删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Relativistic Landau quantization in the spiral dislocation spacetime

本站小编 Free考研考试/2022-01-02

A V D M Maia, K Bakke,Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB, Brazil

Received:2020-08-18Revised:2020-11-26Accepted:2020-12-6Online:2021-01-25


Abstract
We analyse the interaction of a relativistic electron with a uniform magnetic field in the spiral dislocation spacetime. We show that analytical solutions to the Dirac equation can be obtained, where the spectrum of energy corresponds to the relativistic Landau levels. We also analyse the influence of the spiral dislocation on the relativistic Landau levels by showing that there exists an analogue of the Aharonov-Bohm effect for bound states.
Keywords: spiral dislocation spacetime;relativistic Landau quantization;Aharonov-Bohm effect;relativistic wave equations;Dirac equation


PDF (260KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
A V D M Maia, K Bakke. Relativistic Landau quantization in the spiral dislocation spacetime. Communications in Theoretical Physics, 2021, 73(2): 025103- doi:10.1088/1572-9494/abd0e4

1. Introduction

In recent decades, some materials described by the Dirac equation have drawn a great deal of attention in the literature. Examples of these materials are graphene [1-6], fullerenes [7-9] and topological insulators [10]. By using graphene as an example, quantum effects like the quantum Hall effect [11, 12], the Aharonov-Bohm effect [6, 13-15] and the Klein paradox [16, 17] have been investigated. In particular, the interaction of an electron in graphene with a uniform magnetic field can yield a spectrum of energy known as the relativistic Landau levels [13, 18-26]. From the perspective of achieving relativistic bound states, the confinement of electrons to a quantum dot or a quantum ring in a graphene layer, in the presence of a uniform magnetic field, has also been dealt with in [14, 15, 27]. There, some characteristics of this material have been analysed, such as the magnetization [14, 27]. Furthermore, quantum effects associated with the presence of topological defects in graphene have also been investigated [2, 6, 13-15, 27, 28]. It is worth noting that the description of a topological defect in a graphene layer follows the same mathematical description of topological defects in gravitation [6, 14, 18, 27, 29-74]. This geometric description of topological defects in materials described by the Dirac equation is known in the literature as the Katanaev-Volovich approach [75-78]. In this model, linear topological defects in solids can be described by using the differential geometry. The information about the strain and stress produced by the defect in the elastic medium is described by geometric quantities, such as the metric and the curvature tensor. Besides, the presence of topological defects in an elastic medium shows the possibility of finding analogue effects of the Aharonov-Bohm effect in solids [79-83].

An interesting point raised in [28, 84] is the possibility of describing an edge dislocation in graphene as a pair of pentagon-heptagon disclinations. In particular, this pair of pentagon-heptagon disclinations in graphene could be described by considering a spiral dislocation in the graphene layer [74]. Therefore, inspired by these studies of graphene, in this work we analyse a relativistic electron that interacts with a uniform magnetic field in the presence of a spiral dislocation. In the context of gravitation, this interaction can be viewed as the relativistic Landau quantization in the spiral dislocation spacetime [69, 74]. We show that analytical solutions to the Dirac equation can be obtained. Besides, we show that an analogue of the Aharonov-Bohm effect [79-83] exists.

The structure of this paper is as follows: in section 2, we introduce the line element of the spiral dislocation spacetime. Then, we analyse the interaction of a relativistic electron with a uniform magnetic field by searching for relativistic bound state solutions to the Dirac equation. In section 3, we present our conclusions.

2. Relativistic Landau quantization

Let us analyse the interaction of a relativistic electron with a uniform magnetic field in the spacetime with a spiral dislocation [69, 74, 78]. By using the units ${\hslash }=1$ and c=1, therefore, the spiral dislocation spacetime is described as the line element [69, 74, 78]:$\begin{eqnarray}{{\rm{d}}{s}}^{2}=-{{\rm{d}}{t}}^{2}+{{\rm{d}}{r}}^{2}+2\beta \,{\rm{d}}{r}\,{\rm{d}}\varphi +\left({\beta }^{2}+{r}^{2}\right){\rm{d}}{\varphi }^{2}+{{\rm{d}}{z}}^{2},\end{eqnarray}$where the constant β is the parameter related to the distortion of the topological defect. Note that the spatial part of the line element (1) describes the distortion of a circle into a spiral. In this case, the dislocation is parallel to the plane z=0; hence, it corresponds to an edge dislocation in the context to the description of topological defects in solids [70, 74, 78, 85]. Even though we are dealing with a topological defect in the spacetime, we can consider the parameter β to be defined in the range $0\,\lt \,\beta \,\lt \,1$ in the same way as the description of topological defects in solids [70, 74, 78, 85].

