}}r^{\prime\prime} {\rm{d}}r^{\prime} ,\\ (i=1,2,\ldots ,14),\\ {k}_{i}=N{\int }_{r}\frac{1}{r^{\prime} N{\left(r^{\prime} \right)}^{2}}{\int }_{r^{\prime} }{K}_{i}(y^{\prime} ){\rm{d}}r^{\prime\prime} {\rm{d}}r^{\prime} ,\\ (i=1,2,\ldots ,14),\end{array}\end{eqnarray*}$and ${J}_{i}(i=1,2,\ldots ,14)$, ${K}_{i}(i=1,2,\ldots ,14)$ are in the appendix.

By eliminating the term containing r and integrating the equation over ϑ once, we find that A and B, which only contain R, ϑ and T, apply to the relation of the following (2+1)-dimensional coupled Boussinesq system:$\begin{eqnarray}\begin{array}{l}{A}_{{TT}}+{\alpha }_{11}{A}_{\vartheta \vartheta }+{\alpha }_{12}{\left({A}^{2}\right)}_{\vartheta \vartheta }+{\alpha }_{13}{\left({AB}\right)}_{\vartheta \vartheta }\\ +\,{\alpha }_{14}{\left({A}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{15}{A}_{R\vartheta \vartheta }+{\alpha }_{16}{A}_{\vartheta \vartheta \vartheta \vartheta }=0,\\ {B}_{{TT}}+{\alpha }_{21}{B}_{\vartheta \vartheta }+{\alpha }_{22}{\left({AB}\right)}_{\vartheta \vartheta }+{\alpha }_{23}{\left({B}^{2}\right)}_{\vartheta \vartheta }\\ +\,{\alpha }_{24}{\left({B}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{25}{B}_{R\vartheta \vartheta }+{\alpha }_{26}{B}_{\vartheta \vartheta \vartheta \vartheta }=0,\end{array}\end{eqnarray}$where constants ${\alpha }_{1j}(j=1,2,\ldots ,6)$ and ${\alpha }_{2j}(j=1,2,\ldots ,6)$ are in ${J}_{i}(i=1,2,\ldots ,11)$ and ${K}_{i}(i=1,2,\ldots ,11)$.

Distinctly, equations (17) are the (2+1)-dimensional coupled Boussinesq equations that can describe the Rossby wave in polar coordinates. Compared to the traditional Boussinesq system, the new equations have both the nonlinear coupling term ${\left({AB}\right)}_{\vartheta \vartheta }$ and the high-order nonlinear terms ${\left({A}^{3}\right)}_{\vartheta \vartheta }$, ${\left({B}^{3}\right)}_{\vartheta \vartheta }$. Therefore, the new model has stronger coupling and nonlinearity compared with the traditional model. As can be seen, although the nonlinear terms are coupled, the strongest nonlinear terms are not coupled.

The cylindrical coordinate system is better than the rectangular coordinate system for reflecting the change in distance and direction of particles. The study of cylindrical coordinates is also an indispensable part of daily research. The Rossby waves in a two-layer cylindrical fluid have rarely been studied in previous articles. However, the new model established in this paper can describe the Rossby waves in polar coordinates.

3. Conservation laws of the (2+1)-dimensional coupled Boussinesq equations

3.1. Lie symmetry analysis

Firstly, it is assumed that the Lie point transformation of equations (17) acting on the dependent variable and independent variable is invariant, so$\begin{eqnarray}\begin{array}{l}\bar{R}\to R+\epsilon {\rho }^{(1)}(R,\vartheta ,T,A,B)+O({\epsilon }^{2}),\\ \bar{\vartheta }\to \vartheta +\epsilon {\rho }^{(2)}(R,\vartheta ,T,A,B)+O({\epsilon }^{2}),\\ \bar{T}\to T+\epsilon {\rho }^{(3)}(R,\vartheta ,T,A,B)+O({\epsilon }^{2}),\\ \bar{A}\to A+\epsilon \xi (R,\vartheta ,T,A,B)+O({\epsilon }^{2}),\\ \bar{B}\to B+\epsilon \eta (R,\vartheta ,T,A,B)+O({\epsilon }^{2}),\end{array}\end{eqnarray}$where ${\rho }^{(1)}$, ${\rho }^{(2)}$, ${\rho }^{(3)}$, ξ and η are infinitesimal functions, and ${\xi }^{\vartheta }$, ${\eta }^{\vartheta }$, ${\xi }^{\vartheta \vartheta }$, ${\eta }^{\vartheta \vartheta }$, ${\xi }^{{TT}}$, ${\eta }^{{TT}}$, ${\xi }^{R\vartheta \vartheta }$, ${\eta }^{R\vartheta \vartheta }$, ${\xi }^{\vartheta \vartheta \vartheta \vartheta }$ and ${\eta }^{\vartheta \vartheta \vartheta \vartheta }$ are the prolongations of infinitesimal functions. They can be written as$\begin{eqnarray}\begin{array}{l}{\xi }^{\vartheta }={D}_{\vartheta }(\xi )-{A}_{R}{D}_{\vartheta }({\rho }^{(1)})\\ -\,{A}_{\vartheta }{D}_{\vartheta }({\rho }^{(2)})-{A}_{T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\eta }^{\vartheta }={D}_{\vartheta }(\eta )-{B}_{R}{D}_{\vartheta }({\rho }^{(1)})\\ -\,{B}_{\vartheta }{D}_{\vartheta }({\rho }^{(2)})-{B}_{T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\xi }^{\vartheta \vartheta }={D}_{\vartheta }({\xi }^{\vartheta })\\ -\,{A}_{R\vartheta }{D}_{\vartheta }({\rho }^{(1)})-{A}_{\vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})\\ -\,{A}_{\vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\eta }^{\vartheta \vartheta }={D}_{\vartheta }({\eta }^{\vartheta })-{B}_{R\vartheta }{D}_{\vartheta }({\rho }^{(1)})\\ -\,{B}_{\vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})-{B}_{\vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\xi }^{{TT}}={D}_{T}({\xi }^{\vartheta })-{A}_{{RT}}{D}_{T}({\rho }^{(1)})\\ -\,{A}_{\vartheta T}{D}_{T}({\rho }^{(2)})-{A}_{{TT}}{D}_{T}({\rho }^{(3)}),\\ {\eta }^{{TT}}={D}_{T}({\eta }^{\vartheta })-{B}_{{RT}}{D}_{T}({\rho }^{(1)})\\ -\,{B}_{\vartheta T}{D}_{T}({\rho }^{(2)})-{B}_{{TT}}{D}_{T}({\rho }^{(3)}),\\ {\xi }^{R\vartheta \vartheta }={D}_{\vartheta }({\xi }^{R\vartheta })-{A}_{{RR}\vartheta }{D}_{\vartheta }({\rho }^{(1)})\\ -\,{A}_{R\vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})-{A}_{R\vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\eta }^{R\vartheta \vartheta }={D}_{\vartheta }({\eta }^{R\vartheta })-{B}_{{RR}\vartheta }{D}_{\vartheta }({\rho }^{(1)})\\ -\,{B}_{R\vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})-{B}_{R\vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\xi }^{\vartheta \vartheta \vartheta \vartheta }={D}_{\vartheta }({\xi }^{\vartheta \vartheta \vartheta })-{A}_{R\vartheta \vartheta \vartheta }{D}_{\vartheta }({\rho }^{(1)})\\ -\,{A}_{\vartheta \vartheta \vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})-{A}_{\vartheta \vartheta \vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\\ {\eta }^{\vartheta \vartheta \vartheta \vartheta }={D}_{\vartheta }({\eta }^{\vartheta \vartheta \vartheta })-{B}_{R\vartheta \vartheta \vartheta }{D}_{\vartheta }({\rho }^{(1)})\\ -\,{B}_{\vartheta \vartheta \vartheta \vartheta }{D}_{\vartheta }({\rho }^{(2)})-{B}_{\vartheta \vartheta \vartheta T}{D}_{\vartheta }({\rho }^{(3)}),\end{array}\end{eqnarray}$where DR, ${D}_{\vartheta }$, and DT are the total derivative operators as follows:$\begin{eqnarray*}\begin{array}{rcl}{D}_{R} & = & \displaystyle \frac{\partial }{\partial R}+{A}_{R}\displaystyle \frac{\partial }{\partial A}+{B}_{R}\displaystyle \frac{\partial }{\partial B}\\ & & +\ {A}_{{RR}}\displaystyle \frac{\partial }{\partial {A}_{R}}+{A}_{R\vartheta }\displaystyle \frac{\partial }{\partial {A}_{\vartheta }}\\ & & +\ {A}_{{RT}}\displaystyle \frac{\partial }{\partial {A}_{T}}+{B}_{{RR}}\displaystyle \frac{\partial }{\partial {B}_{R}}\\ & & +\ {B}_{R\vartheta }\displaystyle \frac{\partial }{\partial {B}_{\vartheta }}+{B}_{{RT}}\displaystyle \frac{\partial }{\partial {B}_{T}}+\cdots ,\end{array}\end{eqnarray*}$$\begin{eqnarray}\begin{array}{rcl}{D}_{\vartheta } & = & \displaystyle \frac{\partial }{\partial \vartheta }+{A}_{\vartheta }\displaystyle \frac{\partial }{\partial A}+{B}_{\vartheta }\displaystyle \frac{\partial }{\partial B}\\ & & +\ {A}_{R\vartheta }\displaystyle \frac{\partial }{\partial {A}_{R}}+{A}_{\vartheta \vartheta }\displaystyle \frac{\partial }{\partial {A}_{\vartheta }}\\ & & +\ {A}_{\vartheta T}\displaystyle \frac{\partial }{\partial {A}_{T}}+{B}_{R\vartheta }\displaystyle \frac{\partial }{\partial {B}_{R}}\\ & & +\ {B}_{\vartheta \vartheta }\displaystyle \frac{\partial }{\partial {B}_{\vartheta }}+{B}_{\vartheta T}\displaystyle \frac{\partial }{\partial {B}_{T}}+\cdots ,\end{array}\end{eqnarray}$$\begin{eqnarray*}\begin{array}{rcl}{D}_{T} & = & \displaystyle \frac{\partial }{\partial T}+{A}_{T}\displaystyle \frac{\partial }{\partial A}+{B}_{T}\displaystyle \frac{\partial }{\partial B}\\ & & +\ {A}_{{RT}}\displaystyle \frac{\partial }{\partial {A}_{R}}+{A}_{\vartheta T}\displaystyle \frac{\partial }{\partial {A}_{\vartheta }}\\ & & +\ {A}_{{TT}}\displaystyle \frac{\partial }{\partial {A}_{T}}+{B}_{{RT}}\displaystyle \frac{\partial }{\partial {B}_{R}}\\ & & +\ {B}_{\vartheta T}\displaystyle \frac{\partial }{\partial {B}_{\vartheta }}+{B}_{{TT}}\displaystyle \frac{\partial }{\partial {B}_{T}}+\cdots .\end{array}\end{eqnarray*}$

