删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Two-proton radioactivity of exotic nuclei beyond proton drip-line

本站小编 Free考研考试/2022-01-02

濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔虹磼閵忕姵鐏堢紒鐐劤椤兘寮婚悢鐓庣鐟滃繒鏁☉銏$厽闁规儳顕埥澶嬨亜椤撶偞鍋ラ柟铏矊椤曘儱螖婵犱線鍋楅梺璇″枟閿曘垽骞冮埡鍐<婵☆垳鍘х敮楣冩⒒娴gǹ顥忛柛瀣噽閹广垽宕熼姘К闂佹寧绻傞ˇ浼存偂濞嗘垟鍋撶憴鍕婵炲眰鍊濋崺銏ゅ醇閳垛晛浜鹃悷娆忓缁€鍐磼椤旇偐效妤犵偛绻樺畷銊╁级閹寸偛绁舵俊鐐€栭幐楣冨窗閹伴偊鏁婇煫鍥ㄧ⊕閳锋帡鏌涚仦鎹愬闁逞屽墮閸㈡煡婀侀梺鎼炲労閻忔稑鈽夐姀鐘殿槹濡炪倖鍔戦崐鏍р枔閹屾富闁靛牆妫楅崸濠囨煕鐎n偅灏伴柕鍥у椤㈡洟鏁愰崶鈺冩澖濠电姷顣介崜婵嬪箖閸岀偛鏄ラ柍鈺佸暞婵挳鏌ц箛鏇熷殌妤犵偐鍋撳┑鐘殿暜缁辨洟宕戦幋锕€纾归柡宥庡幗閸嬪淇婇妶鍛櫤闁稿绻濋弻鏇㈠醇濠靛洨鈹涙繝娈垮枟婵炲﹪寮婚埄鍐ㄧ窞濠电姴瀚惃鎴濃攽閳╁啫绲婚柣妤佹崌瀵鏁撻悩鑼槰闂佹寧绻傞幊宥嗙珶閺囩喓绡€闁汇垽娼цⅷ闂佹悶鍔嶅浠嬪极閸愵喖顫呴柣妯虹仛濞堥箖姊洪崨濠勭畵閻庢凹鍣e鎶藉幢濞戞瑧鍘遍梺鍝勬储閸斿本鏅堕鐣岀闁割偅绻勯悞鍛婃叏婵犲啯銇濈€规洏鍔嶇换婵嬪磼濮f寧娲樼换娑氣偓娑欋缚閻矂鏌涚€c劌鈧洟鎮惧畡鎳婃椽顢旈崟顓濈礈闂備礁鎼崐鍫曞磿閺屻儻缍栫€广儱顦伴埛鎴︽偡濞嗗繐顏╅柛鏂诲€濋弻锝嗗箠闁告柨瀛╃粋宥夊箹娓氬洦鏅濋梺闈涚墕濞层劑鏁嶅⿰鍐f斀閹烘娊宕愰弴銏犵柈妞ゆ劧绠戦崙鐘绘煛閸愩劎澧涢柣鎾寸懃椤啰鈧綆浜妤呮煃鐠囪尙澧涙い銊e劦閹瑩寮堕幋鐘辩礉婵°倗濮烽崑娑樏洪鈧偓浣糕枎閹惧厖绱堕梺鍛婃处娴滐綁宕洪崨瀛樷拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁閺嶎収鏁冮柨鏇楀亾缁炬儳婀遍幉鎼佹偋閸繄鐟查梺绋款儜缁绘繂顕i崼鏇為唶婵﹩鍘介悵鏇烆渻閵堝骸浜濇繛鑼枛瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐搴″箻缂佽鲸鎸婚幏鍛村礈閹绘帒澹堥梻浣瑰濞诧附绂嶉鍕靛殨妞ゆ劧绠戠壕濂告煟閹邦厽缍戞繛鍫熷姍濮婃椽宕橀崣澶嬪創闂佸摜濮甸懝鎯у祫闂佸憡顨堥崑鎰板绩娴犲鐓冮柦妯侯槹椤ユ粌霉濠婂懎浠滄い顓″劵椤﹁櫕銇勯妸銉含鐎殿噮鍋嗛埀顒婄秵閸撴稓澹曢挊澹濆綊鏁愭径瀣敪婵犳鍠栭崐鎼佹箒濠电姴锕ゅΛ妤呮偂閹邦儮搴ㄥ炊瑜濋崝鐔兼煃瑜滈崜姘辩矙閹烘洘鎳屽┑鐘愁問閸ㄤ即顢氶鐘愁潟闁圭儤鍨熷Σ鍫熸叏濡も偓濡宕滄潏鈺冪=闁稿本姘ㄥ瓭闂佹寧娲忛崕鑼矚鏉堛劎绡€闁搞儴鍩栭弲婵嬫⒑闂堟稓澧曢柟宄邦儔瀵娊顢橀姀鈾€鎷洪梺鍛婃崄鐏忔瑩宕㈠☉銏$厱闁靛ǹ鍎抽崺锝団偓瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喐娼忛崜褏蓱缂佺虎鍙€閸╂牠濡甸崟顖涙櫆闁兼祴鏅濋弳銈夋⒑閸濆嫭婀扮紒瀣灴閸┿垺鎯旈妶鍥╂澑闂佸搫娲ㄦ刊顓㈠船閸︻厾纾介柛灞剧懅缁愭梻绱撻崒娑滃閾荤偤鏌涢弴銊ユ灓濞存粍鐟╁缁樻媴閸涘﹤鏆堝┑鐐额嚋缁犳挸鐣烽姀锝冧汗闁圭儤鍨归敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犲酣鍩為幋锔绘晩閻熸瑦甯為幊鎾诲煝閺傚簱妲堥柕蹇娾偓鍐插婵犲痉鏉库偓鎰板磻閹剧粯鐓冮悷娆忓閻忔挳鏌熼瑙勬珚妤犵偞鎹囬獮鎺楀幢濡炴儳顥氶梻浣哥秺濡法绮堟笟鈧弻銊╁Χ閸涱亝鏂€闂佺粯蓱瑜板啴寮搁妶鍡欑闁割偅绮庨惌娆撴煛瀹€瀣М妤犵偛娲、妤佹媴閸欏浜為梻鍌欑劍閹爼宕愬Δ鍛獥闁归偊鍠楀畷鍙夌節闂堟侗鍎忛柣鎺戠仛閵囧嫰骞掗幋婵愪患闂佺粯甯楀浠嬪蓟濞戙垹绠涙い鏍ㄧ〒閵嗗﹪姊哄ú璇插箺妞ゃ劌鎳橀崺鐐哄箣閿旂粯鏅╃紓浣圭☉椤戝棝鎮鹃崼鏇熲拺缂備焦锕╁▓鏃傜磼缂佹ê绗ч柛鎺撳浮瀹曞ジ鎮㈡搴g嵁闂佽鍑界紞鍡涘礈濞戙埄鏁婇柡鍥ュ灪閳锋垿鏌i悢鐓庝喊闁搞倗鍠庨埞鎴︻敊閻愵剚姣堥悗娈垮枟婵炲﹪宕洪敓鐘茬<婵犲﹤鎷嬮崯搴ㄦ⒑閼姐倕孝婵炲/鍥х妞ゆ劦鍋傜槐锟�547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閹鏁愭惔鈥茬盎濡炪倕楠忛幏锟�4濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤凹闁哄懏鐓¢弻娑㈠Ψ閵忊剝鐝栧銈忓瘜閸ㄨ泛顫忓ú顏呭仭闂侇叏绠戝▓鍫曟⒑缁嬫鍎戦柛鐘崇墵瀹曟椽濮€閵堝懐鐫勯梺閫炲苯澧村┑锛勬暬瀹曠喖顢欓崜褎婢戦梻浣筋潐閸庢娊顢氶鈶哄洭鏌嗗鍡忔嫼缂備礁顑嗛娆撳磿閹扮増鐓欓柣鐔哄閹兼劙鏌i敐鍛Щ妞ゎ偅绮撻崺鈧い鎺戝閳ь兛绶氬顕€宕煎┑鍡氣偓鍨攽鎺抽崐鏇㈠疮椤愶妇宓侀柟鎵閳锋帡鏌涚仦鍓ф噮妞わ讣绠撻弻娑橆潩椤掑鍓板銈庡幖閻忔繈锝炲⿰鍫濈劦妞ゆ巻鍋撻柣锝囧厴椤㈡盯鎮滈崱妯绘珖闂備線娼х换鍫ュ垂閸濆嫧鏋斿Δ锝呭暞閳锋垿姊婚崼鐔剁繁婵$嫏鍐f斀闁炽儴娅曢崰姗€鏌涢埞鍨伈鐎殿噮鍣e畷濂告偄閸濆嫬绠ラ梻鍌欒兌椤㈠﹪锝炴径鎰闁哄洢鍨洪崕宥嗙箾瀹割喕绨奸柣鎾跺枛閺岋綁寮崼鐔告殸闁荤姵鍔х槐鏇犳閹烘挻缍囬柕濞垮劤閻熸煡鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂懎浠︾紒鍌涘浮閹剝鎯斿Ο缁樻澑闂備胶绮崝妯衡枖濞戞碍顫曢柨鏇炲€归悡鏇熶繆閵堝懎顏柣婵愪簻鑿愰柛銉戝秴濮涢梺閫炲苯澧紒瀣笩閹筋偅绻濆▓鍨仭闁瑰憡濞婇獮鍐ㄧ暋閹佃櫕鐎诲┑鐐叉閸ㄧ敻宕虹仦鍓х閻庢稒岣块惌鎺旂磼閻樺磭澧电€殿喛顕ч埥澶愬閻樼數鏉搁梻浣呵圭换鎰板箺濠婂牆鏋侀柡宥庡幗閳锋垹绱掗娑欑婵炲懏姊荤槐鎺旂磼濡偐鐤勯悗娈垮枦椤曆囧煡婢跺ň鍫柛娑卞灡濠㈡垿姊绘担鐟邦嚋缂佽鍊块獮濠冩償椤帞绋忛梺鍐叉惈閹冲繘鍩涢幋锔界厱婵炴垶锕崝鐔兼煙閾忣偅绀堢紒杈ㄥ笚濞煎繘濡搁敂缁㈡Ч婵°倗濮烽崑娑氭崲濮椻偓楠炲啴鍩¢崘鈺佺彴闂佽偐鈷堥崜锕傚疮鐎n喗鈷掑ù锝呮啞閸熺偛銆掑顓ф疁鐎规洖缍婇獮搴ㄥ礈閸喗鍠橀柛鈺嬬節瀹曘劑顢欑憴鍕伖闂備浇宕甸崑鐐电矙閸儱鐒垫い鎺嗗亾闁告ɑ鐗楃粩鐔煎即閵忊檧鎷绘繛杈剧到閹诧紕鎷归敓鐘插嚑妞ゅ繐妫涚壕濂告煏婵炲灝濡煎ù婊冩贡缁辨帡顢氶崨顓炵閻庡灚婢樼€氫即鐛崶顒夋晣闁绘ɑ褰冪粻濠氭⒒閸屾瑧顦﹂柟纰卞亞閳ь剚鍑归崜娑㈠箲閵忋倕绠抽柡鍐ㄦ搐灏忛梻浣告贡鏋紒銊у劋缁傚秴饪伴崼鐔哄幐闂佹悶鍎洪悡渚€顢旈崼鐔封偓鍫曟煠绾板崬鍘撮柛瀣尭閳绘捇宕归鐣屽蒋闂備胶枪椤戝懘鏁冮妶澶樻晪闁挎繂娲﹀畷澶愭偠濞戞帒澧查柣搴☆煼濮婅櫣鎷犻垾宕団偓濠氭煕韫囧骸瀚庨柛濠冪箓椤繒绱掑Ο璇差€撻梺鑽ゅ枛閸嬪﹪宕电€n剛纾藉ù锝呭閸庢劙鏌涢妸銊ュ姷婵☆偆鍠庨—鍐Χ閸℃ê钄奸梺鎼炲妼缂嶅﹪骞冮悙鍝勫瀭妞ゆ劗濮崇花濠氭⒑閸︻厼鍔嬮柛鈺侊躬瀵劍绻濆顓炩偓鍨叏濡厧浜鹃悗姘炬嫹40缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幐楣冨焵椤掑喚娼愭繛鍙夌墪鐓ら柕濞у懍绗夐梺鍝勫暙閻楀﹪鎮″▎鎾寸厵妞ゆ牕妫楅懟顖氣枔閸洘鈷戠€规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡烽钘夌紦闂備線鈧偛鑻晶鐗堢箾閹寸姵鏆鐐寸墬閹峰懘宕ㄦ繝鍕ㄥ亾椤掑嫭鐓熼幖鎼灣缁夐潧霉濠婂啰鍩i柟顔哄灲瀹曞崬鈽夊▎蹇庡寲闂備焦鎮堕崕鑽ゅ緤濞差亜纾婚柟鎹愵嚙缁€鍌炴煕濞戝崬寮炬俊顐g矌缁辨捇宕掑顑藉亾瀹勬噴褰掑炊閵婏絼绮撻梺褰掓?閻掞箓宕戦敓鐘崇厓闁告繂瀚崳褰掓煢閸愵亜鏋旈柍褜鍓欓崢婊堝磻閹剧粯鐓曢柡鍥ュ妼娴滅偞銇勯幘瀛樸仢婵﹥妞介獮鎰償閿濆洨鏆ゆ繝鐢靛仩鐏忔瑦绻涢埀顒傗偓瑙勬礃閸ㄥ潡鐛Ο鑲╃<婵☆垵顕ч崝鎺楁⒑閼姐倕鏋戦柣鐔村劤閳ь剚鍑归崜鐔风暦閵忥絻浜归柟鐑樻尨閹锋椽姊洪崨濠勭畵閻庢凹鍘奸蹇撯攽鐎n偆鍘遍柟鍏肩暘閸ㄥ綊鎮橀埡鍌欑箚闁告瑥顦慨鍥殰椤忓啫宓嗙€规洖銈搁幃銏ゅ传閸曨偄顩梻鍌氬€烽懗鍓佹兜閸洖绀堟繝闈涙灩濞差亜鍐€妞ゆ劑鍎卞皬缂傚倷绶¢崑鍕偓娈垮墴濮婂宕掑顑藉亾妞嬪孩顐芥慨姗嗗厳缂傛氨鎲稿鍫罕闂備礁鎼崯顐﹀磹婵犳碍鍎楅柛鈩冾樅瑜版帗鏅查柛顐亜濞堟瑩姊洪懡銈呮瀾閻庢艾鐗撳顕€宕煎┑鍡欑崺婵$偑鍊栧Λ渚€锝炴径灞稿亾閸偆澧垫慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电偞鎸荤喊宥夈€冩繝鍌滄殾闁靛繈鍊栫€电姴顭跨捄鐑橆棡闁诲孩妞介幃妤呭礂婢跺﹣澹曢梻浣告啞濞诧箓宕滃☉銏犲偍闂侇剙绉甸埛鎴︽煕濠靛棗顏╅柡鍡欏仱閺岀喓绮欓崹顔规寖婵犮垼顫夊ú鐔肩嵁閹邦厽鍎熸繛鎴烆殘閻╁酣姊绘笟鈧ḿ褎顨ヨ箛鏇燁潟闁哄洠鍋撻埀顒€鍊块幊鐘活敆閸屾粣绱查梻浣告惈閸燁偊宕愰幖浣稿嚑婵炴垶鐟f禍婊堟煏韫囧﹤澧茬紒鈧€n喗鐓欐い鏃囶潐濞呭﹥銇勯姀鈩冪闁挎繄鍋ら、姗€鎮滈崱姗嗘%婵犵數濮烽弫鎼佸磻閻樿绠垫い蹇撴缁€濠囨煃瑜滈崜姘跺Φ閸曨垼鏁冮柕蹇婃櫆閳诲牓姊虹拠鈥虫珯缂佺粯绻堝畷娲焵椤掍降浜滈柟鐑樺灥椤忣亪鏌嶉柨瀣诞闁哄本绋撴禒锕傚箲閹邦剦妫熼梻渚€鈧偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欐祰椤鐣峰Ο琛℃灃婵炴垯鍩勯弫浣衡偓鍏夊亾闁告洦鍓涢崢鍛婄箾鏉堝墽鍒板鐟帮躬瀹曟洝绠涢弬璁崇盎濡炪倖鎸撮崜婵堟兜閸洘鐓欏瀣閳诲牓鏌涢妸鈺冪暫鐎规洘顨婂畷銊╊敍濞戞ḿ妯嗛梻鍌氬€搁崐椋庢濮樿泛鐒垫い鎺戝€告禒婊堟煠濞茶鐏︾€规洏鍨介獮鏍ㄦ媴閸︻厼骞橀梻浣告啞閸旀ḿ浜稿▎鎾虫槬闁挎繂鎳夐弨浠嬫煥濞戞ê顏柡鍡╁墴閺岀喖顢欓悾灞惧櫚閻庢鍠栭悥濂哥嵁鐎n噮鏁囬柣鎰儗閸熷本绻濋悽闈浶fい鏃€鐗犲畷鏉课旈崨顔芥珖闂佸啿鎼幊搴g矆閸屾稓绠鹃柟瀵稿仧椤e弶銇勯锝嗙闁哄被鍔岄埞鎴﹀幢濡桨鐥柣鐔哥矌婢ф鏁Δ鍛柧闁哄被鍎查悡鏇㈡煃閳轰礁鏆熼柟鍐叉嚇閺岋綁骞橀崘娴嬪亾閹间讲鈧棃宕橀鍢壯囨煕閹扳晛濡垮ù鐘插⒔缁辨帡鎮欓浣哄嚒缂備礁顦晶搴ㄥ礆閹烘鐓涢柛娑卞枛娴滄粎绱掗悙顒€顎滃瀛樻倐瀵彃鈹戠€n偀鎷洪梻鍌氱墛缁嬫挻鏅堕弴鐔虹閻犲泧鍛殼濡ょ姷鍋涘Λ婵嬪极閹邦厼绶為悗锛卞嫬顏归梻鍌欑濠€杈ㄧ仚濠电偛顕崗姗€宕洪妷锕€绶為悗锝冨妺缁ㄥ姊洪幐搴㈩梿妞ゆ泦鍐惧殨妞ゆ洍鍋撻柡灞剧洴閸╃偤骞嗚婢规洖鈹戦敍鍕杭闁稿﹥鐗滈弫顕€骞掑Δ浣规珖闂侀潧锛忛埀顒勫磻閹炬剚娼╅柣鎰靛墮椤忥拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偁鍨圭粊锕傛⒑閸涘﹤濮﹂柛鐘崇墱缁粯绻濆顓犲幈闂佽宕樼亸娆戠玻閺冨牊鐓冮柣鐔稿缁犺尙绱掔紒妯肩疄濠殿喒鍋撻梺鎸庣箓濡盯濡撮幇顑╂柨螖婵犱胶鍑归梺鍦归崯鍧楁偩瀹勬壋鏀介悗锝庝簻缁愭盯鏌f惔銏⑩姇瀹€锝呮健瀹曘垽鏌嗗鍡忔嫼闂佸憡绻傜€氼剟寮虫繝鍥ㄧ厱閻庯綆鍋呯亸鐢电磼鏉堛劌绗ч柍褜鍓ㄧ紞鍡涘磻閸涱厾鏆︾€光偓閳ь剟鍩€椤掍緡鍟忛柛锝庡櫍瀹曟垶绻濋崶褏鐣烘繛瀵稿Т椤戝懘宕归崒娑栦簻闁规壋鏅涢悘鈺傤殽閻愭潙鐏存慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍婵犵數鍋犻婊呯不閹达讣缍栨繝闈涱儏鎯熼梺鍐叉惈閸婂憡绂掗銏♀拺閻庡湱濮甸妴鍐偣娴g懓绲婚崡閬嶆煕椤愮姴鍔滈柣鎾寸懇閺岋綁骞囬棃娑橆潽缂傚倸绉甸崹鍧楀蓟閻旂厧绀傞柛蹇曞帶閳ь剚鍔欓弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戙垹绠婚柛妤冨仜椤洤螖閻橀潧浠滅紒缁橈耿瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟濞戙垹绠婚柤纰卞墻濡差噣姊洪幖鐐插缂佽鐗撳濠氬Ω閳哄倸浜滈梺鍛婄箓鐎氬懘濮€閵忋垻锛滈梺閫炲苯澧寸€规洘甯¢幃娆戔偓鐢登归獮鍫熺節閻㈤潧浠﹂柛銊ョ埣閺佸啴顢曢敃鈧紒鈺冪磽娴h疮缂氱紒鐘荤畺閺屾盯顢曢敐鍥╃暭闂佺粯甯楅幃鍌炲蓟閿涘嫪娌紒瀣仢閳峰鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂嫮鐭掗柨婵堝仱瀹曞爼顢楁担鍙夊闂傚倷绶¢崑鍡涘磻濞戙垺鍤愭い鏍ㄧ⊕濞呯姴螖閿濆懎鏆為柣鎾寸懇閺屾盯骞嬪▎蹇婂亾閺嶎偀鍋撳鐐
Yanzhao Wang(王艳召),1,2,3, Jianpo Cui(崔建坡)1,2, Yonghao Gao(高永浩)1,2, Jianzhong Gu(顾建中),31Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2Institute of Applied Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3China Institute of Atomic Energy, PO Box 275 (10), Beijing 102413, China