Recently, we have discussed the behaviour of a Dirac particle confined to a hard-wall confining potential in the spacetime with a spiral dislocation [69]. We have shown that the Dirac equation is dealt with based on the spinor theory in curved spacetime [86]. In short, the spinors are defined in the local reference frame of the observers through a non-coordinate basis ${\hat{\theta }}^{a}={{\boldsymbol{e}}}_{\,\,\mu }^{a}\left(x\right){{\rm{d}}{x}}^{\mu }$, where the Latin indices $a,b,c=0,1,2,3$ indicate the local reference frame. Moreover, the components ${{\boldsymbol{e}}}_{\,\,\mu }^{a}\left(x\right)$ are called tetrads and satisfy the relation [86, 87]: ${g}_{\mu \nu }\left(x\right)={{\boldsymbol{e}}}_{\,\,\mu }^{a}\left(x\right){{\boldsymbol{e}}}_{\,\,\nu }^{b}\left(x\right){\eta }_{{ab}}$, where ${\eta }_{{ab}}=\mathrm{diag}(-+++)$ is the Minkowski tensor. Note that the tetrads have an inverse, which is defined as ${{\rm{d}}{x}}^{\mu }={{\boldsymbol{e}}}_{\,\,a}^{\mu }\left(x\right){\hat{\theta }}^{a}$, and they are related through ${{\boldsymbol{e}}}_{\,\,\mu }^{a}\left(x\right){{\boldsymbol{e}}}_{\,\,b}^{\mu }\left(x\right)={\delta }_{\,\,b}^{a}$ and ${{\boldsymbol{e}}}_{\,\,a}^{\mu }\left(x\right){{\boldsymbol{e}}}_{\,\,\nu }^{a}\left(x\right)={\delta }_{\,\,\nu }^{\mu }$. Therefore, let us write the tetrads and the inverse as [69, 74]:$\begin{eqnarray}{{\boldsymbol{e}}}_{\,\,\mu }^{a}\left(x\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0\\ 0 & 1 & \beta & 0\\ 0 & 0 & r & 0\\ 0 & 0 & 0 & 1\end{array}\right),\,\,\,\,{{\boldsymbol{e}}}_{\,\,a}^{\mu }\left(x\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0\\ 0 & 1 & -\displaystyle \frac{\beta }{r} & 0\\ 0 & 0 & \displaystyle \frac{1}{r} & 0\\ 0 & 0 & 0 & 1\end{array}\right).\end{eqnarray}$

Thereby, by solving the Maurer-Cartan structure equations [87] ${T}^{a}={\rm{d}}{\hat{\theta }}^{a}+{\omega }_{\,\,b}^{a}\wedge {\hat{\theta }}^{b}$ (where the operator d corresponds to the exterior derivative, the symbol ∧ means the wedge product, ${T}^{a}={T}_{\,\,\mu \nu }^{a}\,{{\rm{d}}{x}}^{\mu }\wedge {{\rm{d}}{x}}^{\nu }$ is the torsion 2-form and ${\omega }_{\,\,b}^{a}\,={\omega }_{\mu \,\,b}^{\,\,a}\left(x\right){{\rm{d}}{x}}^{\mu }$ is the connection 1-form), we obtain [74]$\begin{eqnarray}{T}^{1}=2\pi \,\beta \,\delta \left(r\right)\delta \left(\varphi \right){dr}\wedge d\varphi ;\,\,\,\,{\omega }_{\varphi \,\,1}^{\,\,2}\left(x\right)=-{\omega }_{\varphi \,\,\,2}^{\,\,1}\left(x\right)=1,\end{eqnarray}$where $\delta \left(r\right)\delta \left(\varphi \right)={\delta }_{2}\left(\vec{r}\right)$ is the two-dimensional delta function [81, 88].

Hence, we have a spacetime with the presence of torsion. As shown in [89], the information about the torsion of the spacetime can be introduced into the Dirac equation through the irreducible components of the torsion tensor. In particular, with the torsion 2-form given in equation (3), the only non-null component of the irreducible components of the torsion tensor is [74]:$\begin{eqnarray}{T}_{\varphi }={T}_{\,\,\varphi \,r}^{r}=-{T}_{\,\,r\,\varphi }^{r}=-2\pi \,\beta \,\delta \left(r\right)\delta \left(\varphi \right),\end{eqnarray}$which is a component of the trace four-vector ${T}_{\mu }$. Observe that the trace four-vector ${T}_{\mu }$ does not couple with fermions as shown in [89]. Therefore, the trace four-vector ${T}_{\mu }$ can be introduced into the Dirac equation through a non-minimal coupling given by:$\begin{eqnarray}{\rm{i}}{\gamma }^{\mu }\,{{\rm{\nabla }}}_{\mu }\to {\rm{i}}{\gamma }^{\mu }\,{{\rm{\nabla }}}_{\mu }+\mu \,{\gamma }^{\mu }\,{T}_{\mu },\end{eqnarray}$where μ is an arbitrary non-minimal coupling parameter (dimensionless) and$\begin{eqnarray}{{\rm{\nabla }}}_{\mu }={\partial }_{\mu }+\displaystyle \frac{{\rm{i}}}{4}\,{\omega }_{\mu {ab}}\left(x\right){{\rm{\Sigma }}}^{{ab}}.\end{eqnarray}$Furthermore, we have that ${{\rm{\Sigma }}}^{{ab}}=\tfrac{{\rm{i}}}{2}\left[{\gamma }^{a},{\gamma }^{b}\right]$, where the ${\gamma }^{a}$ matrices are defined in the local reference frame, i.e. they are the Dirac matrices in the Minkowski spacetime [90]:$\begin{eqnarray}{\gamma }^{0}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right);\,\,\,{\gamma }^{{\rm{i}}}={\gamma }^{0}\,{\hat{\alpha }}^{{\rm{i}}}=\left(\begin{array}{cc}0 & {\sigma }^{{\rm{i}}}\\ -{\sigma }^{{\rm{i}}} & 0\end{array}\right);\,\,\,{{\rm{\Sigma }}}^{{\rm{i}}}=\left(\begin{array}{cc}{\sigma }^{{\rm{i}}} & 0\\ 0 & {\sigma }^{{\rm{i}}}\end{array}\right).\end{eqnarray}$Observe that $\vec{{\rm{\Sigma }}}$ is the spin vector and the matrices ${\sigma }^{{\rm{i}}}$ are the Pauli matrices, which in turn satisfies the relation $\left({\sigma }^{{\rm{i}}}\,{\sigma }^{j}+{\sigma }^{j}\,{\sigma }^{{\rm{i}}}\right)=2\,{\eta }^{{ij}}$.

