Thermo-bioconvection transport of nanofluid over an inclined stretching cylinder with Cattaneo【-逻*辑*
本站小编 Free考研考试/2022-01-02
Hassan Waqas1, Umair Manzoor1, Taseer Muhammad,2,3, Sajjad Hussain11Department of Mathematics, Government College University Faisalabad, Layyah Campus 31200, Pakistan 2Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia 3Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
Abstract In this paper, Newtonian nanofluid flow is observed under the effects of the magnetic field, activation energy and motile microorganisms over an inclined stretchable cylinder. The magnificent aspects of nanoliquid are demonstrated by enduring the Brownian motion and thermophoresis diffusion features. Nonlinear higher order partial differential equations are transformed into first-order ordinary differential equations with suitable similarity variables. The attained sets of governing equations are then cracked by bvp4c procedure in MATLAB mathematical software. The numerical and graphical outcomes of controlling parameters such as Prandtl number, mixed convection, activation energy, thermophoresis, Brownian parameter, Biot number, Lewis number, Peclet number and motile concentration parameter against the velocity, temperature, volumetric concentration and motile concentration of nanoparticles of the fluid are discussed. The velocity is enhanced with the growth valuation in mixed convection and decay by rising variation of buoyancy ratio parameter, magnetic parameter and bio-convective Rayleigh parameter. The evolution in motile microorganisms is due to the increasing values of microorganisms Biot number. The presented data can be helpful in enhancement of manufacturing processes, biomolecules, extrusion systems applications and energy production improvement. Keywords:bio-convection;magnetic-nanofluid;Cattaneo–Christov theory;motile microorganisms;inclined stretching cylinder
PDF (2129KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Hassan Waqas, Umair Manzoor, Taseer Muhammad, Sajjad Hussain. Thermo-bioconvection transport of nanofluid over an inclined stretching cylinder with Cattaneo–Christov double-diffusion. Communications in Theoretical Physics, 2021, 73(7): 075006- doi:10.1088/1572-9494/abfcb9
Nomenclature
NomenclatureC Concentration of nanomaterials ${D}_{B}$ Brownian motion coefficient ${D}_{m}$ Microorganisms coefficient ${W}_{c}$ Cell-swimming speed $K$ Couple-stress number Nr Buoyancy ratio number $Rd$ Radiation number $Pr$ Prandtl parameter $Nb$ Brownian motion number $Le$ Lewis parameter $Pe$ Peclet parameter N Concentration of microorganisms ${D}_{T}$ Thermophoresis coefficient $b$ Chemotaxis constant $M$ Magnetic number S Mixed convection number Nc Bioconvection Rayleigh parameter $Lb$ Bioconvection Lewis number ${S}_{1}$ Thermal stratified variable $Nt$ Thermophoresis number ${S}_{2}$ Solutal stratified variable ${S}_{3}$ Microorganism stratified variable Greek words ${{\rm{\Omega }}}_{C}$ Concentration relaxation parameter $\sigma $ Chemical reaction parameter ${\gamma }_{1}$ Thermal stratification Biot number ${\gamma }_{3}$ Microorganisms stratification Biot number ${C}_{f}$ Skin friction coefficient $S{h}_{x}$ Local Sherwood number ${\tau }_{w}$ Wall shear stress ${q}_{m}$ Mass flux u,v Components of velocity ${\sigma }^{* * }$ Stephan Boltzmann constant ${B}_{0}$ Magnetic field strength $\nu $ Kinematic viscosity k Thermal conductivity ${g}^{* }$ Gravity ${{\rm{\Omega }}}_{T}$ Thermal relaxation parameter $\delta $ Temperature difference parameter ${\gamma }_{2}$ Solutal stratification Biot number ${\delta }_{1}$ Microorganisms difference parameter $N{u}_{x}$ Local Nusselt number $N{n}_{x}$ Local density number of microorganisms ${q}_{w}$ Heat flux ${q}_{n}$ Motile density flux ${\rho }_{f}$ Density of liquid ${\rho }_{m}$ Density of motile microorganisms T Temperature of nanoliquids ${\alpha }_{m}$ Thermal diffusivity ${\left(\rho c\right)}_{p}$ Heat capacity ${\rho }_{p}$ Density of nanoparticles
1. Introduction
In recent years, scientists have shown remarkable interest to study the heat transport of nanofluid through a stretchable cylinder due to its implications in a wide variety of engineering and industrial applications. Concerning the physical and chemical characteristics of nanofluids, in addition to their superior thermal efficiency, nanofluids can be effectively used in a wide range of potential applications, such as heat exchangers, radiators, domestic refrigerator-freezers, glass blowers, electronic cooling systems (such as flat plates), crystal-growing, solar water heaters and paper products. Nanofluids are suspended nanoparticles with a diameter of <100 nm considered for enhanced heat conductivity. There are many uses of nanofluids in cooling devices, nuclear reactors, micro-electronics and transformer oils.