Received:2020-12-15Revised:2021-04-18Accepted:2021-04-21Online:2021-05-20


Abstract
To search for new candidates of the true and simultaneous two-proton (2p) radioactivity, the 2p decay energies (Q2p) are extracted by the Weizsäcker–Skyrme-4 (WS4) model, the finite-range droplet model (FRDM), the Koura–Tachibana–Uno–Yamada (KTUY) model and the Hartree–Fock–Bogoliubov mean-field model with the BSk29 Skyrme interaction (HFB29). Then, the 2p radioactivity half-lives are calculated within the generalized liquid drop model by inputting the four types of Q2p values. By the energy and half-life constraints, it is found that the probable 2p decay candidates are the nuclei beyond the proton-drip line in the region of Z≤50 based on the WS4 and KTUY mass models. For the FRDM mass model, the probable 2p decay candidates are found in the region of Z≤44. However, the 2p-decaying candidates are predicted in the region of Z≤58 by the HFB29 mass model. It means that the probable 2p decay candidates of Z>50 are only predicted by the HFB29 mass model. Finally, the competition between the true 2p radioactivity and α-decay for the nuclei above the N=Z=50 shell closures is discussed. It is shown that 101Te, 111Ba and 114Ce prefer to 2p radioactivity and the dominant decay mode of 107Xe and 116Ce is α-decay.
Keywords: 2p radioactivity;alpha-decay;decay energies;half-lives;GLDM


PDF (304KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Yanzhao Wang(王艳召), Jianpo Cui(崔建坡), Yonghao Gao(高永浩), Jianzhong Gu(顾建中). Two-proton radioactivity of exotic nuclei beyond proton drip-line. Communications in Theoretical Physics, 2021, 73(7): 075301- doi:10.1088/1572-9494/abfa00

1. Introduction

With the construction of a new generation of radioactive beam facilities and the development of the new detection technology, study on the exotic decay properties of unstable nuclei has been a hot subject in nuclear physics [19]. Nowadays, the proton radioactivity has been recognized as one of the exotic decay modes and paid attention by many researchers [47]. At the beginning of the 1960s, the proton radioactivity was proposed in very proton-rich nuclei by Goldansky, Zel'dovich and Karnaukhov [1012]. In the region near the proton drip line, the one-proton (1p) and 2p radioactivity has been observed in recent decades [47]. For the 1p radioactivity, it was first discovered from the isomer state of 53Co (53Com) [13, 14], but the ground state 1p radioactivity was first observed in the decay of 151Lu and 147Tm [15, 16]. So far, about 25 ground state 1p emitters have been identified [7] and the 1p radioactivity has become a powerful tool to extract nuclear structure details, such as the sequences of single-particle energies, the wave function of an emitted proton, nuclear masses and deformations [17, 18].