From now on, let us consider the presence of a uniform magnetic field $\vec{B}={B}_{0}\,\hat{z}$. Then, we can write the electromagnetic four-vector potential in the local reference frame of the observers as ${A}_{2}={B}_{0}\,r/2$. Thereby, in the presence of the uniform magnetic field, the covariant form of the Dirac equation is$\begin{eqnarray}{\rm{i}}{\gamma }^{\mu }\,{{\rm{\nabla }}}_{\mu }\psi +\mu \,{\gamma }^{\mu }\,{T}_{\mu }\psi -q\,{\gamma }^{\mu }\,{A}_{\mu }\,\psi =m\,\psi .\end{eqnarray}$

Since we are interested in the region $r\ne 0$, the contribution associated with ${T}_{\mu }$ can be neglected. Hence, by using the tetrads field (2), the Dirac equation (8) becomes$\begin{eqnarray}\begin{array}{rcl}{\rm{i}}\displaystyle \frac{\partial \psi }{\partial t} & = & m{\gamma }^{0}\psi -{\rm{i}}{\hat{\alpha }}^{1}\left(\displaystyle \frac{\partial }{\partial \,r}+\displaystyle \frac{1}{2r}\right)\psi \\ & & -{\rm{i}}\displaystyle \frac{{\hat{\alpha }}^{2}}{r}\left(\displaystyle \frac{\partial }{\partial \varphi }-\beta \displaystyle \frac{\partial }{\partial \,r}\right)\psi -{\rm{i}}{\hat{\alpha }}^{3}\displaystyle \frac{\partial \psi }{\partial z}+\displaystyle \frac{q\,{B}_{0}\,r}{2}\,{\hat{\alpha }}^{2}\psi .\end{array}\end{eqnarray}$

We can write the solution to the Dirac equation (9) in the form$\begin{eqnarray}\psi ={{\bf{e}}}^{-{\rm{i}}{ \mathcal E }t}\left(\begin{array}{c}\phi \\ \xi \end{array}\right),\end{eqnarray}$where $\phi =\phi \left(r,\varphi ,z\right)$ and $\xi =\xi \left(r,\varphi ,z\right)$ are two-spinors. Then, by substituting (10) into the Dirac equation (9), we obtain two coupled equations of φ and ξ. The first coupled equation is$\begin{eqnarray}\begin{array}{rcl}\left({ \mathcal E }-m\right)\phi & = & \left[-{\rm{i}}{\sigma }^{1}\displaystyle \frac{\partial }{\partial r}-\displaystyle \frac{{\rm{i}}{\sigma }^{1}}{2r}+{\rm{i}}\displaystyle \frac{\beta \,{\sigma }^{2}}{r}\displaystyle \frac{\partial }{\partial r}\right.\\ & & \left.-\displaystyle \frac{{\rm{i}}{\sigma }^{2}}{r}\displaystyle \frac{\partial }{\partial \varphi }-{\rm{i}}{\sigma }^{3}\displaystyle \frac{\partial }{\partial z}+\displaystyle \frac{q\,{B}_{0}\,r}{2}\,{\sigma }^{2}\right]\xi .\end{array}\end{eqnarray}$The second coupled equation is$\begin{eqnarray}\begin{array}{rcl}\left({ \mathcal E }+m\right)\xi & = & \left[-{\rm{i}}{\sigma }^{1}\displaystyle \frac{\partial }{\partial r}-\displaystyle \frac{{\rm{i}}{\sigma }^{1}}{2r}+{\rm{i}}\displaystyle \frac{\beta \,{\sigma }^{2}}{r}\displaystyle \frac{\partial }{\partial r}\right.\\ & & \left.-\displaystyle \frac{{\rm{i}}{\sigma }^{2}}{r}\displaystyle \frac{\partial }{\partial \varphi }-{\rm{i}}{\sigma }^{3}\displaystyle \frac{\partial }{\partial z}+\displaystyle \frac{q\,{B}_{0}\,r}{2}\,{\sigma }^{2}\right]\phi .\end{array}\end{eqnarray}$