Then, we write the infinitesimal generator V as$\begin{eqnarray}\begin{array}{l}V={\rho }^{(1)}(R,\vartheta ,T,A,B)\displaystyle \frac{\partial }{\partial R}+{\rho }^{(2)}(R,\vartheta ,T,A,B)\\ \displaystyle \frac{\partial }{\partial \vartheta }+{\rho }^{(3)}(R,\vartheta ,T,A,B)\displaystyle \frac{\partial }{\partial T}\\ +\,\xi (R,\vartheta ,T,A,B)\displaystyle \frac{\partial }{\partial A}+\eta (R,\vartheta ,T,A,B)\displaystyle \frac{\partial }{\partial B}.\end{array}\end{eqnarray}$Under the Lie point transformation, the invariance of the the (2+1)-dimensional coupled Boussinesq system (17) results in the following invariance conditions:$\begin{eqnarray}\begin{array}{l}{{\Pr }}^{(n)}V({{\rm{\Delta }}}_{1},{{\rm{\Delta }}}_{2}){| }_{{{\rm{\Delta }}}_{1}=0,{{\rm{\Delta }}}_{2}=0}=0,\,n=1,2,3,\cdots ,\\ {{\rm{\Delta }}}_{1}={A}_{{TT}}+{\alpha }_{11}{A}_{\vartheta \vartheta }+{\alpha }_{12}{\left({A}^{2}\right)}_{\vartheta \vartheta }+{\alpha }_{13}{\left({AB}\right)}_{\vartheta \vartheta }\\ +\,\,{\alpha }_{14}{\left({A}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{15}{A}_{R\vartheta \vartheta }+{\alpha }_{16}{A}_{\vartheta \vartheta \vartheta \vartheta },\\ {{\rm{\Delta }}}_{2}={B}_{{TT}}+{\alpha }_{21}{B}_{\vartheta \vartheta }+{\alpha }_{22}{\left({AB}\right)}_{\vartheta \vartheta }+{\alpha }_{23}{\left({B}^{2}\right)}_{\vartheta \vartheta }\\ +\,{\alpha }_{24}{\left({B}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{25}{B}_{R\vartheta \vartheta }+{\alpha }_{26}{B}_{\vartheta \vartheta \vartheta \vartheta }.\end{array}\end{eqnarray}$According to equations (21) and (22), the invariance criteria are as follows:$\begin{eqnarray}\begin{array}{l}{\xi }^{{TT}}+[2{\alpha }_{12}{A}_{\vartheta \vartheta }+{\alpha }_{13}{B}_{\vartheta \vartheta }\\ +\,6{\alpha }_{14}({{AA}}_{\vartheta \vartheta }+{A}_{\vartheta }^{2})]\xi +{\alpha }_{13}{A}_{\vartheta \vartheta }\eta \\ +\,[4{\alpha }_{12}{A}_{\vartheta }+2{\alpha }_{13}{B}_{\vartheta }+12{\alpha }_{14}{{AA}}_{\vartheta }]{\xi }^{\vartheta }\\ +\,2{\alpha }_{13}{A}_{\vartheta }{\eta }^{\vartheta }+{\alpha }_{13}A{\eta }^{\vartheta \vartheta }\\ +\,[{\alpha }_{11}+2{\alpha }_{12}A+{\alpha }_{13}B+3{\alpha }_{14}{A}^{2}]{\xi }^{\vartheta \vartheta }\\ +\,{\alpha }_{15}{\xi }^{R\vartheta \vartheta }+{\alpha }_{16}{\xi }^{\vartheta \vartheta \vartheta \vartheta }=0,\\ {\eta }^{{TT}}+{\alpha }_{22}{B}_{\vartheta \vartheta }\xi +[{\alpha }_{22}{A}_{\vartheta \vartheta }+2{\alpha }_{23}{B}_{\vartheta \vartheta }\\ +\,6{\alpha }_{24}({{BB}}_{\vartheta \vartheta }+{B}_{\vartheta }^{2})]\eta \\ +\,[2{\alpha }_{22}{A}_{\vartheta }+4{\alpha }_{23}{B}_{\vartheta }+12{\alpha }_{24}{{BB}}_{\vartheta }]{\eta }^{\vartheta }\ +2{\alpha }_{22}{B}_{\vartheta }{\xi }^{\vartheta }\\ +\,{\alpha }_{22}B{\xi }^{\vartheta \vartheta }\\ +\,[{\alpha }_{21}+{\alpha }_{22}A+2{\alpha }_{23}B+3{\alpha }_{24}{B}^{2}]{\eta }^{\vartheta \vartheta }\\ +\,{\alpha }_{25}{\eta }^{R\vartheta \vartheta }+{\alpha }_{26}{\eta }^{\vartheta \vartheta \vartheta \vartheta }=0.\end{array}\end{eqnarray}$

Substituting the prolongations (19) and the total derivative operators (20) into the invariance criteria (23), we have two partial differential multinomials in regard to A and B. The same terms are combined, and the coefficients of each term of the polynomial are set to zero. When ${\alpha }_{13}={\alpha }_{22}=0$, by computing the equations, a set of Lie algebra of point symmetries is obtained as follows:$\begin{eqnarray}\left\{\begin{array}{l}{\rho }^{(1)}={C}_{1}+2{C}_{4}R,\\ {\rho }^{(2)}={C}_{2}+{C}_{4}\vartheta ,\\ {\rho }^{(3)}={C}_{3}+2{C}_{4}T,\\ \xi =-{C}_{4}A-\displaystyle \frac{{\alpha }_{11}}{{\alpha }_{12}}{C}_{4},\\ \eta =-{C}_{4}B-\displaystyle \frac{{\alpha }_{21}}{{\alpha }_{23}}{C}_{4}.\end{array}\right.\end{eqnarray}$

Therefore, we can write the Lie algebra of point symmetries as$\begin{eqnarray}\left\{\begin{array}{l}{V}_{1}=\displaystyle \frac{\partial }{\partial R},\,{V}_{2}=\displaystyle \frac{\partial }{\partial \vartheta },\,{V}_{3}=\displaystyle \frac{\partial }{\partial T},\\ {V}_{4}=2R\displaystyle \frac{\partial }{\partial R}+\vartheta \displaystyle \frac{\partial }{\partial \vartheta }+2T\displaystyle \frac{\partial }{\partial T}-\left(A+\displaystyle \frac{{\alpha }_{11}}{{\alpha }_{12}}\right)\displaystyle \frac{\partial }{\partial A}-\left(B+\displaystyle \frac{{\alpha }_{21}}{{\alpha }_{23}}\right)\displaystyle \frac{\partial }{\partial B}.\end{array}\right.\end{eqnarray}$