The main idea of nanofluid is given by Choi [1]. He anticipated that the involvement of metal nanoparticles in the base fluid would improve the thermal conductivity of the regular specific fluid and stimulates the growth of these liquids for heat transfer. Nanofluids have claims for sun powered water warming, upgraded transport, heat move of fridges and coolers, and ideal assimilation of sunlight-based energy. Irfan et al [2] explored the impact of activation energy on Carreau nanofluids because of the contracting/extending layer within the sight of convective conditions, Joule heating and heat source/sink. An investigation to fabricate and comprehend numerical demonstrating for non-Newtonian Williamson liquid for portraying the warm qualities of nanofluid is given by Hashim et al [3]. The objective of Moradi et al [4] was to do an exploratory investigation of the warmth move properties of multi-walled carbon nanotube nanofluids by the utilization of permeable media by a twofold line heat exchanger. Early examinations have made up for the unique consideration paid to improving energy development by working with nanoparticles to determine this perilous issue. On the slip side, within the sight of non-Newtonian nanofluids, the impacts of liquid stream, the warmth move of nanoparticles and the gyrotactic microorganism are discussed by Khan et al [5]. They found that nanofluid stream, heat move, and gyrotactic convergences of microorganisms had utilitarian ramifications for inactively directed nanofluid limit model comparative with effectively controlled nanofluid conditions. Zuhra et al [6] explored the gyrotactic microorganisms and nanoparticles alongside viscoelastic nanofluid and heat move at higher temperatures with the thermophoresis boundary. The latest EMHD nanofluids motion computational technology model on a fixed thickness sheet with fixed fluid characteristics is explored by Irfan et al [7]. The motion of chemically reacting stagnation point Powell–Eyring nanofluids by inclination cylinder with Cattaneo–Christov heat transfer is explored by Reddy et al [8]. The nature of nonlinear heat radiation via the movement of modified 2nd-grade nanoliquid was observed by Khan et al [9]. Alghamdi [10] deliberated magnetized nanoliquid flow by rotatable disk. Action of nanomaterial to diffuse blood by cylindrical tube exploiting a single kernel is explored by Uddin et al [11]. The non-uniform hemodynamic nanoliquid motion in the absence of an existing magnetic field is analyzed by Abbas et al [12]. Several scientists' works on nanofluid are supported via attempts [13–23].
The transient heat/mass transfer properties during static film flash of aqueous NaCl solution though experiments with water film concentration is investigated by Zhang et al [24]. A comprehensive numerical study of heat transfer model including both conduction and radiation under contact and non-contact conditions was anticipated by Wang et al [25]. Jia et al [26] examined the thermally conductive polymer composites with the integration of superior thermal conductivity.
Bioconvection can be categorized as the spectacle of the macroscopic motion of the fluid created by the gradient of density that has been formed by the collective directional swimming of micro-organisms. Such micro-organisms can be categorized as gyrotactic, oxytactic, gravitaxis and chemotaxis depending on the cause of implementation. Such self-propelled micro-organisms want to collect near upper zone of liquid layer so that they pass there, which builds up a thick upper surface and become unstable/destabilized. Then upward swimming induces microorganisms to crumble and macroscopic convection to form. Bioconvection can be used in a wide variety of applications such as biological applications and microsystems, the pharmaceutical industry, biopolymer synthesis, environmentally safe applications, sustainable fuel cell technologies, microbial enhanced oil recovery, biosensors and biotechnology, and continuous modifications in mathematical modeling. Improvements in laboratory and field testing are utilized to develop the design of such structures. Kuznetsov [27] developed the principle of nanofluid bioconvection. Bioconvection is an idea used to clarify the system of incautious model improvement in microorganism liquids, for example, microbes and green growth was explained by Ghorai and Hill [28]. The homogenous miniature polar bioconvective liquid stream with nanoparticles and gyrotactic microorganisms is investigated by Atif et al [29]. Two-dimensional bioconvection blended pressure liquid stream with nanoparticles and gyrotactic motile microorganisms is concentrated by Khan et al [30]. A bioconvection stream of summed up 2nd grade nanofluid is explored by Li et al [31]. The non-warm radiation impacts of the Oldroyd-B nanofluid stream by swimming motile microorganisms past the turning plate have inspected by Waqas et al [32]. Number of researchers in bioconvection has been approved out by investigations [33–42].