For the 2p radioactivity, it is another new decay mode that two protons emit simultaneously from very proton-rich even-Z nuclei because of the pairing effect. In 1960, Zel'dovich predicted the possibility that a pair of protons might emit from a nucleus [11] and it was defined as ‘2p radioactivity' by Goldansky [10, 19]. More than 40 years later, the ground-state true 2p radioactivity (Q${}_{2p}\gt 0$ and Q${}_{p}\lt 0$, where Qp is the released energy of the 1p emission) [4] was firstly discovered from 45Fe [20, 21]. Later, the true 2p radioactivity was observed from the ground states of 54Zn [22], 48Ni [23], 19Mg [24] and 67Kr [25]. In addition to the ground-state true 2p radioactivity, in fact, before 2000, ones observed the 2p radioactivity from the very short-lived nuclear ground states and excited states. For the 2p radioactivity with a very short half-life, it was discovered from 6Be [26], 12O [27] and 16Ne [27]. In these systems, the 2p emitter states and the 1p daughter states overlap with each other because the decaying widths are rather large. This case was defined as the ‘democratic decay' in the subsequent work [46, 28]. For the 2p radioactivity from the excited states, it includes the β-delayed 2p decay [29] and the 2p emission from excited states populated in nuclear reactions [30]. Currently, the above mentioned three types of 2p emissions have been important frontiers of nuclear radioactivity studies.

To describe the true 2p radioactivity, various models have been proposed which can be roughly divided into two completely different cases [3155]. One case considers the two emitted protons from a parent nucleus are correlated strongly due to the proton-proton attraction. This decay process is called as ‘2He' cluster emission [3143]. The other one refers to the completely uncorrelated emission, which is usually named as a three-body radioactivity [4355]. Within the two extreme pictures, the experimental 2p decay half-lives are reproduced by those models with different accuracies.

On the other hand, many candidates of the 2p radioactivity were predicted by various models [32, 40, 41, 43, 5659]. As a matter of fact, the earliest determination for the candidates of the 2p radioactivity can date back to the pioneering work of Goldansky [10]. For the ground state 2p radioactivity, the predicted candidates are the nuclei with Z<38. So, it is interesting to know whether or not the 2p radioactivity exists in heavier systems. Recently, Olsen et al delineated the full landscape of 2p radioactivity by the energy density functional theory with several Skyrme interactions to search for the new 2p-emitters of the heavier nuclides with Z>38 [43]. This study shows that only in two mass regions the 2p-decay mode might occur and be close enough to be addressed by today's experiments. One region ranges from germanium to krypton and the second one is located just above tin [43].

However, the 2p radioactivity half-life is dependent strongly on the Q2p value. It is well known that the Q2p value can be extracted by the following expression$\begin{eqnarray}{{Q}}_{2p}(N,Z)\approx -{{S}}_{2p}(N,Z)=B(N,Z-2)-B(N,Z),\end{eqnarray}$where $B(N,Z)$ is the binding energy of the nuclide related to its mass $M(N,Z)$: $M(N,Z)={{ZM}}_{H}+{{Nm}}_{n}-B(N,Z)$ (MH and mn are the masses of the hydrogen atom and the neutron, respectively). Therefore, it is very important to get accurate Q2p values by the nuclear mass models with high precision and strong predictive ability.

In recent years, various nuclear mass models have been developed phenomenologically and microscopically [6077]. Relevant studies suggested that the WS4 and FRDM mass models have high accuracy and strong prediction ability and their accuracy is higher than that of the Hartree–Fock–Bogoliubov model with Skyrme or Gogny interactions [63, 78, 79]. Nowadays, the observed 2p radioactivity from 19Mg [24], 45Fe [20, 21], 54Zn [22], 48Ni [23] and 67Kr [25] is the true and simultaneous emission. The nucleon wave functions and nucleon–nucleon interaction are involved in the angular momentum and correlation of the two emitted protons. Therefore, this kind of 2p radioactivity is more significant for the study of the exotic nuclear structure. Thus, to search for the new 2p-emitters of the true and simultaneous case, in this article the WS4 [63] and FRDM [64] models will be used to extract the Q2p values. In calculations, to examine the model dependence of Q2p values, the HFB29 [67] and KTUY [74] models will also be applied. This is the first motivation of this article. In addition, for future measurements of the 2p radioactivity, based on our recent work on the 2p radioactivity [41], the half-lives of the 2p radioactivity will be calculated within the successful GLDM by inputting different kinds of Q2p values, which constitutes our second motivation. At last, the work of Olsen et al predicted that there exists a competition between 2p emission and α-decay for some nuclei of Z>50 (nuclei around 103Te–110Ba) [43]. Thus, it is interesting to discuss whether the competition between 2p radioactivity and α-decay occurs for the nuclei of Z>50 within the GLDM by inputting different types of Q2p values. This is the last motivation of our study. Driven by the above mentioned three motivations, we will predict the probable 2p radioactivity candidates and investigate the competition between 2p emission and α-decay using the GLDM and the WS4, FRDM, KTUY and HFB29 mass models.

This article is organized as follows. In section 2, the theoretical framework is introduced. In section 3, the calculated results are shown and relevant discussions are performed. The main conclusions are summarized in the last section.

2. Theoretical framework

2.1. Methods of extracting Q2p values

Various nuclear mass models, such as the macroscopic-microscopic models [6066], the microscopic models based on the mean-field theory [6773] and other kinds of models [7477], have been proposed with root-mean-square deviations from several hundred keV to a few MeV with respect to all known nuclear masses. Within different nuclear mass tables combining equation (1), the Q2p values can be extracted. In the Q2p calculations, the WS4 [63], FRDM [64], HFB29 [67] and KTUY [74] mass tables are used.

2.2. GLDM

In the framework of the GLDM, the shape evolution process from one body to two separated fragments is described in a unified way. Its details can be found in [8085]. For the 2p radioactivity, it is assumed that the 2p pair (2He cluster) with zero binding energy is preformed at the surface of a parent nucleus. Then, the two protons will separate quickly after the 2p pair penetrates the Coulomb barrier between the 2p cluster and daughter nucleus [41]. The half-life is defined as$\begin{eqnarray}{T}_{1/2}^{2p}=\displaystyle \frac{\mathrm{ln}2}{{\lambda }_{2p}},\end{eqnarray}$where ${\lambda }_{2p}$ is the decay constant and expressed as$\begin{eqnarray}{\lambda }_{2p}={S}_{2p}{\nu }_{0}P.\end{eqnarray}$${S}_{2p}$ represents the spectroscopic factor of the 2p pair in the parent nucleus and can be calculated by the following cluster overlap approximation [32]: ${S}_{2p}={G}^{2}{\left[A/(A-2)\right]}^{2n}{\chi }^{2}$. Here, ${G}^{2}=(2n)!/[{2}^{2n}{\left(n!\right)}^{2}]$ [86], n is the average principal proton oscillator quantum number given by n≈${(3Z)}^{1/3}-1$ [87]. A and Z are the mass number and the charge number of the parent nucleus, respectively. ${\chi }^{2}$ is the proton overlap function. Its value is taken as 0.0143, which is determined by fitting the experimental half-lives of 19Mg, 45Fe, 48Ni and 54Zn [41].

${\nu }_{0}$ is the 2p pair frequency of assaults on the barrier. It can be obtained by the following classical approach$\begin{eqnarray}{\nu }_{0}=\displaystyle \frac{1}{2{R}_{0}}\sqrt{\displaystyle \frac{2{E}_{2p}}{{M}_{2p}}},\end{eqnarray}$where R0 is the charge radius of the parent nucleus. ${E}_{2p}$ and ${M}_{2p}$ represent the kinetic energy and the mass of the emitted 2p pair.

The penetrability factor P is calculated by the WKB approximation, which is expressed as [8085]$\begin{eqnarray}P=\exp \left[-\displaystyle \frac{2}{{\rm{\hslash }}}{\int }_{{R}_{\mathrm{in}}}^{{R}_{\mathrm{out}}}\sqrt{2B(r)[E(r)-{E}_{\mathrm{sph}}]}{\rm{d}}{r}\right],\ \end{eqnarray}$where Rin and Rout are the two turning points of the WKB action integral. Here, an approximation is used $B(r)=\mu $, and μ stands for the reduced mass of the 2p pair and the residual daughter nucleus.

The nuclear shape of initial state (ground state) is assumed to be spherical. In equation (5) Esph refers to the energy of the initial state, which is composed of the volume energy EV, surface energy ES and Coulomb energy EC. That is$\begin{eqnarray}{E}_{\mathrm{sph}}={E}_{V}+{E}_{S}+{E}_{C}.\end{eqnarray}$Each term of equation (6) can be expressed as [8085]$\begin{eqnarray}{E}_{V}=-15.494(1-1.8{I}^{2})A,\end{eqnarray}$$\begin{eqnarray}{E}_{S}=17.9439(1-2.6{I}^{2}){A}^{2/3}(S/4\pi {R}_{0}^{2}),\end{eqnarray}$$\begin{eqnarray}{E}_{C}=0.6{e}^{2}({Z}^{2}/{R}_{0})\times 0.5\int (V(\theta )/{V}_{0}){\left(R(\theta )/{R}_{0}\right)}^{3}\sin \theta {\rm{d}}\theta ,\end{eqnarray}$where S and I are the surface and relative neutron excess of the parent nucleus, respectively. $V(\theta )$ stands for the electrostatic potential at the surface. V0 is the sphere surface potential.