3.2. Conservation laws

A formal Lagrangian for the (2+1)-dimensional coupled Boussinesq equations can be presented as follows:$\begin{eqnarray}\begin{array}{l}{ \mathcal L }={\lambda }_{1}[{A}_{{TT}}+{\alpha }_{11}{A}_{\vartheta \vartheta }+{\alpha }_{12}{\left({A}^{2}\right)}_{\vartheta \vartheta }+{\alpha }_{13}{\left({AB}\right)}_{\vartheta \vartheta }\\ +\,{\alpha }_{14}{\left({A}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{15}{A}_{R\vartheta \vartheta }+{\alpha }_{16}{A}_{\vartheta \vartheta \vartheta \vartheta }]\\ +\,{\lambda }_{2}[{B}_{{TT}}+{\alpha }_{21}{B}_{\vartheta \vartheta }+{\alpha }_{22}{\left({AB}\right)}_{\vartheta \vartheta }+{\alpha }_{23}{\left({B}^{2}\right)}_{\vartheta \vartheta }\\ +\,{\alpha }_{24}{\left({B}^{3}\right)}_{\vartheta \vartheta }+{\alpha }_{25}{B}_{R\vartheta \vartheta }+{\alpha }_{26}{B}_{\vartheta \vartheta \vartheta \vartheta }],\end{array}\end{eqnarray}$where ${\lambda }_{1}={\theta }_{1}(R,\vartheta ,T)$ and ${\lambda }_{2}={\theta }_{2}(R,\vartheta ,T)$ are new functions. According to the formal Lagrangian, the functional can be written as$\begin{eqnarray}\begin{array}{l}\displaystyle \int \int {\displaystyle \int }_{{\rm{\Omega }}}{dRd}\vartheta {dT}{ \mathcal L }\left(R,\vartheta ,T,A,{A}_{\vartheta },{A}_{{TT}},\right.\\ {A}_{\vartheta \vartheta }{A}_{R\vartheta \vartheta },{A}_{\vartheta \vartheta \vartheta \vartheta },\\ B,{B}_{\vartheta },{B}_{{TT}},{B}_{\vartheta \vartheta },{B}_{R\vartheta \vartheta },{B}_{\vartheta \vartheta \vartheta \vartheta },\\ \left.{\lambda }_{1}(R,\vartheta ,T),{\lambda }_{2}(R,\vartheta ,T\right).\end{array}\end{eqnarray}$

Obviously, the adjoint equations of equations (17) are the Euler–Lagrangian equations we are looking for:$\begin{eqnarray}{F}_{A}^{* }=\displaystyle \frac{\delta { \mathcal L }}{\delta A}=0,\,\mathrm{and}\,{F}_{B}^{* }=\displaystyle \frac{\delta { \mathcal L }}{\delta B}=0,\end{eqnarray}$where $\tfrac{\delta }{\delta A}$ and $\tfrac{\delta }{\delta B}$ are the Euler–Lagrange operators, which can be written as:$\begin{eqnarray*}\begin{array}{l}\displaystyle \frac{\delta }{\delta A}=\displaystyle \frac{\partial }{\partial A}-{D}_{\vartheta }\displaystyle \frac{\partial }{\partial {A}_{\vartheta }}+{D}_{T}^{2}\displaystyle \frac{\partial }{\partial {A}_{{TT}}}\\ +\,{D}_{\vartheta }^{2}\displaystyle \frac{\partial }{\partial {A}_{\vartheta \vartheta }}-{D}_{R}{D}_{\vartheta }^{2}\displaystyle \frac{\partial }{\partial {A}_{R\vartheta \vartheta }}\\ +\,{D}_{\vartheta }^{4}\displaystyle \frac{\partial }{\partial {A}_{\vartheta \vartheta \vartheta \vartheta }},\\ \displaystyle \frac{\delta }{\delta B}=\displaystyle \frac{\partial }{\partial B}-{D}_{\vartheta }\displaystyle \frac{\partial }{\partial {B}_{\vartheta }}+{D}_{T}^{2}\displaystyle \frac{\partial }{\partial {B}_{{TT}}}\\ +\,{D}_{\vartheta }^{2}\displaystyle \frac{\partial }{\partial {B}_{\vartheta \vartheta }}-{D}_{R}{D}_{\vartheta }^{2}\displaystyle \frac{\partial }{\partial {B}_{R\vartheta \vartheta }}\\ +\,{D}_{\vartheta }^{4}\displaystyle \frac{\partial }{\partial {B}_{\vartheta \vartheta \vartheta \vartheta }}.\end{array}\end{eqnarray*}$

Therefore, the Euler–Lagrange equations (28) also have the following form:$\begin{eqnarray}\begin{array}{l}{F}_{A}^{* }=[{\lambda }_{1}(2{\alpha }_{12}{A}_{\vartheta \vartheta }+{\alpha }_{13}{B}_{\vartheta \vartheta }+6{\alpha }_{14}{A}_{\vartheta }^{2}\\ +\,6{\alpha }_{14}{{AA}}_{\vartheta \vartheta })+{\lambda }_{2}{\alpha }_{22}{B}_{\vartheta \vartheta }]+{D}_{T}^{2}{\lambda }_{1}\\ -\,{D}_{\vartheta }[{\lambda }_{1}(4{\alpha }_{12}{A}_{\vartheta }+2{\alpha }_{13}{B}_{\vartheta }+12{\alpha }_{14}{{AA}}_{\vartheta })\\ +\,2{\lambda }_{2}{\alpha }_{22}{B}_{\vartheta }]+{D}_{\vartheta }^{4}[{\lambda }_{1}{\alpha }_{16}]\\ +\,{D}_{\vartheta }^{2}[{\lambda }_{1}({\alpha }_{11}+2{\alpha }_{12}A+{\alpha }_{13}B+3{\alpha }_{14}{A}^{2})\\ +\,{\lambda }_{2}{\alpha }_{22}B]-{D}_{R}{D}_{\vartheta }^{2}[{\lambda }_{1}{\alpha }_{15}]=0,\\ {F}_{B}^{* }=[{\lambda }_{1}{\alpha }_{13}{A}_{\vartheta \vartheta }+{\lambda }_{2}({\alpha }_{22}{A}_{\vartheta \vartheta }+2{\alpha }_{23}{B}_{\vartheta \vartheta }\\ +\,6{\alpha }_{24}{B}_{\vartheta }^{2}+6{\alpha }_{24}{{BB}}_{\vartheta \vartheta })]+{D}_{T}^{2}{\lambda }_{2}\\ -\,{D}_{\vartheta }[2{\lambda }_{1}{\alpha }_{13}{A}_{\vartheta }+{\lambda }_{2}(2{\alpha }_{22}{A}_{\vartheta }\\ +\,4{\alpha }_{23}{B}_{\vartheta }+12{\alpha }_{24}{{BB}}_{\vartheta })]+{D}_{\vartheta }^{4}[{\lambda }_{2}{\alpha }_{26}]\\ +\,{D}_{\vartheta }^{2}[{\lambda }_{1}{\alpha }_{13}A+{\lambda }_{2}({\alpha }_{21}+{\alpha }_{22}A\\ +\,2{\alpha }_{23}B+3{\alpha }_{24}{B}^{2})]-{D}_{R}{D}_{\vartheta }^{2}[{\lambda }_{2}{\alpha }_{25}]=0.\end{array}\end{eqnarray}$

In the preceding part, we obtained the Lie algebra of point symmetries of the (2+1)-dimensional coupled Boussinesq equations (17). Therefore, the Lie feature function ${W}_{i}(i=1,2)$ can be written as$\begin{eqnarray}\begin{array}{rcl}{W}_{A} & = & \xi -{\rho }^{(1)}{A}_{R}-{\rho }^{(2)}{A}_{\vartheta }-{\rho }^{(3)}{A}_{T},\\ {W}_{B} & = & \eta -{\rho }^{(1)}{B}_{R}-{\rho }^{(2)}{B}_{\vartheta }-{\rho }^{(3)}{B}_{T}.\end{array}\end{eqnarray}$

Applied to the ${V}_{j}(j=1,2,3,4)$ of the symmetry (25), we have$\begin{eqnarray}\begin{array}{rcl}{W}_{A1} & = & -\,{A}_{1R},\qquad {W}_{A2}=-{A}_{1\vartheta },\,\,{W}_{A3}=-{A}_{1T},\\ {W}_{A4} & = & -\,\displaystyle \frac{{\alpha }_{11}}{{\alpha }_{12}}-A-2{{RA}}_{R}-\vartheta {A}_{\vartheta }-2{{TA}}_{T},\\ {W}_{B1} & = & -\,{A}_{2R},\qquad {W}_{B2}=-{A}_{2\vartheta },\,\,{W}_{B3}=-{A}_{2T},\\ {W}_{B4} & = & -\,\displaystyle \frac{{\alpha }_{21}}{{\alpha }_{23}}-B-2{{RB}}_{R}-\vartheta {B}_{\vartheta }-2{{TB}}_{T}.\end{array}\end{eqnarray}$