Above works investigation stimulates the current study, the foremost impartial to examine the upshot of motile microorganisms, activation energy and Cattaneo Christov double-diffusion on the flow of Newtonian nanofluid over an inclined stretching cylinder. The leading expressions of energy, momentum, volumetric and motile concentrations are initially concentrated to a self-similar arrangement by using appropriate similarities. Then obtained system is cracked numerically by bvp4c scheme, a program in the MATLAB. The graphical results of prominent parameters against all-controlling concentrations are illustrated through plots.
2. Mathematical modeling
Consider the flow of Newtonian nanofluid flow with the consequences of activation energy, magnetic field and motile microorganisms' concentration through the inclined stretching cylinder (see figure 1). Bioconvection mechanism and Buongiorno relation are delighted to illustrate Brownian and thermophoresis diffusions and motility of liquid because of motile microorganisms and nanomaterials. The relation for the Newtonian fluid is$\begin{eqnarray}{\tau }_{yx}=\mu \displaystyle \frac{{\rm{d}}u}{{\rm{d}}y},\end{eqnarray}$$\begin{eqnarray}{\tau }_{yx}=k{\left(\displaystyle \frac{{\rm{d}}u}{{\rm{d}}y}\right)}^{n},\end{eqnarray}$in which equation (1) is a mathematical form of Newton's law of viscosity. Here ${\tau }_{yx}$ is shear stress and $\mu $ is called dynamic viscosity. The power-law model is expressed in equation (2) which can be reduced to the Newton's law of viscosity by putting $\mu =k$ and $n=1$ where n is flow behavior index. Therefore$\begin{eqnarray}\nu =\displaystyle \frac{\mu }{\rho }.\end{eqnarray}$Equation (3) is kinematic viscosity. Flow concerning differential equations is given as:$\begin{eqnarray}\displaystyle \frac{\partial \left(ru\right)}{\partial x}+\displaystyle \frac{\partial \left(rv\right)}{\partial r}=0,\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}u\displaystyle \frac{\partial u}{\partial x}+v\displaystyle \frac{\partial u}{\partial r}=\nu \left(\displaystyle \frac{{\partial }^{2}u}{\partial {x}^{2}}+\displaystyle \frac{1}{r}\displaystyle \frac{\partial u}{\partial r}\right)+{u}_{e}\displaystyle \frac{\partial {u}_{e}}{\partial x}-\displaystyle \frac{\sigma {B}_{0}^{2}}{{\rho }_{f}}\\ \,\times \left(u-{u}_{e}\right)+\displaystyle \frac{g* }{{\rho }_{f}}\left[\begin{array}{l}\left(1-{C}_{f}\right){\rho }_{f}{\beta }^{* * }\left(T-{T}_{\infty }\right)\\ -\left({\rho }_{p}-{\rho }_{f}\right)\left(C-{C}_{\infty }\right)\\ -\left(N-{N}_{\infty }\right){\gamma }^{* }\left({\rho }_{m}-{\rho }_{f}\right)\end{array}\right]\\ \,\times \,\cos \left(\gamma \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}u\displaystyle \frac{\partial T}{\partial x}+v\displaystyle \frac{\partial T}{\partial r}+{{\rm{\Gamma }}}_{E}\left\{\begin{array}{l}{u}^{2}\displaystyle \frac{{\partial }^{2}T}{\partial {x}^{2}}+{v}^{2}\displaystyle \frac{{\partial }^{2}T}{\partial {r}^{2}}+2uv\displaystyle \frac{{\partial }^{2}T}{\partial x\partial r}\\ \,+u\displaystyle \frac{\partial u}{\partial x}\displaystyle \frac{\partial T}{\partial x}\\ \,+u\displaystyle \frac{\partial v}{\partial x}\displaystyle \frac{\partial T}{\partial r}+v\displaystyle \frac{\partial u}{\partial r}\displaystyle \frac{\partial T}{\partial x}\\ \,+v\displaystyle \frac{\partial v}{\partial r}\displaystyle \frac{\partial T}{\partial r}\end{array}\right\}\\ \,=\displaystyle \frac{{\alpha }_{m}}{r}\displaystyle \frac{\partial }{\partial r}\left(\displaystyle \frac{\partial T}{\partial r}\right)+\tau \left(\displaystyle \frac{{D}_{T}}{{T}_{\infty }}{\left(\displaystyle \frac{\partial T}{\partial r}\right)}^{2}+{D}_{B}\displaystyle \frac{\partial T}{\partial r}\displaystyle \frac{\partial C}{\partial r}\right)\\ \,-\displaystyle \frac{1}{{\rho }_{f}{C}_{p}r}\left(\displaystyle \frac{4}{3}\right)\displaystyle \frac{{\sigma }^{* * }}{{k}^{* }}\displaystyle \frac{\partial }{\partial x}\left(r\displaystyle \frac{\partial {T}^{4}}{\partial r}\right)+\displaystyle \frac{{Q}_{0}}{{\rho }_{f}{C}_{p}}\left(T-{T}_{\infty }\right)\\ \,+\displaystyle \frac{\sigma {B}_{0}^{2}{u}^{2}}{{\rho }_{f}{C}_{p}},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}u\displaystyle \frac{\partial C}{\partial x}+v\displaystyle \frac{\partial C}{\partial r}+{{\rm{\Gamma }}}_{C}\left\{\begin{array}{l}{u}^{2}\displaystyle \frac{{\partial }^{2}C}{\partial {x}^{2}}+{v}^{2}\displaystyle \frac{{\partial }^{2}C}{\partial {r}^{2}}+2uv\displaystyle \frac{{\partial }^{2}C}{\partial x\partial r}\\ \,+u\displaystyle \frac{\partial u}{\partial x}\displaystyle \frac{\partial C}{\partial x}\\ \,+u\displaystyle \frac{\partial v}{\partial x}\displaystyle \frac{\partial C}{\partial r}+v\displaystyle \frac{\partial u}{\partial r}\displaystyle \frac{\partial C}{\partial x}\\ \,+v\displaystyle \frac{\partial v}{\partial r}\displaystyle \frac{\partial C}{\partial r}\end{array}\right\}\\ \,={D}_{B}\left(\displaystyle \frac{1}{r}\displaystyle \frac{\partial C}{\partial r}+\displaystyle \frac{{\partial }^{2}C}{\partial {r}^{2}}\right)+\displaystyle \frac{{D}_{T}}{{T}_{\infty }}\left(\displaystyle \frac{1}{r}\displaystyle \frac{\partial T}{\partial r}+\displaystyle \frac{{\partial }^{2}T}{\partial {r}^{2}}\right)\\ \,-K{r}^{2}\left(C-{C}_{\infty }\right){\left(\displaystyle \frac{T}{{T}_{\infty }}\right)}^{n}\exp \left(\displaystyle \frac{-{E}_{a}}{\kappa T}\right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}u\displaystyle \frac{\partial N}{\partial x}+v\displaystyle \frac{\partial N}{\partial r}+\left[\displaystyle \frac{N}{r}\displaystyle \frac{\partial C}{\partial r}+\displaystyle \frac{\partial N}{\partial r}\displaystyle \frac{\partial C}{\partial r}+N\displaystyle \frac{{\partial }^{2}C}{\partial {r}^{2}}\right]\\ \,\times \displaystyle \frac{b{W}_{c}}{\left({C}_{w}-{C}_{0}\right)}={D}_{m}\left(\displaystyle \frac{{\partial }^{2}N}{\partial {r}^{2}}+\displaystyle \frac{1}{r}\displaystyle \frac{\partial N}{\partial r}\right),\end{array}\end{eqnarray}$with boundary conditions$\begin{eqnarray}\begin{array}{l}u={u}_{w}\left(x\right)=cx,v=0,-k\displaystyle \frac{\partial T}{\partial r}={h}_{f}\left({T}_{w}-T\right),\\ \,-{D}_{B}\displaystyle \frac{\partial C}{\partial r}={h}_{g}\left({C}_{w}-C\right)\,,\\ \,-{D}_{m}\displaystyle \frac{\partial N}{\partial r}={h}_{m}\left({N}_{w}-N\right)\,,\,at\,r=R,\end{array}\end{eqnarray}$$\begin{eqnarray}u\to 0,T\to {T}_{\infty },C\to {C}_{\infty },N\to {N}_{\infty }\,as\,r\to \infty .\end{eqnarray}$In equations (1)–(10), the components of velocity across x and r axis are symbolized as $u\,$ and $v$ respectively, ${\rho }_{f}$ fluid density, ${\rho }_{m}$ density of microorganisms, ${\rho }_{f}$ density of base liquid, $\mu $ dynamic viscosity, $v=\tfrac{\mu }{{\rho }_{f}}$ kinematic viscosity, $C$ concentration of nanoparticles, $T$ temperature, ${T}_{w}$ and ${T}_{\infty }$ temperatures at the surface and away from the wall respectively, ${D}_{B},$ ${D}_{T}\,\,$ and ${D}_{m}$ Brownian diffusion, thermophoresis features and microorganisms diffusion coefficient respectively, ${C}_{w}$ nanomaterial concentration due to stretching cylinder, ${C}_{\infty }$ concentration of nanofluid away from the wall. Using the following similarity transformation to reduce the PDEs into ODEs:$\begin{eqnarray}\begin{array}{l}u=\displaystyle \frac{{U}_{0}x}{L}f^{\prime} \left(\zeta \right),v=\displaystyle \frac{R}{r}\sqrt{\displaystyle \frac{{U}_{0}\nu }{L}}f\left(\zeta \right),\\ \zeta =\displaystyle \frac{{r}^{2}-{R}^{2}}{2R}{\left(\displaystyle \frac{{U}_{0}}{\nu L}\right)}^{\displaystyle \frac{1}{2}},\\ \psi =\left(\displaystyle \frac{{U}_{0}{x}^{2}}{L}\right)C\left(\zeta \right)=\displaystyle \frac{C-{C}_{\infty }}{{C}_{w}-{C}_{0}},\\ T\left(\zeta \right)=\displaystyle \frac{T-{T}_{\infty }}{{T}_{w}-{T}_{0}},\\ \chi \left(\zeta \right)=\displaystyle \frac{N-{N}_{\infty }}{{T}_{w}-{T}_{0}}.\end{array}\end{eqnarray}$$\begin{eqnarray}u=\displaystyle \frac{1}{r}\left(\displaystyle \frac{\partial \psi }{\partial r}\right),\,v=-\displaystyle \frac{1}{r}\left(\displaystyle \frac{\partial \psi }{\partial x}\right),\end{eqnarray}$where$\begin{eqnarray}\begin{array}{l}\left(1+2\alpha \eta \right)f^{\prime\prime\prime} +2\alpha f^{\prime\prime} +ff^{\prime\prime} -{f^{\prime} }^{2}\\ \,-{\gamma }^{2}\left(f^{\prime} -A\right)+{A}^{2}\\ \,+S\left(\theta -Nr\phi -Nc\chi \right)\cos \,\gamma =0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}\left[\left\{1+Rd{\left(1+\left({\theta }_{w}-1\right)\theta \right)}^{3}\right\}\left(1+2\alpha \zeta \right)\theta ^{\prime} \right]\theta ^{\prime\prime} \\ \,+2\alpha \theta ^{\prime} +PrNb\left(1+2\alpha \zeta \right)\left(\theta ^{\prime} \phi ^{\prime} \right)\\ \,+Pr\left(f\theta ^{\prime} +Q\theta -f^{\prime} \theta +Ec{\gamma }^{2}{f}^{2}\right)\\ \,+PrNb\left(1+2\alpha \zeta \right)\left(\displaystyle \frac{Nt}{Nb}{\theta }^{2}\right)\\ \,-Pr{{\rm{\Omega }}}_{T}\left[{f}^{2}\theta ^{\prime\prime} -ff^{\prime} \theta ^{\prime} +\theta {f^{\prime} }^{2}-\theta ff^{\prime\prime} \right]=0\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}\left(1+2\alpha \zeta \right)\left(\phi ^{\prime\prime} +\displaystyle \frac{Nt}{Nb}{\theta }^{2}\right)+PrLe\left(f\phi -f^{\prime} \phi \right)\\ \,+2\alpha \left(\phi ^{\prime} +\displaystyle \frac{Nt}{Nb}\theta ^{\prime} \right)\\ \,-PrLe{{\rm{\Omega }}}_{C}\left[{f}^{2}\phi ^{\prime\prime} -ff^{\prime} \phi ^{\prime} +{f^{\prime} }^{2}\phi -\phi ff^{\prime\prime} \right]\\ \,-LePr\sigma {\left(1+{\delta }_{0}\theta \right)}^{n}\phi \exp \left(\displaystyle \frac{-E}{1+{\delta }_{0}\theta }\right)=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}\left(1+2\alpha \zeta \right)\chi ^{\prime\prime} +2\alpha \chi ^{\prime} +Lb\chi ^{\prime} f\\ \,-Pe\left(\phi ^{\prime\prime} \left(\chi +\omega \right)+\chi ^{\prime} \phi ^{\prime} \right)=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}f\left(0\right)=0,f^{\prime} \left(0\right)=1,\,f^{\prime} \left(\infty \right)\to 0,\\ \theta ^{\prime} =-{\lambda }_{1}\left(1-\theta \left(0\right)\right),\,\theta \left(\infty \right)\to 0,\\ \phi ^{\prime} =-{\lambda }_{2}\left(1-\phi \left(0\right)\right),\,\phi \left(\infty \right)\to 0,\\ \chi ^{\prime} =-{\lambda }_{3}\left(1-\chi \left(0\right)\right),\,\chi \left(\infty \right)\to 0.\end{array}\end{eqnarray}$Here, curvature parameter is $\alpha =\displaystyle \frac{1}{R}\sqrt{\tfrac{\nu L}{{U}_{0}},}$ magnetic parameter is $M=\sqrt{\tfrac{\sigma {B}_{0}^{2}}{{\rho }_{f}a},}$ thermal radiation parameter is $Rd=\tfrac{16{\sigma }^{* * }{T}_{\infty }^{3}}{3{k}^{* }k},$ Prandtl number is $Pr=\tfrac{\nu }{{\alpha }_{m}},$ Brownian motion parameter is $Nb=\tfrac{\tau {D}_{B}\left({C}_{w}-{C}_{\infty }\right)}{\nu },$ temperature ratio parameter is ${\theta }_{w}=\tfrac{{T}_{w}}{{T}_{\infty }},$ thermal relaxation parameter is ${{\rm{\Omega }}}_{T}={{\rm{\Gamma }}}_{E}\tfrac{{U}_{0}}{L},$ thermophoresis parameter is $Nt=\tfrac{\tau {D}_{T}\left({T}_{w}-{T}_{\infty }\right)}{\nu {T}_{\infty }},$ heat generation parameter is $Q=\tfrac{L{Q}_{0}}{{U}_{0}\rho {C}_{p}},$ concentration relaxation parameter is ${{\rm{\Omega }}}_{C}={{\rm{\Gamma }}}_{C}\tfrac{{U}_{0}}{L},$ activation energy parameter is $E\left(=\tfrac{{E}_{a}}{\kappa {T}_{\infty }}\right),$ Lewis number is $Le=\tfrac{{\alpha }_{m}}{{D}_{B}},$ buoyancy ratio parameter is $Nr=\tfrac{({\rho }_{p}-{\rho }_{f})({C}_{w}-{C}_{\infty })}{{\beta }^{* * }{\rho }_{f}(1-{C}_{\infty })\left({T}_{w}-{T}_{\infty }\right)},$ mixed convection parameter is $S=\left(\tfrac{\beta * * g* (1-{C}_{\infty })({T}_{w}-{T}_{\infty })}{\nu {U}_{0}^{2}}\right),$ bioconvection Rayleigh number is $Nc=\tfrac{\gamma ({\rho }_{m}-{\rho }_{f})({N}_{w}-{N}_{\infty })}{{\beta }^{* * }{\rho }_{f}(1-{C}_{\infty })\left({T}_{w}-{T}_{\infty }\right)},$ bioconvection Lewis number, Peclet number and microorganisms difference number are $Lb=\tfrac{\nu }{{D}_{m}},Pe=\tfrac{b{W}_{c}}{{D}_{m}},\omega =\tfrac{{N}_{\infty }}{{N}_{w}-{N}_{0}}$ respectively, thermal Biot number is ${\lambda }_{1}\,=\left(\tfrac{{h}_{f}}{k}\right)\sqrt{\nu L/{U}_{0}},$ mass Biot number is ${\lambda }_{2}=\left(\tfrac{{h}_{g}}{{D}_{B}}\right)\sqrt{\nu L/{U}_{0}}$ and microorganism Biot number is ${\lambda }_{3}=\left(\tfrac{{h}_{m}}{{D}_{m}}\right)\sqrt{\nu L/{U}_{0}}.$
The skin friction is specified as:$\begin{eqnarray}{C}_{f}=\displaystyle \frac{{\tau }_{w}}{{\rho }^{\displaystyle \frac{{U}^{2}}{2}}},\,{\tau }_{w}=\mu \left(1+\displaystyle \frac{1}{\beta }\right){\left(\displaystyle \frac{\partial u}{\partial r}\right)}_{r=R}.\end{eqnarray}$Equation (18) in dimensionless form is$\begin{eqnarray}0.5{C}_{f}\sqrt{R{e}_{x}}=f^{\prime\prime} \left(0\right).\end{eqnarray}$The aspects for the local Nusselt, Sherwood and motile microorganism numbers are$\begin{eqnarray}\begin{array}{l}N{u}_{x}=\displaystyle \frac{x{q}_{w}}{k\left({T}_{w}-{T}_{0}\right)},\,{q}_{w}=-k{\left(\displaystyle \frac{\partial T}{\partial r}\right)}_{r=R}+{\left(qr\right)}_{r=R},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}Sh=\displaystyle \frac{x{j}_{w}}{D\left({C}_{w}-{C}_{0}\right)},\,{j}_{w}=-D{\left(\displaystyle \frac{\partial C}{\partial r}\right)}_{r=R},\,\\ Sn=\displaystyle \frac{x{q}_{n}}{{D}_{m}\left({N}_{w}-{N}_{0}\right)},\,{q}_{n}=-{D}_{m}{\left(\displaystyle \frac{\partial N}{\partial r}\right)}_{r=R}.\end{array}\end{eqnarray}$These expressions are pre-arranged for the dimensionless form as$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{N{u}_{x}}{\sqrt{R{e}_{x}}}=-\left(1+\displaystyle \frac{4}{3}{R}_{d}\right)\theta ^{\prime} \left(\zeta \right),\,as\,\zeta \to 0,\\ \displaystyle \frac{S{h}_{x}}{\sqrt{R{e}_{x}}}=-\phi ^{\prime} \left(\zeta \right),\,as\,\zeta \to 0,\\ \displaystyle \frac{S{n}_{x}}{\sqrt{R{e}_{x}}}=-\chi ^{\prime} \left(\zeta \right),\,as\,\zeta \to 0.\end{array}\end{eqnarray}$