When the two fragments are separated, the deformed energy E(r) is written as$\begin{eqnarray}E(r)={E}_{V}+{E}_{S}+{E}_{C}+{E}_{\mathrm{Prox}}+{E}_{\mathrm{cen}}.\end{eqnarray}$The specific form of each term in equation (10) is written as [8085]$\begin{eqnarray}{E}_{V}=-15.494\left[(1-1.8{I}_{1}^{2}){A}_{1}+(1-1.8{I}_{2}^{2}){A}_{2}\right],\end{eqnarray}$$\begin{eqnarray}{E}_{S}=17.9439\left[(1-2.6{I}_{1}^{2}){A}_{1}^{2/3}+(1-2.6{I}_{2}^{2}){A}_{2}^{2/3}\right],\end{eqnarray}$$\begin{eqnarray}{E}_{C}(r)=0.6{e}^{2}{Z}_{1}^{2}/{R}_{1}+0.6{e}^{2}{Z}_{2}^{2}/{R}_{2}+{e}^{2}{Z}_{1}{Z}_{2}/r,\end{eqnarray}$$\begin{eqnarray}{E}_{\mathrm{Prox}}(r)=2\gamma {\int }_{{h}_{\min }}^{{h}_{\max }}{\rm{\Phi }}\left[D(r,h)/b\right]2\pi {h}{\rm{d}}{h},\end{eqnarray}$$\begin{eqnarray}{E}_{\mathrm{cen}}(r)=\displaystyle \frac{{{\rm{\hslash }}}^{2}}{2\mu }\displaystyle \frac{l(l+1)}{{r}^{2}}.\end{eqnarray}$

Here A1(2), Z1(2) and I1(2) in equations (11)–(13) are the mass numbers, charge numbers and relative neutron excesses of the two fragments, respectively. r means the distance between the two fragments.

In equation (13), R1 and R2 are the charge radii of the daughter nucleus and the emitted cluster. The values of R0, R1 and R2 are given by$\begin{eqnarray}{R}_{i}=(1.28{A}_{i}^{1/3}-0.76+0.8{A}_{i}^{-1/3}){\rm{fm}},i=0,1,2.\end{eqnarray}$

E${}_{\mathrm{Prox}}(r)$ in equations (10), (14) represents the proximity energy, which is used to describe the effects of the nuclear forces between the close surfaces when there are nucleons in a neck or a gap between separated fragments. Under the influence of the proximity energy, the barrier top moves to an external position and the pure Coulomb barrier is strongly suppressed [8085]. In equation (14), the surface parameter γ is the geometric mean for the surface parameters of the two fragments. Φ is the Feldmeier proximity function. D is the distance between the surfaces and the surface width $b=0.99$ fm. h is the distance varying from the neck radius or zero to the height of the neck border.

In equation (15), E${}_{\mathrm{cen}}(r)$ denotes the centrifugal potential energy. The symbol l represents the orbital angular momentum carried by the 2p pair. Due to the influence of E${}_{\mathrm{cen}}(r)$, ${R}_{\mathrm{out}}$ of equation (5) becomes the following form [8385]$\begin{eqnarray}{R}_{\mathrm{out}}=\displaystyle \frac{{Z}_{1}{Z}_{2}{e}^{2}}{2{Q}_{2p}}+\sqrt{{\left(\displaystyle \frac{{Z}_{1}{Z}_{2}{e}^{2}}{2{Q}_{2p}}\right)}^{2}+\displaystyle \frac{l(l+1){{\rm{\hslash }}}^{2}}{2\mu {Q}_{2p}}}.\end{eqnarray}$

The first turning point Rin is still expressed approximately as: ${R}_{\mathrm{in}}={R}_{1}+{R}_{2}$.

3. Results and discussions

Within equation (1) and the WS4, FRDM, KTUY and HFB29 mass tables, four types of Q2p values are extracted. Firstly, the experimental Q2p values of 19Mg, 45Fe, 48Ni, 54Zn and 67Kr and those from the four kinds of nuclear mass tables are listed in the left part of table 1. From table 1, we can see that the differences between the four kinds of Q2p values are very large. In addition, by comparing the experimental Q2p values and those calculated ones, it is found that the experimental Q2p values of 45Fe, 48Ni and 67Kr are reproduced best by the KTUY mass model. For 54Zn, the accuracy given by the HFB29 mass model is the highest. Here, it is worth mentioning that the binding energies of 19Mg and its daughter nucleus (17Ne) are not available in the WS4, FRDM and HFB29 mass tables, the Q2p value of 19Mg is estimated only by the KTUY mass table. However, the Q2p value from the KTUY mass model is 0.39 MeV larger than the experimental value. Therefore, it is difficult to determine which nuclear mass model has the strongest prediction power. This indicates that there exists some uncertainty about the masses of the nuclei near the proton drip-line predicted by the extant nuclear mass models.


Table 1.
Table 1.The comparison between the experimental Q2p values and those extracted from the WS4 [63], FRDM [64], KTUY [74] and HFB29 [67] nuclear mass models. log${}_{10}{T}_{1/2}^{\mathrm{cal}.}$ denotes the corresponding 2p radioactivity half-lives within the GLDM by inputting the experimental Q2p values and those extracted from the four kinds mass models. log${}_{10}{T}_{1/2}^{\mathrm{expt}.}$ stands for the experimental 2p radioactivity half-lives. All the Q2p and log${}_{10}{T}_{1/2}$ values are measured in MeV and second, respectively. The symbol ‘—' means the Q2p values or the log${}_{10}{T}_{1/2}^{\mathrm{cal}.}$ values are not available.
NucleiQ2p (MeV)log${}_{10}{T}_{1/2}^{\mathrm{cal}.}$ (s)log${}_{10}{T}_{1/2}^{\mathrm{expt}.}$ (s)
Expt.WS4FRDMKTUYHFB29Expt. [41]WS4FRDMKTUYHFB29
${}_{12}^{19}$Mg0.750 [24]1.14−11.79${}_{-0.42}^{+0.47}$−14.28−11.40${}_{-0.20}^{+0.14}$ [24]
${}_{26}^{45}$Fe1.100 [20]2.061.891.191.92−2.23${}_{-1.17}^{+1.34}$−9.59−8.71−3.28−8.88−2.40${}_{-0.26}^{+0.26}$ [20]
1.140 [21]−2.71${}_{-0.57}^{+0.61}$−2.07${}_{-0.21}^{+0.24}$ [21]
1.154 [23]−2.87${}_{-0.18}^{+0.19}$−2.55${}_{-0.12}^{+0.13}$ [23]
1.210 [88]−3.50${}_{-0.52}^{+0.56}$−2.42${}_{-0.03}^{+0.03}$ [88]
${}_{28}^{48}$Ni1.350 [23]2.543.301.953.63−3.24${}_{-0.20}^{+0.20}$−10.47−12.84−7.73−13.62−2.08${}_{-0.78}^{+0.40}$ [23]
1.290 [89]−2.62${}_{-0.42}^{+0.44}$−2.52${}_{-0.22}^{+0.24}$ [89]
1.310 [90]−2.83${}_{-0.41}^{+0.43}$−2.52${}_{-0.22}^{+0.24}$ [91]
${}_{30}^{54}$Zn1.480 [22]1.982.771.651.61−2.95${}_{-0.19}^{+0.19}$−6.67−10.33−4.40−4.08−2.43${}_{-0.14}^{+0.20}$ [22]
1.280 [92]−0.87${}_{-0.24}^{+0.25}$−2.76${}_{-0.14}^{+0.15}$ [92]
${}_{36}^{67}$Kr1.690 [25]3.061.331.521.94−1.25${}_{-0.16}^{+0.16}$−9.272.750.46−3.34−1.70${}_{-0.02}^{+0.02}$ [25]

New window|CSV

Then, the 2p radioactivity half-lives are calculated within the GLDM by inputting the experimental and the four kinds of Q2p values. In calculations, l is taken as zero, assuming the 2p decay process is the fastest. The corresponding half-lives are shown in columns 7–11 of table 1. Moreover, the experimental half-lives are given in the last column. By observing the half-lives of columns 7–12, it is easy to know that the 2p decay half-lives are extremely sensitive to the Q2p values. For example, for the case of 67Kr, the Q2p difference given by the WS4 and FRDM models is 1.73 MeV, but the corresponding order of magnitude difference of the half-life is as high as 1012 s. In addition, it is seen that the experimental half-lives can be reproduced best by inputting the experimental Q2p values. It means that the closer to the experimental Q2p values, the better the experimental half-life can be reproduced. Hence, the Q2p value is the most important for the 2p radioactivity and the nuclear mass models should be improved by taking into account more reasonable physical factors. However, doing so is a great challenge.

Next the 2p radioactivity half-lives are predicted within the GLDM by inputting the Q2p values extracted from the WS4, FRDM, KTUY and HFB29 mass models. To identify the true and simultaneous emission, an energy criterion was proposed in [43], which reads Q${}_{2p}\gt 0$ and Qp<0.2Q2p. In addition, a condition on the 2p decay half-lives, −7<log${}_{10}{T}_{1/2}^{2{\rm{p}}}$<−1s (log${}_{10}{T}_{1/2}^{2{\rm{p}}}$ is the 2p decay decimal logarithm half-life, whose unit is second), was given to define the feasibility of experimental observation in [43]. The lower bound of log${}_{10}{T}_{1/2}^{2{\rm{p}}}={10}^{-7}$ s corresponds to the typical sensitivity limit of in-flight, projectile-fragmentation techniques. The upper bound of log${}_{10}{T}_{1/2}^{2{\rm{p}}}={10}^{-1}$ s ensures that the 2p radioactivity will not be dominated by β decay. However, the experimental 2p decay decimal logarithm half-life of the ${21}^{+}$ isomer state of 94Ag is 1.90 s [93]. Moreover, the 2p decay decimal logarithm half-life of 19Mg is measured as −11.40 s [24]. In addition, Goldansky pointed that one can possibly observe the true 2p radioactivity with the half-lives of log${}_{10}{T}_{1/2}^{2{\rm{p}}}$>−12 s [10, 94]. Thus, the condition on the 2p decay half-lives of [43] should be extended. To avoid losing some 2p decay candidates, in this article an extended criterion on 2p decay half-lives is used, which is written as −12<log${}_{10}{T}_{1/2}^{2{\rm{p}}}$<2s. According to the energy criterion and the new criterion on 2p decay half-lives, the Q2p values and half-lives of the true and simultaneous emission are listed in table 2.


Table 2.
Table 2.Same as table 1, but for the predicted 2p radioactivity half-lives by inputting the Q2p values extracted from the WS4 [63], FRDM [64], KTUY [74] and HFB29 [67] nuclear mass models.
NucleiQ2p (MeV)log${}_{10}{T}_{1/2}^{\mathrm{cal}.}$ (s)
WS4FRDMKTUYHFB29WS4FRDMKTUYHFB29
${}_{18}^{30}$Ar1.22−10.65
${}_{18}^{31}$Ar1.080.43−9.541.14
${}_{20}^{34}$Ca0.750.96−3.65−6.53
${}_{22}^{38}$Ti1.411.56−8.60−9.59
${}_{22}^{39}$Ti0.98−4.62
${}_{24}^{41}$Cr2.122.13−11.10−11.10
${}_{24}^{42}$Cr1.401.11−6.95−4.21
${}_{28}^{49}$Ni1.131.651.88−0.75−5.80−7.33
${}_{30}^{55}$Zn1.49−3.05
${}_{32}^{58}$Ge2.682.572.451.77−9.80−9.34−8.80−4.76
${}_{32}^{59}$Ge1.431.85−1.73−5.36
${}_{34}^{62}$Se3.642.933.273.04−12.00−9.75−10.90−10.20
${}_{34}^{63}$Se2.391.371.781.80−7.380.57−3.45−3.61
${}_{36}^{65}$Kr2.833.11−8.34−9.45
${}_{36}^{66}$Kr2.65−7.54
${}_{36}^{68}$Kr1.80−2.23
${}_{38}^{70}$Sr3.152.803.38−8.64−7.18−9.47
${}_{38}^{71}$Sr2.921.832.15−7.72−1.10−3.56
${}_{38}^{72}$Sr1.650.59
${}_{40}^{74}$Zr3.272.653.51−8.16−5.39−9.02
${}_{40}^{75}$Zr2.801.932.51−6.15−0.60−4.63
${}_{40}^{76}$Zr1.850.10
${}_{40}^{77}$Zr1.86−0.06
${}_{42}^{78}$Mo3.073.68−6.08−8.42
${}_{42}^{79}$Mo3.072.19−6.09−1.07
${}_{42}^{80}$Mo2.341.91−2.131.21
${}_{44}^{81}$Ru4.78−10.70
${}_{44}^{82}$Ru3.69−7.60
${}_{44}^{83}$Ru3.202.832.33−5.69−3.92−0.88
${}_{44}^{84}$Ru2.202.680.08−3.11
${}_{46}^{85}$Pd4.47−9.11
${}_{46}^{86}$Pd3.833.343.59−7.23−5.35−6.36
${}_{46}^{87}$Pd3.042.62−3.98−1.66
${}_{48}^{88}$Cd5.59−11.10
${}_{48}^{89}$Cd4.54−8.55
${}_{48}^{90}$Cd3.903.393.77−6.65−4.64−6.18
${}_{48}^{91}$Cd3.082.94−3.19−2.46
${}_{48}^{94}$Cd0.340.00
${}_{50}^{94}$Sn3.34−3.39
${}_{50}^{95}$Sn2.481.53
${}_{50}^{96}$Sn2.670.20
${}_{52}^{101}$Te5.45−9.54
${}_{54}^{107}$Xe3.08−0.24
${}_{56}^{111}$Ba3.46−2.28
${}_{58}^{114}$Ce4.94−7.12
${}_{58}^{116}$Ce3.22−0.01