Therefore, by eliminating ξ in equation (12) and by substituting it into equation (11), we obtain the following second-order differential equation:$\begin{eqnarray}\begin{array}{l}\left({{ \mathcal E }}^{2}-{m}^{2}\right)\phi =-\left[1+\frac{{\beta }^{2}}{{r}^{2}}\right]\frac{{\partial }^{2}\phi }{\partial {r}^{2}}\\ \quad -\,\left[\frac{1}{r}-\frac{{\beta }^{2}}{{r}^{3}}+\frac{{\rm{i}}\,\beta \,{\sigma }^{3}}{{r}^{2}}-{\rm{i}}{q}\,{B}_{0}\,\beta \right]\frac{\partial \phi }{\partial r}\\ \quad -\,\frac{1}{{r}^{2}}\frac{{\partial }^{2}\phi }{\partial {\varphi }^{2}}+\frac{{\rm{i}}{\sigma }^{3}}{{r}^{2}}\frac{\partial \phi }{\partial \varphi }\\ \quad +\,\frac{1}{4{r}^{2}}\,\phi +\frac{{\rm{i}}\beta \,{\sigma }^{3}}{2{r}^{3}}\,\phi -\frac{\beta }{{r}^{3}}\frac{\partial \phi }{\partial \varphi }+\frac{2\beta }{{r}^{2}}\frac{{\partial }^{2}\phi }{\partial \varphi \partial r}\\ \quad -\,\frac{{\partial }^{2}\phi }{\partial {z}^{2}}+\frac{{{qB}}_{0}\,{\sigma }^{3}}{2}\phi -{\rm{i}}{{qB}}_{0}\frac{\partial \phi }{\partial \varphi }\\ \quad +\,\frac{{{\rm{i}}{qB}}_{0}}{2}\,\frac{\beta }{r}\,\phi +\frac{{q}^{2}{B}_{0}^{2}\,{r}^{2}}{4}.\end{array}\end{eqnarray}$

In search of a solution to equation (13), we need to observe that φ is an eigenfunction of ${\sigma }^{3}$, where ${\sigma }^{3}\phi =\pm \phi =s\,\phi $ ($s=\pm 1$). Besides, this solution can be written in terms of the eigenvalues of the z-component of the total angular momentum and the linear momentum operators as$\begin{eqnarray}\phi \left(r,\varphi ,z\right)={{\rm{e}}}^{{\rm{i}}\left(l+1/2\right)\varphi +{\rm{i}}{kz}}\,u\left(r\right),\end{eqnarray}$where $l=0,\pm 1,\pm 2,\pm 3,\pm 4\ldots $ and k is a constant. Henceforth, we simplify our discussion by taking k=0. In this way, by substituting the solution (14) into equation (13), we obtain the radial equation$\begin{eqnarray}\begin{array}{l}\left(1+\displaystyle \frac{{\beta }^{2}}{{r}^{2}}\right)u^{\prime\prime} +\left(\displaystyle \frac{1}{r}-\displaystyle \frac{{\beta }^{2}}{{r}^{3}}-{\rm{i}}\displaystyle \frac{2\beta \,\nu }{{r}^{2}}-{\rm{i}}{m}\,\omega \,\beta \right)u^{\prime} \\ \quad -\,\displaystyle \frac{{\nu }^{2}}{{r}^{2}}\,u+{\rm{i}}\displaystyle \frac{\beta \,\nu }{{r}^{3}}\,u-\displaystyle \frac{{\rm{i}}\,m\,\omega \,\beta }{2r}u\\ \quad -\,\displaystyle \frac{{m}^{2}{\omega }^{2}\,{r}^{2}}{4}u+\tau \,u=0,\end{array}\end{eqnarray}$where we have defined the parameters$\begin{eqnarray}\begin{array}{rcl}\nu & = & l+\displaystyle \frac{1}{2}\left(1-s\right);\\ \omega & = & \displaystyle \frac{q\,{B}_{0}}{m};\\ \tau & = & {{ \mathcal E }}^{2}-{m}^{2}-m\,\omega \,\nu -s\,m\,\omega .\end{array}\end{eqnarray}$

Let us search for a solution to the radial equation (15); therefore, let us take [70, 85]$\begin{eqnarray}u\left(r\right)=\exp \left({\rm{i}}\left[\nu -\displaystyle \frac{m\omega {\beta }^{2}}{2}\right]\,{\tan }^{-1}\left(\displaystyle \frac{r}{\beta }\right)\right)\times {{\rm{e}}}^{{\rm{i}}m\omega \beta r/2}\times f\left(r\right),\end{eqnarray}$where $f\left(r\right)$ is an unknown function. Then, by substituting the radial wave function (17) into equation (15), we obtain the second-order differential equation$\begin{eqnarray}\begin{array}{l}\left(1+\displaystyle \frac{{\beta }^{2}}{{r}^{2}}\right)f^{\prime\prime} +\left(\displaystyle \frac{1}{r}-\displaystyle \frac{{\beta }^{2}}{{r}^{3}}\right)f^{\prime} \\ \quad -\,\displaystyle \frac{\left({\nu }^{2}-m\omega \nu {\beta }^{2}\right)}{\left({r}^{2}+{\beta }^{2}\right)}\,f-\displaystyle \frac{{m}^{2}{\omega }^{2}\,{r}^{4}}{4\left({r}^{2}+{\beta }^{2}\right)}\,f+\tau \,f=0.\end{array}\end{eqnarray}$Further, let us define $x=\tfrac{m\,\omega }{2}\left({r}^{2}+{\beta }^{2}\right)$, and thus, we can rewrite equation (18) in the form$\begin{eqnarray}x\,f^{\prime\prime} +f^{\prime} -\displaystyle \frac{{\zeta }^{2}}{4\,x}\,f-\displaystyle \frac{x}{4}\,f+\bar{\tau }\,f=0,\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}\zeta & = & \nu -\displaystyle \frac{m\omega \,{\beta }^{2}}{2};\\ \bar{\tau } & = & \displaystyle \frac{1}{2m\omega }\left[\tau +\displaystyle \frac{{m}^{2}{\omega }^{2}{\beta }^{2}}{2}\right].\end{array}\end{eqnarray}$