3. Numerical scheme
In this segment, the mathematical simulation of the flow model, equations (13)–(16) and boundary conditions (17) are transformed from PDEs to ordinary differential equations. For obtained numerical results, the bvp4c tool in MATLAB computational software is used. The governing equations are renewed from higher to 1st order as given below:$\begin{eqnarray}\begin{array}{l}f={z}_{1},f^{\prime} ={z}_{2},f^{\prime\prime} ={z}_{3},f^{\prime\prime\prime} ={z^{\prime} }_{3},\theta ={z}_{4},\theta ^{\prime} ={z}_{5},\\ \theta ^{\prime\prime} ={z^{\prime} }_{5},\phi ={z}_{6},\phi ^{\prime} ={z}_{7},\phi ^{\prime\prime} ={z^{\prime} }_{7},\chi ={z}_{8},\chi ^{\prime} ={z}_{9},\\ \chi ^{\prime\prime} ={z^{\prime} }_{9}\end{array}\end{eqnarray}$$\begin{eqnarray}{z^{\prime} }_{3}=\displaystyle \frac{{z}_{2}^{2}-2\alpha {z}_{3}-{z}_{1}{z}_{3}+{\gamma }^{2}\left({z}_{2}-A\right)-{A}^{2}-S\left({z}_{4}-Nr{z}_{6}-Nc{z}_{8}\right)\cos \,\gamma }{\left(1+2\alpha \zeta \right)}\end{eqnarray}$$\begin{eqnarray}{z^{\prime} }_{5}=\displaystyle \frac{\begin{array}{l}-PrNb\left(1+2\alpha \zeta \right)\left({z}_{5}{z}_{7}\right)-Pr\left({z}_{1}{z}_{5}+Q{z}_{4}-{z}_{2}{z}_{4}+Ec{\gamma }^{2}{z}_{1}^{2}\right)\\ +Pr{{\rm{\Omega }}}_{T}\left[-{z}_{1}{z}_{2}{z}_{5}+{z}_{4}{z}_{2}^{2}-{z}_{4}{z}_{1}{z}_{3}\right]-PrNb\left(1+2\alpha \zeta \right)\left(\displaystyle \frac{Nt}{Nb}{z}_{4}^{2}\right)\end{array}}{\left[\left\{1+Rd{\left(1+\left({\theta }_{w}-1\right)\theta \right)}^{3}\right\}\left(1+2\alpha \zeta \right)\theta ^{\prime} \right]-Pr{{\rm{\Omega }}}_{T}{z}_{1}^{2}},\end{eqnarray}$$\begin{eqnarray}{z^{\prime} }_{7}=\displaystyle \frac{\begin{array}{l}LePr\sigma {\left(1+{\delta }_{0}{z}_{4}\right)}^{n}{z}_{6}exp\left(\displaystyle \frac{-E}{1+{\delta }_{0}{z}_{4}}\right)-\left(1+2\alpha \zeta \right)\displaystyle \frac{Nt}{Nb}{z}_{4}^{2}-PrLe\left({z}_{1}{z}_{6}-{z}_{2}{z}_{6}\right)\\ -2\alpha \left({z}_{7}+\displaystyle \frac{Nt}{Nb}{z}_{5}\right)+PrLe{{\rm{\Omega }}}_{C}\left[-{z}_{1}{z}_{2}{z}_{7}+{z}_{2}^{2}{z}_{6}-{z}_{6}{z}_{1}{z}_{3}\right]\end{array}}{\left(1+2\alpha \zeta \right)-PrLe{{\rm{\Omega }}}_{C}{z}_{1}^{2}},\end{eqnarray}$$\begin{eqnarray}{z^{\prime} }_{9}=\displaystyle \frac{-2\alpha {z}_{9}-Lb{z}_{1}{z}_{9}+Pe\left({z^{\prime} }_{7}\left({z}_{8}+\omega \right)+{z}_{9}{z}_{7}\right)}{\left(1+2\alpha \zeta \right)},\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{z}_{1}\left(0\right)=0,{z}_{2}\left(0\right)=1,\,{z}_{2}\left(\infty \right)\to 0,\\ {z}_{5}=-{\lambda }_{1}\left(1-{z}_{4}\left(0\right)\right),\,{z}_{4}\left(\infty \right)\to 0,\\ {z}_{7}=-{\lambda }_{2}\left(1-{z}_{6}\left(0\right)\right),\,{z}_{6}\left(\infty \right)\to 0,\\ {z}_{9}=-{\lambda }_{3}\left(1-{z}_{8}\left(0\right)\right),\,{z}_{8}\left(\infty \right)\to 0.\end{array}\end{eqnarray}$
4. Results and discussion
The consequences of magnetic parameter $M$ versus velocity $f^{\prime} $ are illuminated in the figure 2. Velocity of nanoliquid $f^{\prime} $ decays for growing data of magnetic parameter for both values (α = 0 and 0.3). Significantly, this shows that growth in magnetic parameter values support the retarding force which promptly mark the fluid dynamic. The significance of the buoyancy ratio parameter $Nr$ for the velocity profile $f^{\prime} $ is depicted in figure 3. Buoyancy-ratio number reduced the $f^{\prime} $ for both estimations (α = 0 and 0.3). In figure 4, the effects of inclination for velocity $f^{\prime} $ are observed. The increasing inclination falls the velocity of the fluid for both cases (α = 0 and 0.3). Figure 5 shows velocity $f^{\prime} $ for the various estimations of bio-convective Rayleigh parameter $Nc.$ Increasing behavior of bio-convective Rayleigh parameter declines velocity distribution for both situations (α = 0 and 0.3). Figure 6 delineates the nature of the mixed convection parameter for velocity $f^{\prime} .$ The velocity of fluid magnifies for mixed convection parameter for both cases of plate and cylinder. Figure 7 reveals the effects of thermal relaxation parameter ${{\rm{\Omega }}}_{T}$ on the temperature field $\theta .$ From the curves, it is noted that the increasing thermal relaxation parameter reduces the temperature of the fluid. In figure 8, the nature of $Pr$ on $\theta $ is explained. Temperature of liquid $\theta $ depreciated by Prandtl number for both values (α = 0 and 0.3). This is due to the rising Prandtl number, which increases the heat transfer rate that cools the process and decreases the temperature within the boundary layer. Fluid with a progressive Prandtl number keeps low thermal conductivity, which diminishes the temperature and thermal boundary-layer thickness. Figure 9 elucidates the outcome of ${\lambda }_{1}$ on temperature $\theta .