Therefore, the components of conserved vectors of the (2+1)-dimensional coupled Boussinesq equations (17) are defined as$\begin{eqnarray*}\begin{array}{l}{C}^{R}={\rho }^{(1)}{ \mathcal L }+{W}_{{Am}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}}}\right)\right.\\ -\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta }}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RT}}}\right)+{D}_{R}^{2}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRR}}}\right)\\ \left.+\,{D}_{R}{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}\vartheta }}\right)+{D}_{R}{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRT}}}\right)+\cdots \right]\\ +\,{D}_{R}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRR}}}\right)\right.\\ \left.-\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}\vartheta }}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRT}}}\right)+\cdots \right]\\ +\,{D}_{\vartheta }({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}\vartheta }}\right)\right.\\ \left.-\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta \vartheta }}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta T}}\right)+\cdots \right]\\ +\,{D}_{T}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RT}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRT}}}\right)\right.\\ \left.-\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta T}}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RTT}}}\right)+\cdots \right]\\ +\,{D}_{R}^{2}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRR}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRRR}}}\right)-\cdots \right]\\ +\,{W}_{{Bm}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{R}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RR}}}\right)-\cdots \right]\\ +\,{D}_{R}({W}_{{Bm}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RR}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRR}}}\right)-\cdots \right]+\cdots ,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{C}^{\vartheta }={\rho }^{(2)}{ \mathcal L }+{W}_{{Am}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta }}\right)\right.\\ -\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta \vartheta }}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta T}}\right)\\ \left.+\,{D}_{R}^{2}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}\vartheta }}\right)+\cdots \right]\\ +\,{D}_{R}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RR}\vartheta }}\right)+\cdots \right]\\ +\,{D}_{\vartheta }({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta \vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta \vartheta }}\right)+\cdots \right]\\ +\,{D}_{T}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta T}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta T}}\right)+\cdots \right]\\ +\,{D}_{R}^{2}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RR}\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRR}\vartheta }}\right)-\cdots \right]\\ +\,{W}_{{Bm}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{R\vartheta }}\right)-\cdots \right]\\ +\,{D}_{R}({W}_{{Bm}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{R\vartheta }}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RR}\vartheta }}\right)-\cdots \right]+\cdots ,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{C}^{T}={\rho }^{(3)}{ \mathcal L }+{W}_{{Am}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{T}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RT}}}\right)\right.\\ -\,{D}_{\vartheta }\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta T}}\right)-{D}_{T}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{TT}}}\right)\\ \left.+\,{D}_{R}^{2}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRT}}}\right)+\cdots \right]\\ +\,{D}_{R}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RT}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RRT}}}\right)+\cdots \right]\\ +\,{D}_{\vartheta }({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{\vartheta T}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{R\vartheta T}}\right)+\cdots \right]\\ +\,{D}_{T}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{TT}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {A}_{{RTT}}}\right)+\cdots \right]\\ +\,{D}_{R}^{2}({W}_{{Am}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRT}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRRT}}}\right)-\cdots \right]\\ +\,{W}_{{Bm}}\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{T}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RT}}}\right)-\cdots \right]\\ +\,{D}_{R}({W}_{{Bm}})\left[\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RT}}}-{D}_{R}\left(\displaystyle \frac{\partial { \mathcal L }}{\partial {B}_{{RRT}}}\right)-\cdots \right]+\cdots ,\end{array}\end{eqnarray*}$where $m=1,2,3,4$. When m=4, we can have the following components of conserved vectors:$\begin{eqnarray}\begin{array}{l}{C}^{R}={\alpha }_{15}{\lambda }_{1\vartheta \vartheta }{W}_{14}-{\alpha }_{15}{\lambda }_{1\vartheta }{D}_{\vartheta }({W}_{14})\\ +\,{\alpha }_{15}{\lambda }_{1}{D}_{\vartheta }^{2}({W}_{14})\\ +\,{\alpha }_{25}{\lambda }_{2\vartheta \vartheta }{W}_{24}-{\alpha }_{25}{\lambda }_{2\vartheta }{D}_{\vartheta }({W}_{24})\\ +\,{\alpha }_{25}{\lambda }_{2}{D}_{\vartheta }^{2}({W}_{24}),\\ {C}^{\vartheta }={W}_{14}\left[{\lambda }_{1}(2{\alpha }_{12}{A}_{\vartheta }+{\alpha }_{13}{B}_{\vartheta }+6{\alpha }_{14}{{AA}}_{\vartheta })\right.\\ +\,{\lambda }_{2}{\alpha }_{22}{B}_{\vartheta }-{\lambda }_{2\vartheta }{\alpha }_{22}B\\ -\,{\lambda }_{1\vartheta }({\alpha }_{11}+2{\alpha }_{12}A+{\alpha }_{13}B+3{\alpha }_{14}{A}^{2})\\ \left.+\,{\alpha }_{15}{\lambda }_{1R\vartheta }-{\alpha }_{16}{\lambda }_{1\vartheta \vartheta \vartheta }\right]\\ +\,{D}_{\vartheta }({W}_{14})\left[{\lambda }_{1}({\alpha }_{11}+2{\alpha }_{12}A+{\alpha }_{13}B+3{\alpha }_{14}{A}^{2})\right.\\ \left.+\,{\lambda }_{2}{\alpha }_{22}B-{\alpha }_{15}{\lambda }_{1R}+{\alpha }_{16}{\lambda }_{1\vartheta \vartheta }\right]\\ -\,{\alpha }_{15}{\lambda }_{1\vartheta }{D}_{R}({W}_{14})-{\alpha }_{16}{\lambda }_{1\vartheta }{D}_{\vartheta }^{2}({W}_{14})\\ +\,{\alpha }_{15}{\lambda }_{1}{D}_{R}{D}_{\vartheta }({W}_{14})+{\alpha }_{16}{\lambda }_{1}{D}_{\vartheta }^{3}({W}_{14})\\ +\,{W}_{24}\left[{\lambda }_{1}{\alpha }_{13}{A}_{\vartheta }+{\lambda }_{2}({\alpha }_{22}{A}_{\vartheta }+2{\alpha }_{23}{B}_{\vartheta }\right.\\ +\,6{\alpha }_{24}{{BB}}_{\vartheta })-{\lambda }_{1\vartheta }{\alpha }_{13}A\\ -\,{\lambda }_{2\vartheta }({\alpha }_{21}+{\alpha }_{22}A+2{\alpha }_{23}B+3{\alpha }_{24}{B}^{2})\\ \left.+\,{\alpha }_{25}{\lambda }_{2R\vartheta }-{\alpha }_{26}{\lambda }_{2\vartheta \vartheta \vartheta }\right]\\ +\,{D}_{\vartheta }({W}_{24})\left[{\lambda }_{1}{\alpha }_{13}A+{\lambda }_{2}({\alpha }_{21}+{\alpha }_{22}A+2{\alpha }_{23}B+3{\alpha }_{24}{B}^{2})\right.\\ \left.-{\alpha }_{25}{\lambda }_{2R}+{\alpha }_{26}{\lambda }_{2\vartheta \vartheta }\right]\\ -\,{\alpha }_{25}{\lambda }_{2\vartheta }{D}_{R}({W}_{24})-{\alpha }_{26}{\lambda }_{2\vartheta }{D}_{\vartheta }^{2}({W}_{24})\\ +\,{\alpha }_{25}{\lambda }_{2}{D}_{R}{D}_{\vartheta }({W}_{24})+{\alpha }_{26}{\lambda }_{2}{D}_{\vartheta }^{3}({W}_{24}),\\ {C}^{T}=-{\lambda }_{1T}{W}_{14}+{\lambda }_{1}{D}_{T}({W}_{14})-{\lambda }_{2T}{W}_{24}\\ +\,{\lambda }_{2}{D}_{T}({W}_{24}).\end{array}\end{eqnarray}$

Equations (25) are the Lie algebra of point symmetries of the (2+1)-dimensional coupled Boussinesq equations, and equations (32) are the conservation laws of the (2+1)-dimensional coupled Boussinesq equations. The Lie symmetry and conservation laws have a significant impact on the property study and practical application of the equations; for example, stability analysis and construction of solutions for some special structures.