Before going further, we must observe that when $r\to \infty $, then $x\to \infty $. However, when r=0, we have $x=\tfrac{m\,\omega }{2}\,{\beta }^{2}$. Since we have considered the parameter β to be defined in the range $0\lt \beta \lt 1$, therefore, we can consider ${\beta }^{2}\ll 1$. Thereby, when $r\to 0$ we can consider x to be very small, and thus, we can assume that the wave function vanishes when $r\to 0$, without loss of generality [70]. Therefore, with the purpose of having the radial wave function well behaved at $r\to \infty $ and $r\to 0$, we can write a solution to equation (19) in the form$\begin{eqnarray}f\left(x\right)={x}^{\left|\zeta \right|/2}\,{e}^{-x/2}{}_{1}{F}_{1}\left(\displaystyle \frac{\left|\zeta \right|}{2}+\displaystyle \frac{1}{2}-\bar{\tau },\left|\zeta \right|+1;x\right),\end{eqnarray}$where ${}_{1}{F}_{1}\left(\tfrac{\left|\zeta \right|}{2}+\tfrac{1}{2}-\bar{\tau },\left|\zeta \right|+1;x\right)$ is the confluent hypergeometric function [88, 91]. The asymptotic behaviour of a confluent hypergeometric function for large values of its argument is given by [91]$\begin{eqnarray}{}_{1}{F}_{1}\left(a,b;x\right)\approx \displaystyle \frac{{\rm{\Gamma }}\left(b\right)}{{\rm{\Gamma }}\left(a\right)}\,{{\rm{e}}}^{x}\,{x}^{a-b}\left[1+{ \mathcal O }\left({\left|x\right|}^{-1}\right)\right],\end{eqnarray}$Therefore, it diverges when $x\to \infty $. In search of bound state solutions to the Dirac equation, we must impose that $a=-n$ ($n=0,1,2,3,\ldots $). With this condition, the confluent hypergeometric function becomes well behaved when $x\to \infty $. With $a=\tfrac{\left|\zeta \right|}{2}+\tfrac{1}{2}-\bar{\tau }$, hence, we obtain$\begin{eqnarray}{{ \mathcal E }}_{n,l}=\pm \sqrt{{m}^{2}+2m\omega \left[n+\displaystyle \frac{\left|\zeta \right|}{2}+\displaystyle \frac{\zeta }{2}+\displaystyle \frac{1}{2}\left(1-s\right)\right]}.\end{eqnarray}$

The spectrum of energy (23) stems from the interaction of a relativistic electron with a uniform magnetic field. Therefore, it corresponds to the relativistic Landau levels [13, 19, 20] in the spiral dislocation spacetime. The effects of torsion of this spacetime yield the presence of the effective angular momentum ζ in the relativistic energy levels (23) even though no interaction between the electron and the topological defect exists. This kind of contribution is analogous to that raised by Peshkin and Tonomura [80]. By considering a point charge that moves in a circular ring of radius R in the presence of a long solenoid of radius ${r}_{0}\,\lt \,R$, concentric to the ring, Peshkin and Tonomura [80] showed that the angular momentum quantum number is modified by ${{\ell }}_{\mathrm{eff}}=l-e{\rm{\Phi }}/2\pi $ (where Φ is the magnetic flux through the solenoid and e is the electric charge). In addition, they showed that the eigenvalues of energy are determined by ${{\ell }}_{\mathrm{eff}}=l-e{\rm{\Phi }}/2\pi $ even though no interaction between the point charge and the magnetic field inside the solenoid exists. This quantum effect characterized by the influence of the magnetic flux on the eigenvalues of energy is known as the Aharonov-Bohm effect for bound states [80]. In the present case, the effective angular momentum ζ shows a shift in the angular momentum quantum number analogous to that obtained by Peshkin and Tonomura [80]. Hence, the influence of the topology of the spacetime on the relativistic Landau levels gives rise to an Aharonov-Bohm-type effect for bound states [82]. Besides, the influence of the topology of the spacetime on the interaction of the electron with the uniform magnetic field modifies the degeneracy of the relativistic Landau levels. Observe that the term m2 is the contribution to the energy levels that stems from the rest mass of the relativistic electron, while the±signs indicate the energy associated with the positive and negative solutions to the Dirac equation [90]. Note that by taking $\beta =0$, the relativistic Landau levels (23) become those given in the Minkowski spacetime [13, 19, 20].