New window|CSV

From table 2, the probable 2p decay candidates can be found in the region of Z≤50 by each mass model. However, the 2p decay modes are not observed in the Z=20, 26, 30 nuclides, which are predicted by the WS4 model and in the Z=26, 46, 48, 50 nuclides, which are predicted by the FRDM model. Similarly, in the cases of the KTUY and HFB29 mass models, the 2p radioactivity can not be detected by the current technique for the Z=18, 26, 28, 30, 44 and Z=20, 22, 24, 26, 30, 50 isotopes, respectively. In the region beyond Z=50, the 2p decay candidates can be predicted only by the HFB29 mass model, which can be observed in the last five lines of table 2. These 2p decay candidates are in or very close to the N=Z line. Recently, the decays of 59Ge, 63Se and 67Kr were studied in an experiment with the BigRIPS separator at the RIKEN Nishina Center [25]. It was shown no evidence for 2p emission of 59Ge and 63Se except for 67Kr. However, 63Se is predicted as a probable 2p decay candidate by the four mass models. For 59Ge, its 2p radioactivity cannot be observed by the predictions of the KTUY and HFB29 models. By the comparison between our predictions and the measurements of Goigoux et al, it can be seen that the prediction power of the KTUY and HFB29 mass models seems stronger. Probably, the microscopic effective nucleon–nucleon interactions contained in the KTUY and HFB29 models enhance the prediction power of the two models. Now the number of the discovered 2p emitters is still small, more measurements on 2p radioactivity are expected with the new generation of radioactive beam facilities, for example, the High Intensity heavy-ion Accelerator Facility of China [9598]. And we hope our predictions could be tested with them. In addition, in table 2, a general tendency for the log${}_{10}{T}_{1/2}^{2{\rm{p}}}$ can be seen: the log${}_{10}{T}_{1/2}^{2{\rm{p}}}$ half-lives of the light nuclei get shorter and the half-lives become longer for the heavy nuclei as long as the Q2p values of the light nuclei are not far away from those of the heavy nuclei. This is attributed to the following reason: for the light systems, the Coulomb barrier between the 2p cluster and daughter nucleus is low because of the smaller charge number so that the 2p cluster can penetrate the barrier more easily. However, the Coulomb barrier becomes higher and higher with the increase of Z. As a result, the 2p decay half-life gets longer in most cases for the heavy nuclei.

Relevant studies suggest that some neutron-deficient nuclei near the N=Z line, just above the N=Z=50 shell closures, exhibit large α-decay branches [85, 99103]. So, it is interesting to discuss the competition between the true 2p radioactivity and α-decay of the deficient-neutron nuclei beyond Z=50. To compare the true 2p decay half-lives with the α-decay half-lives reasonably, the α-decay half-lives are also calculated by the GLDM. In the GLDM calculations, the preformation factor of an α-particle is used the analytic form of [104] and the angular momenta carried by the α-particle are selected as 0. The α-decay energies (Q${}_{\alpha }$), α-decay half-lives (log${}_{10}{T}_{1/2}^{\alpha }$), and competition between the two decay modes are shown in table 3. In the last column of table 3, 2p (α) represents that the 2p radioactivity (α-decay) is the dominant decay mode. As can be seen from table 3, 101Te, 111Ba and 114Ce are dominated by the 2p radioactivity. For 107Xe and 116Ce, α-decay is the dominant decay mode. Thus, the 2p radioactivity of the two nuclei is not easy to be observed due to the influence of so large α-decay branches. Note that the predicted decay energies of 101Te are Q2p=5.45 MeV and Q${}_{\alpha }$=−0.19 MeV, so, its main decay mode is the 2p radioactivity.


Table 3.
Table 3.The competition between the true 2p radioactivity and α-decay for the nuclei beyond the proton-drip line. Q${}_{\alpha }$ denotes the α-decay energy, which is measured in MeV. The α-decay half-lives (log${}_{10}{T}_{1/2}^{\alpha }$) are calculated within the GLDM and measured in second.
NucleiMass ModelQ2p (MeV)Q${}_{\alpha }$ (MeV)log${}_{10}{T}_{1/2}^{2{\rm{p}}}$ (s)log${}_{10}{T}_{1/2}^{\alpha }$ (s)Decay mode
${}_{52}^{101}$TeHFB295.45−0.19−9.542p
${}_{54}^{107}$XeHFB293.084.80−0.24−5.70α
${}_{56}^{111}$BaHFB293.464.10−2.28−1.402p
${}_{58}^{114}$CeHFB294.944.25−7.12−1.112p
${}_{58}^{116}$CeHFB293.224.31−0.01−1.45α

New window|CSV

4. Conclusions

In this article, firstly the Q2p values of ${}_{12}^{19}$Mg, ${}_{26}^{45}$Fe, ${}_{28}^{48}$Ni, ${}_{30}^{54}$Zn and ${}_{36}^{67}$Kr have been extracted by the WS4, FRDM, KTUY and HFB29 nuclear mass models. By a comparison between the extracted Q2p values and the experimental ones, it is found that the experimental Q2p values can not be reproduced accurately by all the nuclear mass models. Meanwhile, the model dependence of the Q2p values is seen evidently. Then, the 2p radioactivity half-lives have been calculated in the framework of the GLDM by inputting different types of Q2p values. As a result, the uncertainties of the 2p decay half-lives are rather large due to the Q2p uncertainties. Meanwhile, the 2p radioactivity half-lives are reproduced well by inputting the Q2p values that are close to the experimental ones. In addition, to search for the new candidates of the true and simultaneous 2p radioactivity, the Q2p values of the even-Z nuclei beyond the 2p drip-line are extracted by the four kinds of nuclear mass models and the corresponding half-lives are predicted within the GLDM by inputting the four types of Q2p values. According to the energy and half-life constraint conditions, the probable 2p decay candidates are found in the region of Z≤50 with all the mass models used in this article. In the region beyond Z=50, the 2p-decaying candidates are predicted only by the HFB29 mass model. At last, the competition between the true 2p radioactivity and α-decay for the nuclei above N=Z=50 shell closures has been investigated. It is shown that 101Te, 111Ba and 114Ce prefer to decay by the 2p radioactivity and α-decay is the dominant decay mode for 107Xe and 116Ce. Hence, the 2p radioactivity of 107Xe and 116Ce is difficult to be discovered due to their large α-decay channels. We hope our predictions and discussion are useful for searching for the new candidates of the true 2p radioactivity in future.

Acknowledgments

We thank professor Shangui Zhou, professor Ning Wang and professor Fengshou Zhang for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants No. U1832120 and No. 11 675 265), the Natural Science Foundation for Outstanding Young Scholars of Hebei Province of China (Grants No. A2020210012 and A2018210146), the Continuous Basic Scientific Research Project (Grant No. WDJC-2019-13), and the Leading Innovation Project (Grant No. LC 192 209 000 701).


Reference By original order
By published year
By cited within times
By Impact factor

Faestermann T Górska M Grawe H 2013 Prog. Part. Nucl. Phys. 69 85
DOI:10.1016/j.ppnp.2012.10.002 [Cited within: 1]

Wang Y Z Gao Y H Cui J P Gu J Z 2020 Commun. Theor. Phys. 72 025303
DOI:10.1088/1572-9494/ab6906

Qiu C Zhou X R 2014 Commun. Theor. Phys. 61 101
DOI:10.1088/0253-6102/61/1/16

Pfützner M Karny M Grigorenko L et al. 2012 Rev. Mod. Phys. 84 567
DOI:10.1103/RevModPhys.84.567 [Cited within: 4]

Blank B Ploszajczak M 2008 Rep. Prog. Phys. 71 046301
DOI:10.1088/0034-4885/71/4/046301

Blank B Borge M J G 2008 Prog. Part. Nucl. Phys. 60 403
DOI:10.1016/j.ppnp.2007.12.001 [Cited within: 1]

Sonzogni A A 2002 Nucl. Data Sheets 95 1
DOI:10.1006/ndsh.2002.0001 [Cited within: 3]

Wang Y Z Li Y Qi C Gu J Z 2019 Chin. Phys. Lett. 36 032101
DOI:10.1088/0256-307X/36/3/032101

Wang Y Z Su X D Qi C Gu J Z 2019 Chin. Phys. C 43 114101
DOI:10.1088/1674-1137/43/11/114101 [Cited within: 1]

Goldansky V I 1960 Nucl. Phys. 19 482
DOI:10.1016/0029-5582(60)90258-3 [Cited within: 4]

Zel'dovich Y B 1960 Sov. Phys.-JETP 11 812
[Cited within: 1]

Karnaukhov V A Tarantin N I 1961 Sov. Phys.-JETP 12 771
[Cited within: 1]

Jackson K P Cardinal C U Evans H C Jelley N A Cerny J 1970 Phys. Lett. B 33 281
DOI:10.1016/0370-2693(70)90269-8 [Cited within: 1]

Cerny J Esterl J Gough R A Sextro R G 1970 Phys. Lett. B 33 284
DOI:10.1016/0370-2693(70)90270-4 [Cited within: 1]

Hofmann S Reisdorf W Münzenberg G Hessberger F P Schneider J R H Armbruster P 1982 Z. Phys. A 305 111
DOI:10.1007/BF01415018 [Cited within: 1]

Klepper O Batsch T Hofmann S Kirchner R Kurcewicz W Reisdorf W Roeckl E Schardt D Nyman G 1982 Z. Phys. A 305 305
DOI:10.1007/BF01415019 [Cited within: 1]

Kruppa A T Nazarewicz W 2004 Phys. Rev. C 69 054311
DOI:10.1103/PhysRevC.69.054311 [Cited within: 1]

Ferreira L S Lopes M C Maglione E 2007 Prog. Part. Nucl. Phys. 59 418
DOI:10.1016/j.ppnp.2007.01.011 [Cited within: 1]