4. Exact solutions of the (2+1)-dimensional coupled Boussinesq equations

The solution of the nonlinear partial differential equations plays an important role in the application of the equations. This is mainly because the solution of the equation can describe the process and characteristics of motion more intuitively. In this section, we will use the $(G^{\prime} /G)$-expansion method to calculate the exact solution of the (2+1)-dimensional coupled Boussinesq equations.

Firstly, the traveling wave transformations are introduced as$\begin{eqnarray}\begin{array}{l}A(R,\vartheta ,T)=A(\zeta ),\\ B(R,\vartheta ,T)=B(\zeta ),\\ \zeta =\arctan R+\vartheta -{cT},\end{array}\end{eqnarray}$where c is the propagation velocity. The traveling wave transform (33) is substituted into the (2+1)-dimensional coupled Boussinesq equations (17), and the ordinary differential equations about A and B are simplified as:$\begin{eqnarray}\begin{array}{l}{c}^{2}A^{\prime\prime} +{\alpha }_{11}A^{\prime\prime} +{\alpha }_{12}({A}^{2})^{\prime\prime} +{\alpha }_{13}({AB})^{\prime\prime} +{\alpha }_{14}({A}^{3})^{\prime\prime} \\ +\,{\alpha }_{15}\left(\displaystyle \frac{1}{1+{R}^{2}}\right)A\prime\prime\prime +{\alpha }_{16}A\unicode{x02057}=0,\\ {c}^{2}B^{\prime\prime} +{\alpha }_{21}B^{\prime\prime} +{\alpha }_{22}({AB})^{\prime\prime} +{\alpha }_{23}({B}^{2})^{\prime\prime} +{\alpha }_{24}({B}^{3})^{\prime\prime} \\ +\,{\alpha }_{25}\left(\displaystyle \frac{1}{1+{R}^{2}}\right)B\prime\prime\prime +{\alpha }_{26}B\unicode{x02057}=0.\end{array}\end{eqnarray}$It is obvious that the ordinary differential equations (34) are integrable. Therefore, integrating equations (34) with respect to ζ twice:$\begin{eqnarray}\begin{array}{l}{c}^{2}A+{\alpha }_{11}A+{\alpha }_{12}({A}^{2})+{\alpha }_{13}({AB})+{\alpha }_{14}({A}^{3})\\ +\,{\alpha }_{15}\left(\displaystyle \frac{1}{1+{R}^{2}}\right)A^{\prime} +{\alpha }_{16}A^{\prime\prime} =0,\\ {c}^{2}B+{\alpha }_{21}B+{\alpha }_{22}({AB})+{\alpha }_{23}({B}^{2})+{\alpha }_{24}({B}^{3})\\ +\,{\alpha }_{25}\left(\displaystyle \frac{1}{1+{R}^{2}}\right)B^{\prime} +{\alpha }_{26}B^{\prime\prime} =0.\end{array}\end{eqnarray}$In order to cancel out A3, $A^{\prime\prime} $, B3 and $B^{\prime\prime} $, we give N=1. Therefore, the (2+1)-dimensional coupled Boussinesq equations (17) have the following solution:$\begin{eqnarray}\begin{array}{rcl}A & = & {a}_{0}(R)+{a}_{1}(R)\displaystyle \frac{G^{\prime} (\zeta )}{G(\zeta )},\\ B & = & {b}_{0}(R)+{b}_{1}(R)\displaystyle \frac{G^{\prime} (\zeta )}{G(\zeta )},\end{array}\end{eqnarray}$where ${a}_{0}(R)$, ${a}_{1}(R)$, ${b}_{0}(R)$ and ${b}_{1}(R)$ are arbitrary functions that can be determined later. $G(\zeta )$ satisfies the second-order linear ordinary differential equation$\begin{eqnarray}G^{\prime\prime} (\zeta )+\lambda (R)G^{\prime} (\zeta )+\mu (R)G(\zeta )=0,\end{eqnarray}$where $\lambda (R)$ and $\mu (R)$ are arbitrary functions that can be determined later. The general formula for $\left(\tfrac{G^{\prime} }{G}\right)$ can be expressed as$\begin{eqnarray}\displaystyle \frac{G^{\prime} (\zeta )}{G(\zeta )}=\left\{\begin{array}{ll}-\,\displaystyle \frac{\lambda }{2}+\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\left(\displaystyle \frac{{C}_{1}\cosh (\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta )+{C}_{2}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}{{C}_{1}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)+{C}_{2}\cosh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}\right), & {\lambda }^{2}-4\mu \gt 0,\\ -\,\displaystyle \frac{\lambda }{2}+\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}\left(\displaystyle \frac{{C}_{2}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)-{C}_{1}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}{{C}_{2}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)+{C}_{1}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}\right), & {\lambda }^{2}-4\mu \lt 0,\\ -\,\displaystyle \frac{\lambda }{2}+\displaystyle \frac{{C}_{2}}{{C}_{1}+{C}_{2}\zeta }, & {\lambda }^{2}-4\mu =0.\end{array}\right.\end{eqnarray}$

By substituting general solutions (36) and equation (37) into ordinary differential equations (35), a multinomial in regard to ${\left(\tfrac{G^{\prime} }{G}\right)}^{N}$ $(N=0,1,2,\cdots )$ is constructed. Setting the coefficient of each term of the polynomial as zero, a set of equations in regard to a0, a1, b0, b1, λ and μ can be derived. By calculating the equations, the coefficient relations can be obtained as follows:$\begin{eqnarray}\begin{array}{l}{a}_{0}=\sqrt{-\displaystyle \frac{1}{18{\alpha }_{14}{\alpha }_{16}}}\left(\displaystyle \frac{{\alpha }_{15}}{1+{R}^{2}}-{\alpha }_{12}\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}}\right.\\ \left.-\,{\alpha }_{13}\sqrt{-\displaystyle \frac{2{\alpha }_{26}}{{\alpha }_{24}}}-3{\alpha }_{16}\lambda \right),\quad {a}_{1}=\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}},\\ {b}_{0}=\sqrt{-\displaystyle \frac{1}{18{\alpha }_{24}{\alpha }_{26}}}\left(\displaystyle \frac{{\alpha }_{25}}{1+{R}^{2}}-{\alpha }_{22}\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}}\right.\\ \left.-\,{\alpha }_{23}\sqrt{-\displaystyle \frac{2{\alpha }_{26}}{{\alpha }_{24}}}-3{\alpha }_{26}\lambda \right),\quad {b}_{1}=\sqrt{-\displaystyle \frac{2{\alpha }_{26}}{{\alpha }_{24}}},\\ \lambda =\displaystyle \frac{1}{3{\alpha }_{16}}\left(\displaystyle \frac{{\alpha }_{15}}{1+{R}^{2}}-{\alpha }_{12}\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}}\right.\\ \left.-\,{\alpha }_{13}\sqrt{-\displaystyle \frac{2{\alpha }_{26}}{{\alpha }_{24}}}\right)-3{a}_{0}\sqrt{-\displaystyle \frac{2{\alpha }_{14}}{{\alpha }_{16}}},\\ \mu =\displaystyle \frac{{a}_{0}}{\tfrac{{\alpha }_{15}}{1+{R}^{2}}-{\alpha }_{16}\lambda }\left({c}^{2}+{\alpha }_{11}+{\alpha }_{12}{a}_{0}\right.\\ \left.+\,{\alpha }_{13}{b}_{0}+{\alpha }_{14}{a}_{0}^{2}\right)\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}},\end{array}\end{eqnarray}$where c is an arbitrary constant. By substituting general formula (38) and equation (39) into general solutions (36), we have:

Case 1. When ${\lambda }^{2}-4\mu \gt 0$, the hyperbolic function solutions can be written as$\begin{eqnarray}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}({\lambda }^{2}-4\mu )}{{\alpha }_{14}}}\\ \left(\displaystyle \frac{{C}_{1}\cosh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)+{C}_{2}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}{{C}_{1}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)+{C}_{2}\cosh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}\right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}({\lambda }^{2}-4\mu )}{{\alpha }_{24}}}\\ \left(\displaystyle \frac{{C}_{1}\cosh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)+{C}_{2}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}{{C}_{1}\sinh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)+{C}_{2}\cosh \left(\tfrac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right)}\right),\end{array}\end{eqnarray}$where $\zeta =\arctan R+\vartheta -{cT}$, C1 and C2 are arbitrary constants. By taking the special values of C1and C2, some solutions can be obtained from equation (43), such as:i. Setting ${C}_{1}=0$ and ${C}_{2}\ne 0$, we have$\begin{eqnarray*}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}({\lambda }^{2}-4\mu )}{{\alpha }_{14}}}\\ \tanh \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}({\lambda }^{2}-4\mu )}{{\alpha }_{24}}}\\ \tanh \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right).\end{array}\end{eqnarray*}$
ii. Setting ${C}_{1}\ne 0$ and ${C}_{2}=0$, we have$\begin{eqnarray*}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}({\lambda }^{2}-4\mu )}{{\alpha }_{14}}}\\ \coth \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}({\lambda }^{2}-4\mu )}{{\alpha }_{24}}}\\ \coth \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta \right).\end{array}\end{eqnarray*}$
iii. Setting ${C}_{1}\ne 0$ and ${C}_{1}^{2}\lt {C}_{2}^{2}$, we have$\begin{eqnarray*}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}({\lambda }^{2}-4\mu )}{{\alpha }_{14}}}\\ \tanh \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta +{\theta }_{0}\right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}({\lambda }^{2}-4\mu )}{{\alpha }_{24}}}\\ \tanh \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta +{\theta }_{0}\right),\end{array}\end{eqnarray*}$where ${\theta }_{0}={\tanh }^{-1}\left(\tfrac{{C}_{1}}{{C}_{2}}\right)$.
iv. Setting ${C}_{1}\ne 0$ and ${C}_{1}^{2}\gt {C}_{2}^{2}$, we have$\begin{eqnarray*}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}({\lambda }^{2}-4\mu )}{{\alpha }_{14}}}\\ \coth \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta +{\theta }_{0}\right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}({\lambda }^{2}-4\mu )}{{\alpha }_{24}}}\\ \coth \left(\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}\zeta +{\theta }_{0}\right),\end{array}\end{eqnarray*}$where ${\theta }_{0}={\tanh }^{-1}\left(\tfrac{{C}_{2}}{{C}_{1}}\right)$.


Case 2. When ${\lambda }^{2}-4\mu \lt 0$, the trigonometric function solutions can be written as$\begin{eqnarray}\begin{array}{l}A={a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{{\alpha }_{16}(4\mu -{\lambda }^{2})}{{\alpha }_{14}}}\\ \left(\displaystyle \frac{{C}_{2}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)-{C}_{1}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}{{C}_{2}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)+{C}_{1}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}\right),\\ B={b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{{\alpha }_{26}(4\mu -{\lambda }^{2})}{{\alpha }_{24}}}\\ \left(\displaystyle \frac{{C}_{2}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)-{C}_{1}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}{{C}_{2}\sin \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)+{C}_{1}\cos \left(\tfrac{\sqrt{4\mu -{\lambda }^{2}}}{2}\zeta \right)}\right),\end{array}\end{eqnarray}$where $\zeta =\arctan R+\vartheta -{cT}$.

Case 3. When ${\lambda }^{2}-4\mu =0$, the rational fractional function solutions can be written as$\begin{eqnarray}\begin{array}{rcl}A & = & {a}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{16}}{2{\alpha }_{14}}}+\sqrt{-\displaystyle \frac{2{\alpha }_{16}}{{\alpha }_{14}}}\displaystyle \frac{{C}_{2}}{{C}_{1}+{C}_{2}\zeta },\\ B & = & {b}_{0}-\lambda \sqrt{-\displaystyle \frac{{\alpha }_{26}}{2{\alpha }_{24}}}+\sqrt{-\displaystyle \frac{2{\alpha }_{26}}{{\alpha }_{24}}}\displaystyle \frac{{C}_{2}}{{C}_{1}+{C}_{2}\zeta },\end{array}\end{eqnarray}$where $\zeta =\arctan R+\vartheta -{cT}$.

To understand the propagation characteristics of Rossby waves more intuitively, some suitable parameters were selected to draw diagrams.

Obviously, as shown in figures 12, the coefficients of the coupling terms will change the shape of the Rossby waves, which could be more in accordance with the physical truth. It can be seen from figure 1 that the hyperbolic function solutions are linear soliton solutions, and when $R\to 0$, the wave height increases with increasing coefficients of the coupling terms. This can be explained by closer distances and stronger perturbations affecting the stability of the wave. However, when $R\to +\infty $, the coupling term coefficients have no effect on the wave height. It can also be seen from figure 2 that the trigonometric function solutions are periodic soliton solutions, and when $R\to 0$, the wave height increases with increasing coefficients of the coupling terms.

Figure 1.

New window|Download| PPT slide
Figure 1.Plot of solution A in equations (40) when ${\alpha }_{14}=1$.


Figure 2.

New window|Download| PPT slide
Figure 2.Plot of solution A in equations (41) when ${\alpha }_{14}=1$.


5. Conclusion

In this paper, the Rossby waves in a two-layer cylindrical fluid are studied. To better reflect the change in distance and direction of particles, form the dimensionless baroclinic quasi-geostrophic vortex equations include exogenous and dissipative in two-layer cylindrical fluid, new (2+1)-dimensional coupled Boussinesq equations which can describe the Rossby waves in polar coordinates are established. The new model has stronger coupling and nonlinearity compared with the traditional model. Although the nonlinear terms are coupled, the strongest nonlinear terms are not coupled. Then, Lie symmetries and conservation laws of the coupled Boussinesq equations are analyzed. Subsequently, by using the $(G^{\prime\prime} /G)$-expansion method, the exact solution of the (2+1)-dimensional coupled Boussinesq equations is obtained. Finally, the effects of coupling term coefficients on the wave shape characteristics are analyzed. When $R\to 0$, the wave height increases with increasing coefficients of coupling terms. However, when $R\to +\infty $, the coupling term coefficients have no effect on the wave height.