$ Temperature of the fluid $\theta $ augmented by swelling values of thermal stratification for both cases i.e. plate/cylinder. The impact of ${\theta }_{w}$ against temperature profile $\theta $ for both cases (α = 0 and 0.3) is explored in figure 10. It is regarded that the temperature of fluid $f^{\prime} $ boosted up by higher the variation of temperature ratio parameter. Figure 11 is reflecting the outcome of $Nb$ for the concentration field $\phi .$ It is logical that a rise in Brownian motion parameter decay the concentration of the nanoparticles for both values (α = 0 and 0.3). In the nanofluid structure, because of the existence of nanoparticles, the Brownian motion occurs and with the intensification in Nb the Brownian motion is exaggerated and hence the nanoparticles concentration and boundary layer thickness reduce. Higher estimations of Brownian parameter fall boundary-layer thicknesses, as results the concentration reduces. To distinguish the consequences of $Nt$ versus volumetric concentration $\phi ,$ figure 12 is portrayed. The thermophoresis parameter marks an increasing impact on the volumetric concentration of nanoparticles $\phi .$ Nanoparticles wander from hot sector to cold sector owed to progressive thermophoresis evaluation. The nanofluid molecules kinetic energy is enhanced by swelling evaluation of thermophoresis parameter as a result of the concentration upsurges. Figure 13 is fixed to inspect the behavior of Prandtl number $Pr$ for concentration $\phi .$ Rising estimations of Prandtl number decay concentration profile. Physically, the thermal boundary-layer drops with a higher variation of Prandtl and therefore, the concentration profile is dropped. Figure 14 elucidates the significance of $Le$ for $\phi .$ Concentration field $\phi $ decays for the great evaluation of $Le$ for both cases. Figure 15 lights the consequences of $E$ for $\phi .$ The concentration field is enhanced for increasing valuation of $E$ for both values (α = 0 and 0.3). Figure 16 demonstrates influence of ${\lambda }_{2}$ on $\phi $ for both cases (α = 0 and 0.3). Predictably, enhancing values of ${\lambda }_{2}$ amplified concentration of nanoparticles. Figure 17 is captured to observe the concentration relaxation parameter effects ${{\rm{\Omega }}}_{c}$ on $\phi .$ Growing relaxation parameter falls volumetric concentration profile of nanoparticles of the fluid. The upshot of $Pe$ versus microorganism $\chi $ is deliberated in figure 18. Microorganism field $\chi $ is deteriorated for the advanced magnitude of $Pe.$ Figure 19 explores nature of $Lb$ versus microorganism field $\chi .$ Microorganism $\chi $ decays due to higher magnitude of $Lb$ for both cases (α = 0 and 0.3). The upshot of ${\lambda }_{3}$ for $\chi $ is outlined in figure 20. The microorganism's field $\chi $ is boosted for higher variations of microorganism stratification Biot number. Table 1 illustrates that skin friction is boosted for magnetic parameter while it decreases for mixed convection parameter. Table 2 illustrates that Nusselt number is boosted for Prandtl number while decays for temperature ratio number. Table 3 illustrates that Sherwood number is upgraded for increasing values of Lewis number. Table 4 illustrates that density number of motile microorganism is boosted for bioconvection Lewis and Peclet numbers.
The flow of Newtonian nanoliquid by an inclined stretchable cylinder with the effects of motile microorganism and activation energy is discussed. The consequences of Cattaneo–Christov model are also considered. The velocity profile is declined by the mounting evaluation in the buoyancy ratio parameter and inclination parameter. The temperature field is reduced by intensifying values of thermal relaxation parameter and it shows growing nature for both thermal Biot number and temperature ratio parameter. The higher valuations of magnetic parameter and mixed convection parameter have reverse nature for velocity profile. Both temperature distribution and volumetric concentration fall for increasing values of the Prandtl number. The volumetric concentration field is boosted for swelling values of activation energy and thermophoresis parameter while show opposite behavior for Lewis number and concentration relaxation parameter. The growing evaluation of microorganism stratified Biot number boosted the motile microorganism's concentration of nanoparticles. Bio-convection Lewis and Peclet numbers reduced the motile microorganism's concentration of nanoparticles.
Acknowledgments
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number R.G.P-2/97/42.