Next, let us apply the binomial expansion up to terms of order ${m}^{-1}$ in the relativistic Landau levels (23). Then, we obtain$\begin{eqnarray}{{ \mathcal E }}_{n,l}\approx \,m+\omega \left[n+\displaystyle \frac{\left|\zeta \right|}{2}+\displaystyle \frac{\zeta }{2}+\displaystyle \frac{1}{2}\left(1-s\right)\right],\end{eqnarray}$where the first term of equation (24) is the contribution that stems from the rest mass of the particle. The second term of the energy levels (24) corresponds to the (nonrelativistic) Landau levels in the presence of a spiral dislocation. Note that the energy levels (24) are analogous to the Landau levels for a spinless quantum particle obtained in [70]. Therefore, we can see in the nonrelativistic limit that the degeneracy of the Landau levels [92] is broken by the effects of the topology of the spiral dislocation. Moreover, since there is no interaction between the electron and the topological defect, we also have an analogue of the Aharonov-Bohm effect for bound states [80, 82].

3. Conclusions

We have analysed the interaction of a relativistic electron with a uniform magnetic field in the spiral dislocation spacetime. We have seen that the effects of torsion of this spacetime modify degeneracy of the relativistic Landau levels. This break of degeneracy is given by the appearance of an effective angular momentum $\zeta =l+\tfrac{1}{2}\left(1-s\right)-\tfrac{m\omega \,{\beta }^{2}}{2}$ that stems from the topology of the spacetime, even though no interaction between the electron and the topological defect exists. Furthermore, we have seen that the presence of this effective angular momentum in the relativistic Landau levels, without the interaction between the electron and the topological defect, yields an analogue effect of the Aharonov-Bohm-type effect for bound states [80, 82]. We have also shown by taking $\beta =0$ in the relativistic energy levels (23) that we can recover the relativistic Landau levels in the Minkowski spacetime [13, 19, 20]. Finally, by applying the binomial expansion up to terms of order ${m}^{-1}$ in the relativistic Landau levels (23), we have shown that the nonrelativistic Landau levels in the presence of a spiral dislocation [70] can be obtained.

Acknowledgments

The authors would like to thank CNPq for financial support.


Reference By original order
By published year
By cited within times
By Impact factor

Novoselov K S et al. 2005 Nature 348 197
DOI:10.1038/nature04233 [Cited within: 1]

Cortijo A Vozmediano M A H 2007 EPL 77 47002
DOI:10.1209/0295-5075/77/47002 [Cited within: 1]

Geim A K 2007 Nature Mater 6 183
DOI:10.1038/nmat1849

Pachos J K 2009 Contemp. Phys. 50 375
DOI:10.1080/00107510802650507

Castro Neto A H et al. 2009 Rev. Mod. Phys. 81 109
DOI:10.1103/RevModPhys.81.109

Furtado C Moraes F de M Carvalho A M 2008 Phys. Lett. A 372 5368
DOI:10.1016/j.physleta.2008.06.029 [Cited within: 4]

Cavalcante E Furtado C 2014 J. Phys. Chem. Solid. 75 1265
DOI:10.1016/j.jpcs.2014.06.003 [Cited within: 1]

González J Guinea F Vozmediano M A H 1992 Phys. Rev. Lett. 69 172
DOI:10.1103/PhysRevLett.69.172

González J Guinea F Vozmediano M A H 1993 Nucl. Phys. B 406 771
DOI:10.1016/0550-3213(93)90009-E [Cited within: 1]

Hasan M Z Kane C L 2010 Rev. Mod. Phys. 82 3045
DOI:10.1103/RevModPhys.82.3045 [Cited within: 1]

Zhang Y et al. 2005 Nature 438 201
DOI:10.1038/nature04235 [Cited within: 1]

Prange R E Girvin S M 1990 The Quantum Hall Effect New York Springer
[Cited within: 1]

Bueno M J et al. 2012 Eur. Phys. J. B 85 53
DOI:10.1140/epjb/e2011-20726-4 [Cited within: 6]

Amaro Neto J et al. 2018 Eur. Phys. J. Plus 133 185
DOI:10.1140/epjp/i2018-12028-8 [Cited within: 3]

Amaro Neto J et al. 2016 Ann. Phys. (NY) 373 273
DOI:10.1016/j.aop.2016.07.023 [Cited within: 3]

Katsnelson M I et al. 2006 Nat. Phys. 2 620
DOI:10.1038/nphys384 [Cited within: 1]

Young A F Kim P 2009 Nat. Phys. 5 222
DOI:10.1038/nphys1198 [Cited within: 1]

Oliveira J R S et al. 2017 Ann. Phys. (NY) 383 610
DOI:10.1016/j.aop.2017.06.011 [Cited within: 2]

Rabi I I 1928 Z. Phys. 49 507
DOI:10.1007/BF01333634 [Cited within: 3]

Cunha M S et al. 2016 Eur. Phys. J. C 76 512
DOI:10.1140/epjc/s10052-016-4357-5 [Cited within: 3]

Berestetskii V B Lifshitz E M Pitaevskii L P 1982 Quantum Electrodynamics2nd ednOxford Pergamon