Appendix

$\begin{eqnarray*}\begin{array}{l}{p}_{1}=\displaystyle \frac{{M}_{r}}{{r}^{2}}-\displaystyle \frac{{M}_{{rr}}}{r}-{M}_{{rrr}},{q}_{1}=\displaystyle \frac{{M}_{r}}{r}+{M}_{{rr}},\\ {p}_{2}=\displaystyle \frac{{N}_{r}}{{r}^{2}}-\displaystyle \frac{{N}_{{rr}}}{r}-{N}_{{rrr}},{q}_{2}=\displaystyle \frac{{N}_{r}}{r}+{N}_{{rr}},\\ {J}_{1}(r)=\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}(1+{m}_{1}{q}_{1})+\displaystyle \frac{{{rn}}_{1r}}{{\phi }_{{A}_{0r}}M},\\ {J}_{11}(r)={m}_{6}{{rMNF}}_{A},\\ {J}_{2}(r)=\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}({\alpha }_{11}+{m}_{3}{q}_{1})+\displaystyle \frac{{{rn}}_{3r}}{{\phi }_{{A}_{0r}}M}\\ -\,\displaystyle \frac{{{rM}}^{2}}{{\phi }_{{A}_{0r}}}{F}_{A}(r+{m}_{1}{\phi }_{{B}_{0r}}),\\ {J}_{3}(r)=\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{m}_{4}{q}_{1}+\displaystyle \frac{{{rn}}_{4r}}{{\phi }_{{A}_{0r}}M}\\ +\,\displaystyle \frac{{rMN}}{{\phi }_{{A}_{0r}}}{F}_{A}(r+{m}_{5}{\phi }_{{A}_{0r}}),\\ {J}_{4}(r)=\displaystyle \frac{{rM}}{2{\phi }_{{A}_{0r}}}(2{{rm}}_{2}{q}_{1}+{m}_{1}{M}_{r}{q}_{1}+{m}_{1}{{Mp}}_{1})\\ +\,\displaystyle \frac{{{rn}}_{2r}}{{\phi }_{{A}_{0r}}M}+\displaystyle \frac{{n}_{1r}{M}_{r}}{2{\phi }_{{A}_{0r}}},\\ {J}_{5}(r)=\displaystyle \frac{{m}_{1}{rM}}{{\phi }_{{A}_{0r}}}({{Mp}}_{1}+{M}_{r}{q}_{1})\\ -\,\displaystyle \frac{{n}_{1{rr}}M}{{\phi }_{{A}_{0r}}}+\displaystyle \frac{{n}_{1r}}{{\phi }_{{A}_{0r}}}\left(\displaystyle \frac{M}{r}+{M}_{r}\right),\\ {J}_{6}(r)={{rMF}}_{A}({m}_{7}N-\displaystyle \frac{{\phi }_{{B}_{0r}}}{{\phi }_{{A}_{0r}}}{m}_{3}M)\\ +\,\displaystyle \frac{f{\rho }_{{sz}}}{2s{\rho }_{s}}r{\left({M}^{2}\right)}_{Z},\\ {J}_{7}(r)={{rMF}}_{A}({m}_{8}N-\displaystyle \frac{{\phi }_{{B}_{0r}}}{{\phi }_{{A}_{0r}}}{m}_{4}M),\\ {J}_{8}(r)=\displaystyle \frac{{m}_{3}{rM}}{{\phi }_{{A}_{0r}}}({{Mp}}_{1}+{M}_{r}{q}_{1})-{m}_{2}{{rM}}^{2}\displaystyle \frac{{\phi }_{{B}_{0r}}}{{\phi }_{{A}_{0r}}}{F}_{A}\\ -\,\displaystyle \frac{{n}_{3{rr}}M}{2{\phi }_{{A}_{0r}}}+\displaystyle \frac{{n}_{3r}}{2{\phi }_{{A}_{0r}}}\left(\displaystyle \frac{M}{r}+2{M}_{r}\right)\\ +\,\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{12},\\ {J}_{9}(r)=\displaystyle \frac{{m}_{4}{rM}}{{\phi }_{{A}_{0r}}}({{Mp}}_{1}+{M}_{r}{q}_{1})+\displaystyle \frac{{n}_{4r}{M}_{r}}{{\phi }_{{A}_{0r}}}\\ +\,\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{13}+\displaystyle \frac{r{\left({M}^{2}\right)}_{r}N}{2{\phi }_{{A}_{0r}}}{F}_{A},\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{J}_{10}(r)=\displaystyle \frac{{m}_{4}{rM}}{{\phi }_{{A}_{0r}}}({{Mp}}_{1}+{M}_{r}{q}_{1})-\displaystyle \frac{{n}_{4{rr}}M}{{\phi }_{{A}_{0r}}}\\ +\,\displaystyle \frac{{n}_{4r}}{{\phi }_{{A}_{0r}}}\left(\displaystyle \frac{M}{r}+{M}_{r}\right)\\ +\,\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{13}+\displaystyle \frac{{{rM}}^{2}{N}_{r}}{{\phi }_{{A}_{0r}}}{F}_{A},\\ {J}_{12}(r)=\displaystyle \frac{{m}_{2}{rM}}{{\phi }_{{A}_{0r}}}({{Mp}}_{1}+{M}_{r}{q}_{1})-\displaystyle \frac{{n}_{2{rr}}M}{3{\phi }_{{A}_{0r}}}\\ +\,\displaystyle \frac{{n}_{2r}}{3{\phi }_{{A}_{0r}}}\left(\displaystyle \frac{M}{r}+3{M}_{r}\right)+\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{14},\\ {J}_{13}(r)={M}^{2}+r{\left({M}^{2}\right)}_{r}+\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{15},\\ {J}_{14}(r)={{rM}}^{2}+\displaystyle \frac{{r}^{2}M}{{\phi }_{{A}_{0r}}}{\alpha }_{16},\\ {K}_{1}(r)=\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}(1+{m}_{5}{q}_{2})+\displaystyle \frac{{{rn}}_{5r}}{{\phi }_{{B}_{0r}}N},{K}_{8}(r)={m}_{2}{{rMNF}}_{B},\\ {K}_{2}(r)=\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{m}_{8}{q}_{2}+\displaystyle \frac{{{rn}}_{8r}}{{\phi }_{{B}_{0r}}N}\\ +\,\displaystyle \frac{{rMN}}{{\phi }_{{B}_{0r}}}{F}_{B}(r+{m}_{5}{\phi }_{{B}_{0r}}),\\ {K}_{3}(r)=\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}({\alpha }_{21}+{m}_{7}{q}_{2})+\displaystyle \frac{{{rn}}_{7r}}{{\phi }_{{B}_{0r}}N}\\ -\,\displaystyle \frac{{{rN}}^{2}}{{\phi }_{{B}_{0r}}}{F}_{B}(r+{m}_{5}{\phi }_{{A}_{0r}}),\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{K}_{4}(r)=\displaystyle \frac{{rN}}{2{\phi }_{{B}_{0r}}}(2{{rm}}_{6}{q}_{2}+{m}_{5}{N}_{r}{q}_{2}+{m}_{5}{{Np}}_{2})\\ +\,\displaystyle \frac{{{rn}}_{6r}}{{\phi }_{{B}_{0r}}N}+\displaystyle \frac{{n}_{5r}{N}_{r}}{2{\phi }_{{B}_{0r}}},\\ {K}_{5}(r)=\displaystyle \frac{{m}_{5}{rN}}{{\phi }_{{B}_{0r}}}({{Np}}_{2}+{N}_{r}{q}_{2})-\displaystyle \frac{{n}_{5{rr}}N}{{\phi }_{{B}_{0r}}}\\ +\,\displaystyle \frac{{n}_{5r}}{{\phi }_{{B}_{0r}}}\left(\displaystyle \frac{N}{r}+{N}_{r}\right),\\ {K}_{6}(r)={{rNF}}_{B}\left({m}_{4}M-\displaystyle \frac{{\phi }_{{A}_{0r}}}{{\phi }_{{B}_{0r}}}{m}_{8}N\right),\\ {K}_{7}(r)={{rNF}}_{B}\left({m}_{3}M-\displaystyle \frac{{\phi }_{{A}_{0r}}}{{\phi }_{{B}_{0r}}}{m}_{7}N\right)\\ +\,\displaystyle \frac{f{\rho }_{{sz}}}{2s{\rho }_{s}}r{\left({N}^{2}\right)}_{Z},\\ {K}_{9}(r)=\displaystyle \frac{{m}_{8}{rN}}{{\phi }_{{B}_{0r}}}({{Np}}_{2}+{N}_{r}{q}_{2})-\displaystyle \frac{{n}_{8{rr}}N}{{\phi }_{{B}_{0r}}}\\ +\,\displaystyle \frac{{n}_{8r}}{{\phi }_{{B}_{0r}}}\left(\displaystyle \frac{N}{r}+{N}_{r}\right)\\ +\,\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{23}+\displaystyle \frac{{{rM}}_{r}{N}^{2}}{{\phi }_{{B}_{0r}}}{F}_{B},\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{K}_{10}(r)=\displaystyle \frac{{m}_{8}{rN}}{{\phi }_{{B}_{0r}}}({{Np}}_{2}+{N}_{r}{q}_{2})+\displaystyle \frac{{n}_{8r}{N}_{r}}{{\phi }_{{B}_{0r}}}\\ +\,\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{23}+\displaystyle \frac{{rM}{\left({N}^{2}\right)}_{r}}{2{\phi }_{{B}_{0r}}}{F}_{B},\\ {K}_{11}(r)=\displaystyle \frac{{m}_{7}{rN}}{{\phi }_{{B}_{0r}}}({{Np}}_{2}+{N}_{r}{q}_{2})-{m}_{6}{{rN}}^{2}\displaystyle \frac{{\phi }_{{A}_{0r}}}{{\phi }_{{B}_{0r}}}{F}_{B}\\ -\,\displaystyle \frac{{n}_{7{rr}}N}{2{\phi }_{{B}_{0r}}}+\displaystyle \frac{{n}_{7r}}{2{\phi }_{{B}_{0r}}}\left(\displaystyle \frac{N}{r}+2{N}_{r}\right)+\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{22},\\ {K}_{12}(r)=\displaystyle \frac{{m}_{6}{rN}}{{\phi }_{{B}_{0r}}}({{Np}}_{2}+{N}_{r}{q}_{2})-\displaystyle \frac{{n}_{6{rr}}N}{3{\phi }_{{B}_{0r}}}\\ +\,\displaystyle \frac{{n}_{6r}}{3{\phi }_{{B}_{0r}}}\left(\displaystyle \frac{N}{r}+3{N}_{r}\right)+\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{24},\\ {K}_{13}(r)={N}^{2}+r{\left({N}^{2}\right)}_{r}+\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{25},\\ {K}_{14}(r)={{rN}}^{2}+\displaystyle \frac{{r}^{2}N}{{\phi }_{{B}_{0r}}}{\alpha }_{26}.\end{array}\end{eqnarray*}$

Reference By original order
By published year
By cited within times
By Impact factor

Xu Z et al. 2021 Insight into the Dynamics of the Radiating Internal Tide Associated with the Kuroshio Current
J. Geophys. Res.: Oceans 126 e2020JC017018

DOI:10.1029/2020JC017018 [Cited within: 1]

Pedlosky J 1979 Geophysical Fluid Dynamics New York Springer 212 216
[Cited within: 1]

Zeidan D 2016 Assessment of mixture two-phase flow equations for volcanic flows using Godunov type methods
Appl. Math. Comput. 272 707 719

DOI:10.1016/j.amc.2015.09.038

Zhao C Xu Z H Robertson R Li Q Wang Y Yin B S 2021 The three dimensional internal tide radiation and dissipation in the Mariana Arc-Trench system
J. Geophys. Res.: Oceans 126 e2020JC016502

DOI:10.1029/2020JC016502 [Cited within: 1]

Lou S Y Tong B Hu H C Tang X Y 2006 Coupled KdV equations derived from two-layer fluids
J. Phys. A Math. Gen. 39 513 527