ChoiS U S1995 Enhancing thermal conductivity of fluids with nanoparticles vol 66San Francisco, CA ASME 99105FED 231/MD [Cited within: 1]
IrfanMKhanMKhanW AAhmadL2019 Influence of binary chemical reaction with Arrhenius activation energy in MHD nonlinear radiative flow of unsteady Carreau nanofluid: dual solutions 125 179 DOI:10.1007/s00339-019-2457-4 [Cited within: 1]
HashimKhanMHamidA2019 Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects 134 50 DOI:10.1140/epjp/i2019-12473-9 [Cited within: 1]
MoradiAToghraieDIsfahaniA H MHosseinianA2019 An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media 137 17971807 DOI:10.1007/s10973-019-08076-0 [Cited within: 1]
KhanN SGulTKhanM ABonyahEIslamS2017 Mixed convection in gravity-driven thin-film non-Newtonian nanofluids flow with gyrotactic microorganisms 7 40334049 DOI:10.1016/j.rinp.2017.10.017 [Cited within: 1]
ZuhraSKhanN SIslamS2018 Magnetohydrodynamic second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms 37 63326358 DOI:10.1007/s40314-018-0683-6 [Cited within: 1]
IrfanMFarooqM AIqraT2020 A new computational technique design for EMHD nanofluid flow over a variable thickness surface with variable liquid characteristics 8 66 DOI:10.3389/fphy.2020.00066 [Cited within: 1]
ReddyS R RReddyP B ARashadA M2020 Activation energy impact on chemically reacting eyring–powell nanofluid flow over a stretching cylinder 45 52275242 DOI:10.1007/s13369-020-04379-9 [Cited within: 1]
KhanS UTliliIWaqasHImranM2021 Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions 143 1175-86 DOI:10.1007/s10973-020-09392-6 [Cited within: 1]
UddinSMohamadMRahimi-GorjiMRoslanRAlarifiI M2020 Fractional electro-magneto transport of blood modelled with magnetic particles in a cylindrical tube without singular kernel 26 405414 DOI:10.1007/s00542-019-04494-0 [Cited within: 1]
AbbasM ABhattiM MSheikholeslamiM2019 Peristaltic propulsion of Jeffrey nanofluid with thermal radiation and chemical reaction effects 4 68 DOI:10.3390/inventions4040068 [Cited within: 1]
BabazadehHMuhammadTShakeriaskiFRamzanMHajizadehM R2021 Nanomaterial between two plates which are squeezed with impose magnetic force 144 10231029 DOI:10.1007/s10973-020-09619-6 [Cited within: 1]
BalankinA SGolmankhanehA KPatiño-OrtizJPatiño-OrtizM2018 Noteworthy fractal features and transport properties of Cantor tartans 382 15341539 DOI:10.1016/j.physleta.2018.04.011
NiazmandAFathi SolaJAlinejadFRahimi DehgolanF2019 Investigation of mixed convection in a cylindrical lid-driven cavity filled with water-Cu nanofluid 4 60 DOI:10.3390/inventions4040060
MondalHDasSKunduP K2020 Influence of an inclined stretching cylinder over MHD mixed convective nanofluid flow due to chemical reaction and viscous dissipation 49 21832193 DOI:10.1002/htj.21714
BhattiM MMichaelidesE E2021 Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate 143 20292038 DOI:10.1007/s10973-020-09492-3
AbdulrazzaqTTogunHGoodarziMKaziS NAriffinM K AAdamN MHoomanK2020 Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction 141 373385 DOI:10.1007/s10973-020-09538-6
SaeedATassaddiqAKhanAJawadMDeebaniWShahZIslamS2020 Darcy–Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder 10 391 DOI:10.3390/coatings10040391
SouayehBKumarK GReddyM GRaniSHdhiriNAlfannakhHRahimi-GorjiM2019 Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with the suspension of dusty fluid 290 111223 DOI:10.1016/j.molliq.2019.111223
AhmadSUllahNNadeemS2020 Dual nature solutions for temperature‐dependent transport properties of nanofluid flow with entropy generation
JiaL CJinY FRenJ WZhaoL HYanD XLiZ M2021 Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management 9 29042911 DOI:10.1039/D0TC05493C [Cited within: 1]
KuznetsovA VAvramenkoA A2004 Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth 31 110 DOI:10.1016/S0735-1933(03)00196-9 [Cited within: 1]
AtifS MHussainSSagheerM2019 The magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms 9 025208 DOI:10.1063/1.5085742 [Cited within: 1]
KhanS UWaqasHBhattiM MImranM2020 Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu's slip 45 8195 DOI:10.1515/jnet-2019-0049 [Cited within: 1]
LiYWaqasHImranMFarooqUMallawiFTliliI2020 A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu's slip 12 393 DOI:10.3390/sym12030393 [Cited within: 1]
WaqasHImranMMuhammadTSaitS MEllahiR2020 Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk
JawadMSaeedABilalMGulTKhanANasirS2021 The impact of magnetohydrodynamic on bioconvection nanofluid flow with viscous dissipation and joule heating effects 3 015030 DOI:10.1088/2631-8695/abe7be [Cited within: 1]
SrinivasacharyaDRamanaK S2021 Thermal radiation and double diffusive effects on bioconvection flow of a nanofluid past an inclined wavy surface 22 100830 DOI:10.1016/j.tsep.2020.100830
UsmanMHamidMRashidiM M2019 Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point 31 80038019 DOI:10.1007/s00521-018-3625-8
HamidMUsmanMHaqR UTianZ2021 A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels 91 19071924
KhanZ HUsmanMZubairTHamidMHaqR U2020 Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach 72 125005 DOI:10.1088/1572-9494/abb7d5
KhanS UShehzadS AAliN2020 Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity 10 33253336 DOI:10.1007/s13204-020-01282-5
UllahM ZJangT S2020 An efficient numerical scheme for analyzing bioconvection in von-Kármán flow of third-grade nanofluid with motile microorganisms 4 27392752 DOI:10.1016/j.aej.2020.05.017
MuhammadTAlamriS ZWaqasHHabibDEllahiR2021 Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms 143 945957
SheikholeslamiMGanjiD D2013 Heat transfer of Cu-water nanofluid flow between parallel plates 235 873879 DOI:10.1016/j.powtec.2012.11.030
SheikholeslamiMKeramatiHShafeeALiZAlawadO ATliliI2019 Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method 523 87104 DOI:10.1016/j.physa.2019.02.014 [Cited within: 1]