Jackiw R 1984 Phys. Rev. D 29 2375
DOI:10.1103/PhysRevD.29.2375

Balatsky A V Volovik G E Konyshev A V 1986 Zh. Eksp. Teor. Fiz. 90 2038


Haldane F D M 1988 Phys. Rev. Lett. 61 2015
DOI:10.1103/PhysRevLett.61.2015

Schakel A M J 1991 Phys. Rev. D 43 1428
DOI:10.1103/PhysRevD.43.1428

Figueiredo Medeiros E R Bezerra de Mello E R 2012 Eur. Phys. J. C 72 2051
DOI:10.1140/epjc/s10052-012-2051-9 [Cited within: 1]

Bueno M J et al. 2014 Eur. Phys. J. Plus 129 201
DOI:10.1140/epjp/i2014-14201-5 [Cited within: 4]

de Juan F et al. 2010 Nucl. Phys. B 828 625
DOI:10.1016/j.nuclphysb.2009.11.012 [Cited within: 2]

Bezerra V B 1997 J. Math. Phys. 38 2553
DOI:10.1063/1.531995 [Cited within: 1]

Furtado C Moraes F Bezerra V B 1999 Phys. Rev. D 59 107504
DOI:10.1103/PhysRevD.59.107504

de A Marques G Bezerra V B Furtado C Moraes F 2005 Int. J. Mod. Phys. A 20 6051
DOI:10.1142/S0217751X05022925

Salazar-Ramírez M Ojeda-Guillén D Morales-González A García-Ortega V H 2019 Eur. Phys. J. Plus 134 8
DOI:10.1140/epjp/i2019-12381-0

Hosseinpour M Hassanabadi H de Montigny M 2018 Int. J. Geom. Methods Mod. Phys. 15 1850165
DOI:10.1142/S0219887818501657

Wang B-Q Long Z-W Long C-Y Wu S-R 2018 Mod. Phys. Lett. A 33 1850025
DOI:10.1142/S0217732318500256

Deng L-F Long C-Y Long Z-W Xu T 2018 Adv. High Energy Phys. 2018 2741694
DOI:10.1155/2018/2741694

Hassanabadi H Hosseinpour M de Montigny M 2017 Eur. Phys. J. Plus 132 541
DOI:10.1140/epjp/i2017-11831-y

de Montigny M Hosseinpour M Hassanabadi H 2016 Int. J. Mod. Phys. A 31 1650191
DOI:10.1142/S0217751X16501918

Ma K Wang J-H Yang H-X Fan H-W 2017 Chinese Phys. Lett. 33 100401
DOI:10.1088/0256-307X/33/10/100401

Carvalho J de M Carvalho A M Cavalcante E Furtado C 2016 Eur. Phys. J. C 76 365
DOI:10.1140/epjc/s10052-016-4189-3

Hosseinpour M Hassanabadi H 2015 Eur. Phys. J. Plus 130 236
DOI:10.1140/epjp/i2015-15236-8

Wang J-H Ma K Li K Fan H-W 2015 Ann. Phys. (NY) 362 327
DOI:10.1016/j.aop.2015.08.004

Messai N Boumali A 2015 Eur. Phys. J. Plus 130 140
DOI:10.1140/epjp/i2015-15140-3

Hassanabadi H Afshardoost A Zarrinkamar S 2015 Ann. Phys. (NY) 356 346
DOI:10.1016/j.aop.2015.02.027

Wang Z Cai H Xu C 2019 Int. J. Mod. Phys. A 34 1950023
DOI:10.1142/S0217751X19500234

Cai H Ren Z 2018 Class. Quantum Grav. 35 235014
DOI:10.1088/1361-6382/aaeb52

Cai H et al. 2018 Class. Quantum Grav. 35 155016
DOI:10.1088/1361-6382/aaeb52

Jusufi K Rahaman F Banerjee A 2018 Ann. Phys. (NY) 389 219
DOI:10.1016/j.aop.2017.12.013

Wang B-Q et al. 2016 Eur. Phys. J. Plus 131 378
DOI:10.1140/epjp/i2016-16378-9

Hassanabadi H Hosseinpour M 2016 Eur. Phys. J. C 76 553
DOI:10.1140/epjc/s10052-016-4392-2

Garcia G Q et al. 2017 Eur. Phys. J. Plus 132 183
DOI:10.1140/epjp/i2017-11457-1

Yeşiltaş Ö 2015 Eur. Phys. J. Plus 130 128
DOI:10.1140/epjp/i2015-15128-y

Özdemir F Özdemir N 2004 Gen. Relativ. Gravit. 36 2053
DOI:10.1023/B:GERG.0000038470.55285.a2

Pitelli P M Letelier P S 2007 J. Math. Phys. 48 092501
DOI:10.1063/1.2779952

de M Carvalho A M de Lima Ribeiro C A Furtado C 2009 Int. J. Mod. Phys. D 18 237
DOI:10.1142/S0218271809014406

Li X Liu X 2018 Int. J. Mod. Phys. A 33 1850156
DOI:10.1142/S0217751X18501567

Salazar-Ramírez M et al. 2016 Ann. Phys. (NY) 372 283
DOI:10.1016/j.aop.2016.05.011