DOI:10.1088/0305-4470/39/3/005 [Cited within: 1]

Ono H 1981 Algebraic Rossby wave soliton
J. Phys. Soc. Jpn. 50 2757 2761

DOI:10.1143/JPSJ.50.2757 [Cited within: 1]

Luo D H 2005 A barotropic envelope Rossby soliton model for block-eddy interaction: I. effect of topography
J. Atmos. Sci. 62 5 21

DOI:10.1175/1186.1

Benney D J 1979 Large amplitude Rossby waves
Stud. Appl. Math. 60 1 10

DOI:10.1002/sapm19796011 [Cited within: 1]

Hough S 1897 On the application of harmonic analysis to the dynamical theory of the tides, Part I on Laplace's oscillations of the first species, and on the dynamics of ocean currents
Philos. Trans. R. Soc. 189 201 257

[Cited within: 1]

Chelton D B Schlax M G 1996 Global observations of oceanic Rossby wave
Science 272 234 238

DOI:10.1126/science.272.5259.234

Philander S G H 1978 Forced oceanic waves
Rev. Geophys. 16 15 46

DOI:10.1029/RG016i001p00015 [Cited within: 1]

Latif M Bamett T P 1994 Causes of decadal climate variability over the North Pacific and North America
Sciences 266 634 637

DOI:10.1126/science.266.5185.634 [Cited within: 1]

Latif M Bamett T P 1996 Decadal climate variability over the North Pacific and North America: Dynamics and predictability
J. Clim. 9 2407 2423

DOI:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2 [Cited within: 1]

Long R 1964 Solitary waves in the westerlies
J. Atmos. Sci. 21 197 200

DOI:10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2 [Cited within: 1]

Benny D J 1976 Long non-linear waves in fluid flows
J. Math. Phys. 45 52 63

DOI:10.1002/sapm196645152 [Cited within: 1]

Redekopp L G Weidman P D 1978 Rossby solitary waves in zonal shear flows and interactions
J. Atmos. Sci. 35 790 804

DOI:10.1175/1520-0469(1978)035<0790:SRWIZS>2.0.CO;2 [Cited within: 1]

Akylas T R 1984 On the excitation of long nonlinear water waves by a moving pressure distribution
J. Fluid Mech. 141 455 466

DOI:10.1017/S0022112084000926 [Cited within: 1]

Liu S K Tan B K 1992 Rossby waves with the change of β
Appl. Math. Mech. 13 35 44in Chinese

[Cited within: 1]

Luo D H 1995 Solitary Rossby waves with the bete parameter and dipole blocking
J. Appl. Meteor. Sci. 2 220 227

[Cited within: 1]

Zhao Q Liu S K 2006 Application of Jacobi elliptic functions in the atmospheric and oceanic dynamics: studies on two-dimensional nonlinear Rossby waves
Chinese J. Geophys 49 965 970(in Chinese)

[Cited within: 1]

Wang J Zhang R Yang L 2020 A Gardner evolution equation for topographic Rossby waves and its mechanical analysis
Appl. Math. Comput. 385 125426

DOI:10.1016/j.amc.2020.125426 [Cited within: 1]

Sun J C et al. 2020 Dust acoustic rogue waves of fractional-order model in dusty plasma
Commun. Theor. Phys. 72 125001

DOI:10.1088/1572-9494/abb7d7 [Cited within: 1]

Ren B et al. 2016 Nonlocal symmetry and explicit solutions for Drinfeld-Sokolov-Wilson system
Eur. Phys. J. Plus 131 1 9

DOI:10.1140/epjp/i2016-16441-7 [Cited within: 1]

Ren B Cheng X P Lin J 2016 The (2+1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions
Nonlinear Dyn. 86 1855 1862

DOI:10.1007/s11071-016-2998-4 [Cited within: 1]

Ren B Cheng X P 2016 CTE solvability, nonlocal symmetry and explicit solutions of modified Boussinesq system
Commun. Theor. Phys. 66 84

DOI:10.1088/0253-6102/66/1/084 [Cited within: 1]

Liu Q S Zhang Z Y Zhang R G Huang C X 2019 Dynamical analysis and exact solutions of a new (2+1)-dimensional generalized Boussinesq model equation for nonlinear Rossby waves
Commu. Theor. Phys. 71 1054 1062

DOI:10.1088/0253-6102/71/9/1054 [Cited within: 1]

Zhang J et al. 2021 Coherent structures of nonlinear barotropic–baroclinic interaction in unequal depth two-layer model
Appl. Math. Comput. 408 126347

[Cited within: 1]

Lukashchuk S Y 2015 Conservation laws for time-fractional subdiffusion and diffusion-wave equations
Nonlinear Dyn. 80 791 802

DOI:10.1007/s11071-015-1906-7 [Cited within: 1]

Ray S S Sahoo S 2018 Invariant analysis and conservation laws of (2+1) dimensional time-fractional ZK-BBM equation in gravity water waves
Comput. Math. Appl. 75 2271 2279

DOI:10.1016/j.camwa.2017.12.001

Sahoo S Ray S S 2017 Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves
Nonlinear Dyn. 90 1105 1113

DOI:10.1007/s11071-017-3712-x [Cited within: 1]

Al-Shawba A A Gepreel K A Abdullah F A Azmi A 2018 Abundant closed form solutions of the conformable time fractional Sawada–Kotera–Ito equation using (G′/G)-expansion method
Results Phys. 9 337 343

DOI:10.1016/j.rinp.2018.02.012 [Cited within: 1]

相关话题/ dimensional coupled Boussinesq

閻庢鍠掗崑鎾绘⒑椤愶絿顣叉繝鈧幍顔惧崥婵顦糚闂佹寧绋掗惌顔剧博鐎涙ḿ鈻旈柛銉㈡櫓濞兼岸鏌ら弶鍨殶闁绘牜鍎ょ粙澶愬箻閼碱剛鎳濋柣鐘叉处瀹曟﹢锝炵€n偓绱i柟杈鹃檮椤撶懓銆掑铏《婵犫偓閸涘瓨鏅悘鐐插⒔濡层劑鏌¢崼顐㈠幐缂佹顦靛畷姘紣娴d警浼囬梺鍛婂笒濡繈骞愰崼鏇熸櫖濞达綀娅i崡婊堟倵閻㈠灚鍤€闁搞劍绻勭划璇参旂€n剛锛�
547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤€閰i幊鎾诲礃椤忓棗鐓涢梺鍏兼緲閸燁偄鐣烽敓锟�1130缂備礁顦粔鐢碘偓鍨皑閳ь剝顫夌喊宥夊汲閳ь剟鏌℃径瀣婵炲牊鍨垮畷锟犲礃瑜忕粙鍥╃磼婢跺﹦效闁告ǜ鍊栫缓钘壩旈崪浣规瘜闁圭厧鐡ㄩ幐鍫曞焵椤戞寧绁版い顐㈩儐閿涙劙骞嬮婊咁槷濠电偞鍨归弫绋棵烘繝鍥ㄥ殣閺夊牜鍋掗崵鏃堟煏閸℃洝鍏岀紒顔光偓瓒佽鎯斿☉鎺戜壕濞达絿鏅Σ鍫ユ煕閹烘挻鍋犻柍褜鍏涚欢姘跺闯妤e啯鎳氱€广儱鍟犻崑鎾存媴閻戞ê鈧偟鈧鎮堕崕顖炲焵椤戣儻鍏屾い鎾存倐閹爼宕遍幇銊ヤ壕濞达絾浜芥禒锕€霉閸忕厧鎼搁柍褜鍏涘ù鍥磼閵婏箑顕辨慨妯稿劗閸嬫挻鎷呯憴鍕暚闂佺厧寮惰ぐ鍐紦妤e啯鍋犻柛鈩冨姀閸嬫挻鎷呴悿顖氬箑闂佸搫鍊稿ú銏ゅ焵椤戞寧绁板瑙勬崌瀵敻顢涘Ο宄颁壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾村閸嬫挻鎷呴崷顓溾偓濠囨倵濞戝疇绀嬮柍褜鍏涚粈浣轰焊閹殿喒鍋撳☉瀹犵闁逞屽厸濞村洭顢橀崫銉т笉婵°倓鐒︾花姘舵煏閸℃洜顦︾€圭ǹ顭峰畷锝囦沪閸屾浜惧ù锝呮啞閸曢箖鏌i悙鍙夘棑闁逞屽厸閻掞箓寮崒姘f煢婵懓娲犻崑鎾存媴閸涘﹥鍣搁柣搴㈠喕鐠愮喖鍩€椤戞寧顦风紓宥咁儔閹虫牠鎳犻鍐炬蕉缂備焦鍐婚幏锟�28缂備緡鍋夐褔顢楅悢铏圭煋闁规惌鍨崇壕锟