Goldansky V I 1961 Nucl. Phys. 27 648
DOI:10.1016/0029-5582(61)90309-1 [Cited within: 1]

Pfützner M et al. 2002 Eur. Phys. J. A 14 279
DOI:10.1140/epja/i2002-10033-9 [Cited within: 4]

Giovinazzo J et al. 2002 Phys. Rev. Lett. 89 102501
DOI:10.1103/PhysRevLett.89.102501 [Cited within: 4]

Blank B et al. 2005 Phys. Rev. Lett. 94 232501
DOI:10.1103/PhysRevLett.94.232501 [Cited within: 4]

Dossat C et al. 2005 Phys. Rev. C 72 054315
DOI:10.1103/PhysRevC.72.054315 [Cited within: 6]

Mukha I et al. 2007 Phys. Rev. Lett. 99 182501
DOI:10.1103/PhysRevLett.99.182501 [Cited within: 5]

Goigoux T et al. 2016 Phys. Rev. Lett. 117 162501
DOI:10.1103/PhysRevLett.117.162501 [Cited within: 5]

Whaling W 1966 Phys. Rev. C 150 836
DOI:10.1103/PhysRev.150.836 [Cited within: 1]

KeKelis G J Zisman M S Scott D K et al. 1978 Phys. Rev. C 17 1929
DOI:10.1103/PhysRevC.17.1929 [Cited within: 2]

Bochkarev O V et al. 1989 Nucl. Phys. A 505 215
DOI:10.1016/0375-9474(89)90371-0 [Cited within: 1]

Cable M D et al. 1983 Phys. Rev. Lett. 50 404
DOI:10.1103/PhysRevLett.50.404 [Cited within: 1]

Bain C et al. 1996 Phys. Lett. B 373 35
DOI:10.1016/0370-2693(96)00109-8 [Cited within: 1]

Jänecke J 1965 Nucl. Phys. 61 326
DOI:10.1016/0029-5582(65)90907-7 [Cited within: 2]

Brown B A 1991 Phys. Rev. C 43 R1513
DOI:10.1103/PhysRevC.43.R1513 [Cited within: 2]

Nazarewicz W et al. 1996 Phys. Rev. C 53 740
DOI:10.1103/PhysRevC.53.740

Ormand W E 1997 Phys. Rev. C 55 2407
DOI:10.1103/PhysRevC.55.2407

Barker F C 2001 Phys. Rev. C 63 047303
DOI:10.1103/PhysRevC.63.047303

Brown B A Barker F C 2003 Phys. Rev. C 67 041304
DOI:10.1103/PhysRevC.67.041304

Grigorenko L V Zhukov M V 2007 Phys. Rev. C 76 014008
DOI:10.1103/PhysRevC.76.014008

Delion D S Liotta R J Wyss R 2013 Phys. Rev. C 87 034328
DOI:10.1103/PhysRevC.87.034328

Rotureau J Okolowicz J Ploszajczak M 2006 Nucl. Phys. A 767 13
DOI:10.1016/j.nuclphysa.2005.12.005

Gonalves M et al. 2017 Phys. Lett. B 774 14
DOI:10.1016/j.physletb.2017.09.032 [Cited within: 1]

Cui J P Gao Y H Wang Y Z Gu J Z 2020 Phys. Rev. C 101 014301
DOI:10.1103/PhysRevC.101.014301 [Cited within: 5]

Liu H M et al. 2021 Chin. Phys. C 45 024108
DOI:10.1088/1674-1137/abd01e

Olsen E et al. 2013 Phys. Rev. Lett. 110 222501
DOI:10.1103/PhysRevLett.110.222501 [Cited within: 9]

Olsen E et al. 2013 Phys. Rev. Lett. 111 139903
DOI:10.1103/PhysRevLett.110.222501 [Cited within: 9]

Galitsky V Cheltsov V 1964 Nucl. Phys. 56 86
DOI:10.1016/0029-5582(64)90455-9

Danilin B V Zhukov M V 1993 Phys. At. Nucl. 56 460


Grigorenko L V Johnson R C Mukha I G Thompson I J Zhukov M V 2000 Phys. Rev. Lett. 85 22
DOI:10.1103/PhysRevLett.85.22

Vasilevsky V Nesterov A Arickx F Broeckhove J 2001 Phys. Rev. C 63 034607
DOI:10.1103/PhysRevC.63.034607

Grigorenko L V Mukha I G Thompson I J Zhukov M V 2002 Phys. Rev. Lett. 88 042502
DOI:10.1103/PhysRevLett.88.042502

Grigorenko L V Zhukov M V 2003 Phys. Rev. C 68 054005
DOI:10.1103/PhysRevC.68.054005

Descouvemont P Tursunov E Baye D 2006 Nucl. Phys. A 765 370
DOI:10.1016/j.nuclphysa.2005.11.010

Grigorenko L V Zhukov M V 2007 Phys. Rev. C 76 014008
DOI:10.1103/PhysRevC.76.014008

Garrido E Jensen A Fedorov D 2008 Phys. Rev. C 78 034004
DOI:10.1103/PhysRevC.78.034004

Álvarez-Rodríguez R Jensen A S Garrido E Fedorov D V Fynbo H O U 2008 Phys. Rev. C 77 064305
DOI:10.1103/PhysRevC.77.064305

Álvarez-Rodríguez R Jensen A S Garrido E Fedorov D V 2010 Phys. Rev. C 82 034001
DOI:10.1103/PhysRevC.82.034001

Blank B et al. 2011 Acta Phys. Pol. B 42 545
DOI:10.5506/APhysPolB.42.545 [Cited within: 2]

Saxena G et al. 2017 Phys. Lett. B 775 126
DOI:10.1016/j.physletb.2017.10.055 [Cited within: 1]

Tavares O A P Medeiros E L 2018 Eur. Phys. J. A 54 65
DOI:10.1140/epja/i2018-12495-4

Sreeja I Balasubramaniam M 2019 Eur. Phys. J. A 55 33
DOI:10.1140/epja/i2019-12694-5

Singh D Saxena G 2012 Int. J. Mod. Phys. E 21 1250076
DOI:10.1142/S0218301312500760 [Cited within: 1]

Royer G Rousseau R 2009 Eur. Phys. J. A 42 541
DOI:10.1140/epja/i2008-10745-8 [Cited within: 2]

Royer G Subercaze A 2013 Nucl. Phys. A 917 1
DOI:10.1140/epja/i2008-10745-8 [Cited within: 2]

Dieperink A E L Van Isacker P 2009 Eur. Phys. J. A 42 269
DOI:10.1140/epja/i2009-10869-3

Liu M Wang N Deng Y G Wu X Z 2011 Phys. Rev. C 84 014333
DOI:10.1103/PhysRevC.84.014333

Wang N Liu M Wu X Z Meng J 2014 Phys. Lett. B 734 215
DOI:10.1016/j.physletb.2014.05.049 [Cited within: 5]

Möller P Sierk A J Ichikawa T Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1
DOI:10.1016/j.adt.2015.10.002 [Cited within: 4]

Möller P Mumpower M R Kawano T Myers W D 2019 At. Data Nucl. Data Tables 125 1
DOI:10.1016/j.adt.2015.10.002 [Cited within: 4]

Bhagwat A 2014 Phys. Rev. C 90 064306
DOI:10.1103/PhysRevC.90.064306

Kirson M W 2008 Nucl. Phys. A 798 29
DOI:10.1016/j.nuclphysa.2007.10.011 [Cited within: 1]

Goriely S 2014 Nucl. Phys. A 933 68
DOI:10.1016/j.nuclphysa.2014.09.045 [Cited within: 5]

http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire.htm


Zheng J S Wang N Y Wang Z Y Niu Z M Niu Y F Sun B 2014 Phys. Rev. C 90 014303
DOI:10.1103/PhysRevC.90.014303

Aboussir Y Pearson J M Dutta A K 1995 At. Data Nucl. Data Tables 61 127
DOI:10.1016/S0092-640X(95)90014-4

Liu M Wang N Li Z X 2006 Nucl. Phys. A 768 80
DOI:10.1016/j.nuclphysa.2006.01.011

Geng L S Toki H Meng J 2005 Prog. Theor. Phys. 113 785
DOI:10.1143/PTP.113.785

Qu X Y et al. 2013 Sci. China-Phys. Mech. Astron. 56 2031
DOI:10.1007/s11433-013-5329-5 [Cited within: 1]

Koura H Tachibana T Uno M Yamada M 2005 Prog. Theor. Phys. 113 305
DOI:10.1143/PTP.113.305 [Cited within: 5]

Duflo J Zuker A P 1995 Phys. Rev. C 52 23
DOI:10.1103/PhysRevC.52.R23

Qi C 2015 J. Phys. G: Nucl. Part. Phys. 42 045104
DOI:10.1088/0954-3899/42/4/045104

Nayak R C Satpathy L 2012 At. Data Nucl. Data Tables 98 616
DOI:10.1016/j.adt.2011.12.003 [Cited within: 2]

Wang Y Z Wang S J Hou Z Y Gu J Z 2015 Phys. Rev. C 92 064301
DOI:10.1103/PhysRevC.92.064301 [Cited within: 1]

Cui J P Zhang Y L Zhang S Wang Y Z 2018 Phys. Rev. C 97 014316
DOI:10.1103/PhysRevC.97.014316 [Cited within: 1]

Royer G Remaud B 1982 J. Phys. G: Nucl. Part. Phys. 8 L159
DOI:10.1088/0305-4616/8/10/002 [Cited within: 5]

Zhang H F Li J Q Zuo W Zhou X H Gan Z G 2007 Commun. Theor. Phys. 48 545
DOI:10.1088/0253-6102/48/3/031

Guo S Q Bao X J Li J Q Zhang H F 2014 Commun. Theor. Phys. 61 629
DOI:10.1088/0253-6102/61/5/15

Cui J P Zhang Y L Zhang S Wang Y Z 2016 Int. J. Mod. Phys. E 25 1650056
DOI:10.1142/S0218301316500567 [Cited within: 1]

Wang Y Z Dong J M Peng B B Zhang H F 2010 Phys. Rev. C 81 067301
DOI:10.1103/PhysRevC.81.067301

Wang Y Z Gu J Z Hou Z Y 2014 Phys. Rev. C 89 047301
DOI:10.1103/PhysRevC.89.047301 [Cited within: 7]

Anyas-Weiss N et al. 1974 Phys. Rep. 12 201
DOI:10.1016/0370-1573(74)90045-3 [Cited within: 1]

Bohr A Mottelson B R 1969 Nuclear Structure vol 1New York Benjamin
[Cited within: 1]

Audirac L et al. 2012 Eur. Phys. J. A 48 179
DOI:10.1140/epja/i2012-12179-1 [Cited within: 2]

Pomorski M et al. 2014 Phys. Rev. C 90 014311
DOI:10.1103/PhysRevC.90.014311 [Cited within: 2]

Wang M et al. 2017 Chin. Phys. C 41 030003
DOI:10.1088/1674-1137/41/3/030003 [Cited within: 1]

Pomorski M et al. 2011 Phys. Rev. C 83 061303R
DOI:10.1103/PhysRevC.83.061303 [Cited within: 1]

Ascher P et al. 2011 Phys. Rev. Lett. 107 102502
DOI:10.1103/PhysRevLett.107.102502 [Cited within: 2]

Mukha I et al. 2006 Nature 439 298
DOI:10.1038/nature04453 [Cited within: 1]

Goldansky V I 1988 Phys. Lett. B 212 11
DOI:10.1016/0370-2693(88)91226-9 [Cited within: 1]

