删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Perspectives on relativistic quantum chaos

本站小编 Free考研考试/2022-01-02

Liang Huang,, Ying-Cheng Lai1School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, United States of America
3Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America

Received:2019-10-6Revised:2019-12-17Accepted:2019-12-18Online:2020-03-06


Abstract
Quantum Chaos has been investigated for about a half century. It is an old yet vigorous interdisciplinary field with new concepts and interesting topics emerging constantly. Recent years have witnessed a growing interest in quantum chaos in relativistic quantum systems, leading to the still developing field of relativistic quantum chaos. The purpose of this paper is not to provide a thorough review of this area, but rather to outline the basics and introduce the key concepts and methods in a concise way. A few representative topics are discussed, which may help the readers to quickly grasp the essentials of relativistic quantum chaos. A brief overview of the general topics in quantum chaos has also been provided with rich references.
Keywords: quantum chaos;relativistic quantum systems;Dirac billiards


PDF (2230KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Liang Huang, Ying-Cheng Lai. Perspectives on relativistic quantum chaos. Communications in Theoretical Physics, 2020, 72(4): 047601- doi:10.1088/1572-9494/ab6909

1. Introduction

Quantum chaos is a branch of fundamental physics investigating the intercapillary field of quantum mechanics, statistical physics, and nonlinear dynamics [18]. Even before the establishment of quantum mechanics, in 1913, Bohr proposed quantization rule and used it to successfully predict the energy spectrum of hydrogen atom, which explained the Balmer formula obtained from experimental observations well. Later in 1917, Einstein extended Bohr’s quantization rule to integrable systems with global torus structure in phase space [9]. Then he noticed that these quantization rules are only applicable to integrable systems, and would fail for more general, non-integrable systems [9, 10]. About a half century later, in 1970s, inspired by extensive investigations of nonlinear dynamics and chaos, the issue of how to extend the semiclassical quantization rule to non-integrable systems was perceived again by the community, leading to the development of Gutzwiller’s trace formula that although being measure zero, the unstable periodic orbits play a crucial rule in shaping the quantum spectral fluctuation behaviors [5, 1123]. There are quantum systems, e.g. quantum billiards, whose classical counterpart can be chaotic. It is thus mystical that since the Schrödinger equation is linear and thus there is no real chaos in the quantum system, how does it emerge in the semiclassical limit? Note that here ‘quantum system’ is specifically for the single particle system described by the Schrödinger equation, where many-body effects are excluded. Alternatively, how does the nonlinear and chaotic dynamics that are ubiquitous in the classical world affect the behavior of the corresponding quantum systems? Are there any indicators in the quantum system that can be used to tell whether its semiclassical limit is integrable or chaotic? The efforts to understand these questions and the results constitute the field of quantum chaos, which has attracted extensive attention during the past half century, and has led to profound understandings to the principles of the classical-quantum correspondence [3].

An intriguing phenomenon regarding classical orbits in quantum systems is quantum scar [15, 2433], where chaotic systems leave behind scars of paths that seem to be retraced in the quantum world [3440]. Classically, a chaotic system has periodic orbits, but the chaotic nature renders all the orbits being unstable, i.e. an arbitrarily small perturbation to the particle moving along such an orbit could push its motion out of the orbit completely. A paradigmatic model is the two dimensional billiard system, where a particle moves freely inside the billiard, and reflects specularly at the boundary. Thus the shape of the boundary determines the dynamics of the billiard system [8, 41, 42]. A quantum billiard can be constructed similarly, i.e. a two dimensional infinite potential well whose boundary has the same shape of the corresponding classical billiard. Thus in the short wavelength limit, wave dynamics become ray dynamics, and the quantum billiard degenerates to the classical billiard. Classically, the probability to find a particle moving exactly on an unstable periodic orbit is zero, as the measure of these orbits in the phase space vanishes. This leads to the ergodicity of the dynamics. Semiclassically, the averaged Wigner function can be assumed to take the ‘microcanonical’ form [43], resulting in a Gaussian random function in the coordinate space. Surprisingly, for the quantum counterpart, some of the eigenwavefunctions would concentrate especially around these orbits, forming the quantum scars. The density of a scar along the orbit is a constant and does not depend on ℏ sensitively. But the width of the scars is typically of the order of the wavelength, as ℏ or the wavelength goes to zero, the scar will finally disappear in the random background. ‘In this way, the scar ‘heals’ as ${\hslash }\to 0$’ [24]. Scars have been searched and analyzed in mesoscopic systems [4454]. Due to the similarity of the equations for different types of waves, scars have been observed in microwave [5561], optical fiber and microcavity [6266], acoustic and liquid surface wave systems [6770]. Quantum scars in phase space could reveal more information about the classical orbit [24] and have been discussed in [35, 7177], with numerical evidence of antiscars provided in [76]. The statistical properties of scars has been discussed in [78]. Many-body effects in billiard models have been investigated using the Kohn and Sham (KS) equations in the mean-field approximation, i.e. noninteracting particles moving in some fictitious effective field, and scarring could take place when the disorder is weak and the electron density is sufficiently high [30]. For a comprehensive analysis of quantum scars, please see [79, 80]. Besides the conventional situations, scars on quantum networks are found to be insensitive to the Lyapunov exponents [81]. Quantum scars have also been identified by accumulation of atomic density for certain energies in spin–orbit-coupled atomic gases [82], and observed in the two-dimensional harmonic oscillators due to local impurities [8385]. Quantum many-body scars become a hot topic recently due to the weak ergodicity breaking caused by these states [8695], which provides a new route to the departure from the eigenstate thermalization hypothesis (ETH) scenario other than many-body localization (MBL). Their analogy in a driven fracton system, namely, dynamical scar, has also been observed [96]. Note that in these investigations, scar states do not relate to classical periodic orbits as in its original setup, but rather a small number of localized states in an otherwise thermalizing spectrum, while in contrast to both ETH where most of the states behave like thermal states, and MBL in which essentially all eigenstates are athermal.