Silva E O et al. 2015 Ann. Phys. (NY) 362 739
DOI:10.1016/j.aop.2015.09.011

Hosseinpour M Hassanabadi H de Montigny M 2019 Eur. Phys. J. C 79 311
DOI:10.1140/epjc/s10052-019-6830-4

Vitória R L L 2019 Eur. Phys. J. C 79 844
DOI:10.1140/epjc/s10052-019-7359-2

Bragança E A F et al. 2020 Eur. Phys. J. C 80 206
DOI:10.1140/epjc/s10052-020-7774-4

Vitória R L L Belich H 2019 Phys. Scr. 94 125301
DOI:10.1088/1402-4896/ab3bc1

Ahmed F 2019 Eur. Phys. J. C 79 104
DOI:10.1140/epjc/s10052-019-6621-y

de Montigny M Zare S Hassanabadi H 2018 Gen. Relativ. Gravit. 50 47
DOI:10.1007/s10714-018-2370-8

Carvalho J de M Carvalho A M Furtado C 2014 Eur. Phys. J. C 74 2935
DOI:10.1140/epjc/s10052-014-2935-y

Ahmed F 2018 Eur. Phys. J. C 78 598
DOI:10.1140/epjc/s10052-018-6082-8

Hassanabadi H Hosseini M Zare S Hosseinpour M 2019 Few-Body Syst 60 12
DOI:10.1007/s00601-018-1480-x

Cavalcante E et al. 2016 Eur. Phys. J. Plus 131 288
DOI:10.1140/epjp/i2016-16288-x

Wang Z et al. 2015 Eur. Phys. J. Plus 130 36
DOI:10.1140/epjp/i2015-15036-2

Maia A V D M Bakke K 2019 Eur. Phys. J. C 79 551
DOI:10.1140/epjc/s10052-019-7067-y [Cited within: 5]

Maia A V D M Bakke K 2019 Int. J. Mod. Phys. A 34 1950153
DOI:10.1142/S0217751X19501537 [Cited within: 6]

Wang B-Q Long Z-W Long C-Y Wu S-R 2018 Int. J. Mod. Phys. A 33 1850158
DOI:10.1142/S0217751X18501580

Santos L C N Barros C CJr 2018 Int. J. Mod. Phys. A 33 1850122
DOI:10.1142/S0217751X18501221

Santos L C N Barros C CJr 2018 Eur. Phys. J. C 78 13
DOI:10.1140/epjc/s10052-017-5476-3

Bakke K Furtado C 2013 Phys. Rev. A 87 012130
DOI:10.1103/PhysRevA.87.012130 [Cited within: 10]

Kleinert H 1989 Gauge Fields in Condensed Matter vol 2Singapore World Scientific
[Cited within: 1]

Katanaev M O Volovich I V 1992 Ann. Phys. (NY) 216 1
DOI:10.1016/0003-4916(52)90040-7

Puntigam R A Soleng H H 1997 Class. Quantum Grav. 14 1129
DOI:10.1088/0264-9381/14/5/017

Valanis K C Panoskaltsis E V P 2005 Acta Mech. 175 77
DOI:10.1007/s00707-004-0196-9 [Cited within: 5]

Aharonov Y Bohm D 1959 Phys. Rev. 115 485
DOI:10.1103/PhysRev.115.485 [Cited within: 2]

Peshkin M Tonomura A 1989 The Aharonov-Bohm EffectLect. Notes Phys. vol 340Berlin Springer
[Cited within: 6]

Furtado C Bezerra V B Moraes F 2001 Phys. Lett. A 289 160
DOI:10.1016/S0375-9601(01)00615-6 [Cited within: 1]

Silva Netto A L Chesman C Furtado C 2008 Phys. Lett. A 372 3894
DOI:10.1016/j.physleta.2008.02.060 [Cited within: 3]

Furtado C de M Carvalho A M de Lima Ribeiro C A 2006 Mod. Phys. Lett. A 21 1393
DOI:10.1142/S0217732306019669 [Cited within: 2]

Mesaros A et al. 2010 Phys. Rev. B 82 073405
DOI:10.1103/PhysRevB.82.073405 [Cited within: 1]

Maia A V D M Bakke K 2018 Physica B 531 213
DOI:10.1016/j.physb.2017.12.045 [Cited within: 3]

Birrel N D Davies P C W 1982 Quantum Fields in Curved Space Cambridge Cambridge University Press
[Cited within: 2]

Nakahara M 2003 Geometry, Topology and Physics Bristol Institute of Physics Publishing
[Cited within: 2]

Arfken G B Weber H J 2005 Mathematical Methods for Physicists6th ednNew York Elsevier
[Cited within: 2]

Shapiro I L 2002 Phys. Rept. 357 113
DOI:10.1016/S0370-1573(01)00030-8 [Cited within: 2]

Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations3rd ednBerlin Springer
[Cited within: 2]

Abramowitz M Stegum I A 1965 Handbook of Mathematical Functions New York Dover Publications Inc
[Cited within: 2]

Landau L D Lifshitz E M 1977 Quantum Mechanics, the Nonrelativistic Theory3rd ednOxford Pergamon
[Cited within: 1]

相关话题/Relativistic Landau quantization