Fang D Q Ma Y G 2020 Chin. Sci. Bull. 65 4018(in Chinese)
DOI:10.1360/TB-2020-0423 [Cited within: 1]

Ma Y G Zhao H W 2020 Sci. Sin.-Phys. Mech. Astron. 50 112001(in Chinese)
DOI:10.1360/SSPMA-2020-0377

Zhou X H 2018 Nucl. Phys. Rev. 35 339
DOI:10.11804/NuclPhysRev.35.04.339

Xiao G Q Xu H S Wang S C 2017 Nucl. Phys. Rev. 34 275(in Chinese)
DOI:10.11804/NuclPhysRev.34.03.275 [Cited within: 1]

Wang Y Z Li Z Y Yu G L Hou Z Y 2014 J. Phys. G: Nucl. Part. Phys. 41 055102
DOI:10.1088/0954-3899/41/5/055102 [Cited within: 1]

Wang Y Z Cui J P Zhang Y L Zhang S Gu J Z 2017 Phys. Rev. C 95 014302
DOI:10.1103/PhysRevC.95.014302

Gao Y Cui J Wang Y Gu J 2020 Sci. Rep. 10 9119
DOI:10.1038/s41598-020-65585-x

Wang Y Z Xing F Z Xiao Y Gu J Z 2021 Chin. Phys. C 45 044111
DOI:10.1088/1674-1137/abe112

Roeckl E 1996 Nuclear Decay ModesPoenaru D N Bristol Institute of Physics 237
[Cited within: 1]

Zhang H F Royer G Wang Y J Dong J M Zuo W Li J Q 2009 Phys. Rev. C 80 057301
DOI:10.1103/PhysRevC.80.057301 [Cited within: 1]

濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔虹磼閵忕姵鐏堢紒鐐劤椤兘寮婚悢鐓庣鐟滃繒鏁☉銏$厽闁规儳顕埥澶嬨亜椤撶偞鍋ラ柟铏矊椤曘儱螖婵犱線鍋楅梺璇″枟閿曘垽骞冮埡鍐<婵☆垳鍘х敮楣冩⒒娴gǹ顥忛柛瀣噽閹广垽宕熼姘К闂佹寧绻傞ˇ浼存偂濞嗘垟鍋撶憴鍕婵炲眰鍊濋崺銏ゅ醇閳垛晛浜鹃悷娆忓缁€鍐磼椤旇偐效妤犵偛绻樺畷銊╁级閹寸偛绁舵俊鐐€栭幐楣冨窗閹伴偊鏁婇煫鍥ㄧ⊕閳锋帡鏌涚仦鎹愬闁逞屽墮閸㈡煡婀侀梺鎼炲労閻忔稑鈽夐姀鐘殿槹濡炪倖鍔戦崐鏍р枔閹屾富闁靛牆妫楅崸濠囨煕鐎n偅灏伴柕鍥у椤㈡洟鏁愰崶鈺冩澖濠电姷顣介崜婵嬪箖閸岀偛鏄ラ柍鈺佸暞婵挳鏌ц箛鏇熷殌妤犵偐鍋撳┑鐘殿暜缁辨洟宕戦幋锕€纾归柡宥庡幗閸嬪淇婇妶鍛櫤闁稿绻濋弻鏇㈠醇濠靛洨鈹涙繝娈垮枟婵炲﹪寮婚埄鍐ㄧ窞濠电姴瀚惃鎴濃攽閳╁啫绲婚柣妤佹崌瀵鏁撻悩鑼槰闂佹寧绻傞幊宥嗙珶閺囩喓绡€闁汇垽娼цⅷ闂佹悶鍔嶅浠嬪极閸愵喖顫呴柣妯虹仛濞堥箖姊洪崨濠勭畵閻庢凹鍣e鎶藉幢濞戞瑧鍘遍梺鍝勬储閸斿本鏅堕鐣岀闁割偅绻勯悞鍛婃叏婵犲啯銇濈€规洏鍔嶇换婵嬪磼濮f寧娲樼换娑氣偓娑欋缚閻矂鏌涚€c劌鈧洟鎮惧畡鎳婃椽顢旈崟顓濈礈闂備礁鎼崐鍫曞磿閺屻儻缍栫€广儱顦伴埛鎴︽偡濞嗗繐顏╅柛鏂诲€濋弻锝嗗箠闁告柨瀛╃粋宥夊箹娓氬洦鏅濋梺闈涚墕濞层劑鏁嶅⿰鍐f斀閹烘娊宕愰弴銏犵柈妞ゆ劧绠戦崙鐘绘煛閸愩劎澧涢柣鎾寸懃椤啰鈧綆浜妤呮煃鐠囪尙澧涙い銊e劦閹瑩寮堕幋鐘辩礉婵°倗濮烽崑娑樏洪鈧偓浣糕枎閹惧厖绱堕梺鍛婃处娴滐綁宕洪崨瀛樷拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁閺嶎収鏁冮柨鏇楀亾缁炬儳婀遍幉鎼佹偋閸繄鐟查梺绋款儜缁绘繂顕i崼鏇為唶婵﹩鍘介悵鏇烆渻閵堝骸浜濇繛鑼枛瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐搴″箻缂佽鲸鎸婚幏鍛村礈閹绘帒澹堥梻浣瑰濞诧附绂嶉鍕靛殨妞ゆ劧绠戠壕濂告煟閹邦厽缍戞繛鍫熷姍濮婃椽宕橀崣澶嬪創闂佸摜濮甸懝鎯у祫闂佸憡顨堥崑鎰板绩娴犲鐓冮柦妯侯槹椤ユ粌霉濠婂懎浠滄い顓″劵椤﹁櫕銇勯妸銉含鐎殿噮鍋嗛埀顒婄秵閸撴稓澹曢挊澹濆綊鏁愭径瀣敪婵犳鍠栭崐鎼佹箒濠电姴锕ゅΛ妤呮偂閹邦儮搴ㄥ炊瑜濋崝鐔兼煃瑜滈崜姘辩矙閹烘洘鎳屽┑鐘愁問閸ㄤ即顢氶鐘愁潟闁圭儤鍨熷Σ鍫熸叏濡も偓濡宕滄潏鈺冪=闁稿本姘ㄥ瓭闂佹寧娲忛崕鑼矚鏉堛劎绡€闁搞儴鍩栭弲婵嬫⒑闂堟稓澧曢柟宄邦儔瀵娊顢橀姀鈾€鎷洪梺鍛婃崄鐏忔瑩宕㈠☉銏$厱闁靛ǹ鍎抽崺锝団偓瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喐娼忛崜褏蓱缂佺虎鍙€閸╂牠濡甸崟顖涙櫆闁兼祴鏅濋弳銈夋⒑閸濆嫭婀扮紒瀣灴閸┿垺鎯旈妶鍥╂澑闂佸搫娲ㄦ刊顓㈠船閸︻厾纾介柛灞剧懅缁愭梻绱撻崒娑滃閾荤偤鏌涢弴銊ユ灓濞存粍鐟╁缁樻媴閸涘﹤鏆堝┑鐐额嚋缁犳挸鐣烽姀锝冧汗闁圭儤鍨归敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犲酣鍩為幋锔绘晩閻熸瑦甯為幊鎾诲煝閺傚簱妲堥柕蹇娾偓鍐插婵犲痉鏉库偓鎰板磻閹剧粯鐓冮悷娆忓閻忔挳鏌熼瑙勬珚妤犵偞鎹囬獮鎺楀幢濡炴儳顥氶梻浣哥秺濡法绮堟笟鈧弻銊╁Χ閸涱亝鏂€闂佺粯蓱瑜板啴寮搁妶鍡欑闁割偅绮庨惌娆撴煛瀹€瀣М妤犵偛娲、妤佹媴閸欏浜為梻鍌欑劍閹爼宕愬Δ鍛獥闁归偊鍠楀畷鍙夌節闂堟侗鍎忛柣鎺戠仛閵囧嫰骞掗幋婵愪患闂佺粯甯楀浠嬪蓟濞戙垹绠涙い鏍ㄧ〒閵嗗﹪姊哄ú璇插箺妞ゃ劌鎳橀崺鐐哄箣閿旂粯鏅╃紓浣圭☉椤戝棝鎮鹃崼鏇熲拺缂備焦锕╁▓鏃傜磼缂佹ê绗ч柛鎺撳浮瀹曞ジ鎮㈡搴g嵁闂佽鍑界紞鍡涘礈濞戙埄鏁婇柡鍥ュ灪閳锋垿鏌i悢鐓庝喊闁搞倗鍠庨埞鎴︻敊閻愵剚姣堥悗娈垮枟婵炲﹪宕洪敓鐘茬<婵犲﹤鎷嬮崯搴ㄦ⒑閼姐倕孝婵炲/鍥х妞ゆ劦鍋傜槐锟�547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閹鏁愭惔鈥茬盎濡炪倕楠忛幏锟�4濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤凹闁哄懏鐓¢弻娑㈠Ψ閵忊剝鐝栧銈忓瘜閸ㄨ泛顫忓ú顏呭仭闂侇叏绠戝▓鍫曟⒑缁嬫鍎戦柛鐘崇墵瀹曟椽濮€閵堝懐鐫勯梺閫炲苯澧村┑锛勬暬瀹曠喖顢欓崜褎婢戦梻浣筋潐閸庢娊顢氶鈶哄洭鏌嗗鍡忔嫼缂備礁顑嗛娆撳磿閹扮増鐓欓柣鐔哄閹兼劙鏌i敐鍛Щ妞ゎ偅绮撻崺鈧い鎺戝閳ь兛绶氬顕€宕煎┑鍡氣偓鍨攽鎺抽崐鏇㈠疮椤愶妇宓侀柟鎵閳锋帡鏌涚仦鍓ф噮妞わ讣绠撻弻娑橆潩椤掑鍓板銈庡幖閻忔繈锝炲⿰鍫濈劦妞ゆ巻鍋撻柣锝囧厴椤㈡盯鎮滈崱妯绘珖闂備線娼х换鍫ュ垂閸濆嫧鏋斿Δ锝呭暞閳锋垿姊婚崼鐔剁繁婵$嫏鍐f斀闁炽儴娅曢崰姗€鏌涢埞鍨伈鐎殿噮鍣e畷濂告偄閸濆嫬绠ラ梻鍌欒兌椤㈠﹪锝炴径鎰闁哄洢鍨洪崕宥嗙箾瀹割喕绨奸柣鎾跺枛閺岋綁寮崼鐔告殸闁荤姵鍔х槐鏇犳閹烘挻缍囬柕濞垮劤閻熸煡鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂懎浠︾紒鍌涘浮閹剝鎯斿Ο缁樻澑闂備胶绮崝妯衡枖濞戞碍顫曢柨鏇炲€归悡鏇熶繆閵堝懎顏柣婵愪簻鑿愰柛銉戝秴濮涢梺閫炲苯澧紒瀣笩閹筋偅绻濆▓鍨仭闁瑰憡濞婇獮鍐ㄧ暋閹佃櫕鐎诲┑鐐叉閸ㄧ敻宕虹仦鍓х閻庢稒岣块惌鎺旂磼閻樺磭澧电€殿喛顕ч埥澶愬閻樼數鏉搁梻浣呵圭换鎰板箺濠婂牆鏋侀柡宥庡幗閳锋垹绱掗娑欑婵炲懏姊荤槐鎺旂磼濡偐鐤勯悗娈垮枦椤曆囧煡婢跺ň鍫柛娑卞灡濠㈡垿姊绘担鐟邦嚋缂佽鍊块獮濠冩償椤帞绋忛梺鍐叉惈閹冲繘鍩涢幋锔界厱婵炴垶锕崝鐔兼煙閾忣偅绀堢紒杈ㄥ笚濞煎繘濡搁敂缁㈡Ч婵°倗濮烽崑娑氭崲濮椻偓楠炲啴鍩¢崘鈺佺彴闂佽偐鈷堥崜锕傚疮鐎n喗鈷掑ù锝呮啞閸熺偛銆掑顓ф疁鐎规洖缍婇獮搴ㄥ礈閸喗鍠橀柛鈺嬬節瀹曘劑顢欑憴鍕伖闂備浇宕甸崑鐐电矙閸儱鐒垫い鎺嗗亾闁告ɑ鐗楃粩鐔煎即閵忊檧鎷绘繛杈剧到閹诧紕鎷归敓鐘插嚑妞ゅ繐妫涚壕濂告煏婵炲灝濡煎ù婊冩贡缁辨帡顢氶崨顓炵閻庡灚婢樼€氫即鐛崶顒夋晣闁绘ɑ褰冪粻濠氭⒒閸屾瑧顦﹂柟纰卞亞閳ь剚鍑归崜娑㈠箲閵忋倕绠抽柡鍐ㄦ搐灏忛梻浣告贡鏋紒銊у劋缁傚秴饪伴崼鐔哄幐闂佹悶鍎洪悡渚€顢旈崼鐔封偓鍫曟煠绾板崬鍘撮柛瀣尭閳绘捇宕归鐣屽蒋闂備胶枪椤戝懘鏁冮妶澶樻晪闁挎繂娲﹀畷澶愭偠濞戞帒澧查柣搴☆煼濮婅櫣鎷犻垾宕団偓濠氭煕韫囧骸瀚庨柛濠冪箓椤繒绱掑Ο璇差€撻梺鑽ゅ枛閸嬪﹪宕电€n剛纾藉ù锝呭閸庢劙鏌涢妸銊ュ姷婵☆偆鍠庨—鍐Χ閸℃ê钄奸梺鎼炲妼缂嶅﹪骞冮悙鍝勫瀭妞ゆ劗濮崇花濠氭⒑閸︻厼鍔嬮柛鈺侊躬瀵劍绻濆顓炩偓鍨叏濡厧浜鹃悗姘炬嫹40缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幐楣冨焵椤掑喚娼愭繛鍙夌墪鐓ら柕濞у懍绗夐梺鍝勫暙閻楀﹪鎮″▎鎾寸厵妞ゆ牕妫楅懟顖氣枔閸洘鈷戠€规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡烽钘夌紦闂備線鈧偛鑻晶鐗堢箾閹寸姵鏆鐐寸墬閹峰懘宕ㄦ繝鍕ㄥ亾椤掑嫭鐓熼幖鎼灣缁夐潧霉濠婂啰鍩i柟顔哄灲瀹曞崬鈽夊▎蹇庡寲闂備焦鎮堕崕鑽ゅ緤濞差亜纾婚柟鎹愵嚙缁€鍌炴煕濞戝崬寮炬俊顐g矌缁辨捇宕掑顑藉亾瀹勬噴褰掑炊閵婏絼绮撻梺褰掓?閻掞箓宕戦敓鐘崇厓闁告繂瀚崳褰掓煢閸愵亜鏋旈柍褜鍓欓崢婊堝磻閹剧粯鐓曢柡鍥ュ妼娴滅偞銇勯幘瀛樸仢婵﹥妞介獮鎰償閿濆洨鏆ゆ繝鐢靛仩鐏忔瑦绻涢埀顒傗偓瑙勬礃閸ㄥ潡鐛Ο鑲╃<婵☆垵顕ч崝鎺楁⒑閼姐倕鏋戦柣鐔村劤閳ь剚鍑归崜鐔风暦閵忥絻浜归柟鐑樻尨閹锋椽姊洪崨濠勭畵閻庢凹鍘奸蹇撯攽鐎n偆鍘遍柟鍏肩暘閸ㄥ綊鎮橀埡鍌欑箚闁告瑥顦慨鍥殰椤忓啫宓嗙€规洖銈搁幃銏ゅ传閸曨偄顩梻鍌氬€烽懗鍓佹兜閸洖绀堟繝闈涙灩濞差亜鍐€妞ゆ劑鍎卞皬缂傚倷绶¢崑鍕偓娈垮墴濮婂宕掑顑藉亾妞嬪孩顐芥慨姗嗗厳缂傛氨鎲稿鍫罕闂備礁鎼崯顐﹀磹婵犳碍鍎楅柛鈩冾樅瑜版帗鏅查柛顐亜濞堟瑩姊洪懡銈呮瀾閻庢艾鐗撳顕€宕煎┑鍡欑崺婵$偑鍊栧Λ渚€锝炴径灞稿亾閸偆澧垫慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电偞鎸荤喊宥夈€冩繝鍌滄殾闁靛繈鍊栫€电姴顭跨捄鐑橆棡闁诲孩妞介幃妤呭礂婢跺﹣澹曢梻浣告啞濞诧箓宕滃☉銏犲偍闂侇剙绉甸埛鎴︽煕濠靛棗顏╅柡鍡欏仱閺岀喓绮欓崹顔规寖婵犮垼顫夊ú鐔肩嵁閹邦厽鍎熸繛鎴烆殘閻╁酣姊绘笟鈧ḿ褎顨ヨ箛鏇燁潟闁哄洠鍋撻埀顒€鍊块幊鐘活敆閸屾粣绱查梻浣告惈閸燁偊宕愰幖浣稿嚑婵炴垶鐟f禍婊堟煏韫囧﹤澧茬紒鈧€n喗鐓欐い鏃囶潐濞呭﹥銇勯姀鈩冪闁挎繄鍋ら、姗€鎮滈崱姗嗘%婵犵數濮烽弫鎼佸磻閻樿绠垫い蹇撴缁€濠囨煃瑜滈崜姘跺Φ閸曨垼鏁冮柕蹇婃櫆閳诲牓姊虹拠鈥虫珯缂佺粯绻堝畷娲焵椤掍降浜滈柟鐑樺灥椤忣亪鏌嶉柨瀣诞闁哄本绋撴禒锕傚箲閹邦剦妫熼梻渚€鈧偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欐祰椤鐣峰Ο琛℃灃婵炴垯鍩勯弫浣衡偓鍏夊亾闁告洦鍓涢崢鍛婄箾鏉堝墽鍒板鐟帮躬瀹曟洝绠涢弬璁崇盎濡炪倖鎸撮崜婵堟兜閸洘鐓欏瀣閳诲牓鏌涢妸鈺冪暫鐎规洘顨婂畷銊╊敍濞戞ḿ妯嗛梻鍌氬€搁崐椋庢濮樿泛鐒垫い鎺戝€告禒婊堟煠濞茶鐏︾€规洏鍨介獮鏍ㄦ媴閸︻厼骞橀梻浣告啞閸旀ḿ浜稿▎鎾虫槬闁挎繂鎳夐弨浠嬫煥濞戞ê顏柡鍡╁墴閺岀喖顢欓悾灞惧櫚閻庢鍠栭悥濂哥嵁鐎n噮鏁囬柣鎰儗閸熷本绻濋悽闈浶fい鏃€鐗犲畷鏉课旈崨顔芥珖闂佸啿鎼幊搴g矆閸屾稓绠鹃柟瀵稿仧椤e弶銇勯锝嗙闁哄被鍔岄埞鎴﹀幢濡桨鐥柣鐔哥矌婢ф鏁Δ鍛柧闁哄被鍎查悡鏇㈡煃閳轰礁鏆熼柟鍐叉嚇閺岋綁骞橀崘娴嬪亾閹间讲鈧棃宕橀鍢壯囨煕閹扳晛濡垮ù鐘插⒔缁辨帡鎮欓浣哄嚒缂備礁顦晶搴ㄥ礆閹烘鐓涢柛娑卞枛娴滄粎绱掗悙顒€顎滃瀛樻倐瀵彃鈹戠€n偀鎷洪梻鍌氱墛缁嬫挻鏅堕弴鐔虹閻犲泧鍛殼濡ょ姷鍋涘Λ婵嬪极閹邦厼绶為悗锛卞嫬顏归梻鍌欑濠€杈ㄧ仚濠电偛顕崗姗€宕洪妷锕€绶為悗锝冨妺缁ㄥ姊洪幐搴㈩梿妞ゆ泦鍐惧殨妞ゆ洍鍋撻柡灞剧洴閸╃偤骞嗚婢规洖鈹戦敍鍕杭闁稿﹥鐗滈弫顕€骞掑Δ浣规珖闂侀潧锛忛埀顒勫磻閹炬剚娼╅柣鎰靛墮椤忥拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偁鍨圭粊锕傛⒑閸涘﹤濮﹂柛鐘崇墱缁粯绻濆顓犲幈闂佽宕樼亸娆戠玻閺冨牊鐓冮柣鐔稿缁犺尙绱掔紒妯肩疄濠殿喒鍋撻梺鎸庣箓濡盯濡撮幇顑╂柨螖婵犱胶鍑归梺鍦归崯鍧楁偩瀹勬壋鏀介悗锝庝簻缁愭盯鏌f惔銏⑩姇瀹€锝呮健瀹曘垽鏌嗗鍡忔嫼闂佸憡绻傜€氼剟寮虫繝鍥ㄧ厱閻庯綆鍋呯亸鐢电磼鏉堛劌绗ч柍褜鍓ㄧ紞鍡涘磻閸涱厾鏆︾€光偓閳ь剟鍩€椤掍緡鍟忛柛锝庡櫍瀹曟垶绻濋崶褏鐣烘繛瀵稿Т椤戝懘宕归崒娑栦簻闁规壋鏅涢悘鈺傤殽閻愭潙鐏存慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍婵犵數鍋犻婊呯不閹达讣缍栨繝闈涱儏鎯熼梺鍐叉惈閸婂憡绂掗銏♀拺閻庡湱濮甸妴鍐偣娴g懓绲婚崡閬嶆煕椤愮姴鍔滈柣鎾寸懇閺岋綁骞囬棃娑橆潽缂傚倸绉甸崹鍧楀蓟閻旂厧绀傞柛蹇曞帶閳ь剚鍔欓弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戙垹绠婚柛妤冨仜椤洤螖閻橀潧浠滅紒缁橈耿瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟濞戙垹绠婚柤纰卞墻濡差噣姊洪幖鐐插缂佽鐗撳濠氬Ω閳哄倸浜滈梺鍛婄箓鐎氬懘濮€閵忋垻锛滈梺閫炲苯澧寸€规洘甯¢幃娆戔偓鐢登归獮鍫熺節閻㈤潧浠﹂柛銊ョ埣閺佸啴顢曢敃鈧紒鈺冪磽娴h疮缂氱紒鐘荤畺閺屾盯顢曢敐鍥╃暭闂佺粯甯楅幃鍌炲蓟閿涘嫪娌紒瀣仢閳峰鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂嫮鐭掗柨婵堝仱瀹曞爼顢楁担鍙夊闂傚倷绶¢崑鍡涘磻濞戙垺鍤愭い鏍ㄧ⊕濞呯姴螖閿濆懎鏆為柣鎾寸懇閺屾盯骞嬪▎蹇婂亾閺嶎偀鍋撳鐐
相关话题/proton radioactivity exotic