Another cornerstone of quantum chaos is the random matrix theory (RMT), which was mostly developed in 1950s by Wigner [9799] when dealing with the energy spectrum of complex quantum systems such as the complex nuclei and later in 1960s by Dyson [100104]. These works form the basis for random matrix theory (see [105111] for an overview and recent developments). The idea is such that since the interactions are so complex, it could be efficient to approximate the Hamiltonian by a random matrix with elements following certain statistical properties imposed by the symmetry of the system [105112]. Density distributions of the energy levels are given, and the distributions of the spacings between nearest neighboring levels are investigated extensively due to the findings that they follow different universal functional forms, namely, Poisson [113] or Wigner–Dyson statistics [114], if the corresponding classical dynamics are integrable or chaotic, respectively. In particular, for systems corresponding to classically chaotic dynamics with no additional geometric symmetry, if time reversal symmetry is preserved, the level spacing statistics would follow RMT with Gassian orthogonal ensembles (GOE). If time reversal symmetry is broken, then Gassian unitary ensembles (GUE) would apply. Gassian symplectic ensembles (GSE) would also appear if the system possesses symplectic symmetry. Long range correlations, i.e. the number variance Σ2 and spectral rigidity Δ3, and higher order correlations in spectra are also found to have distinct behavior for quantum systems with integrable or chaotic classical dynamics [106, 115, 116]. Various numerical and experimental evidences are provided [117121]. Through a series of works [115, 122125], a connection between classical periodic orbits in chaotic systems and the spectral correlation of the corresponding quantum system represented by the form factor was established, laid the foundation of the universality of the spectral statistics for classically chaotic systems in RMT, which has also been extended into spin 1/2 [126] and many-body situations [127]. These findings are quite prominent as they could serve as the quantum indications of their classical dynamics and symmetry properties. Note that these statements are for generic systems. Non-generic systems, however, may violate such rules [128]. Level spacing statistics of quantum quasidengeneracy has been investigated and Shnirelman peak was identified [129]. Model for experimental level spacing distributions with missing and spurious levels has also been considered [130, 131]. Generalization of the nearest level spacing statistics to open chaotic wave systems with non-Hermitian Hamiltonian was demonstrated in [132]. Between integrable and chaotic systems, there are pseudo-integrable systems [133], and also mixed dynamical systems with both Kolmogorov–Arnold–Moser (KAM) islands and chaotic sea in the phase space [134]. Non-universal behaviors have been noticed [133138]. In particular, for singular quantum billiards with a point-like scatterer inside an integrable billiard [137], the level spacing statistics may exhibit intermediate statistics, namely, semi-Poisson [139], that exhibits both level repulsion (in the chaotic case) so the probability to find closeby levels are small, and exponential decay for large spacings as in the Poisson distribution (the integrable case) [140146]. This feature also appears in quantum systems with parameters close to the metal-insulator transition [147]. While for another class of pseudo-integrable systems, namely, polygonal (particularly triangular) quantum billiards that introduce dividing scattering only at the corners [133, 135], although there are conjectures and numerical discussions [139], the spectral statistic is rather complex and is still an open issue for general cases.

There are many other important topics involving quantum billiards, such as nodal line structures and wavefunction statistics [148157], quantum chaotic scattering [158166] with experimental demonstrations on two dimensional electron gas (2DEG) [50, 167170] where the electrons are described by the two dimensional Schrödinger equation, quantum pointer (preferred) states and decoherence [52, 171175], universal conductance fluctuations [176180], chaos-assisted quantum tunneling [181195], effects of electron–electron interaction [30, 195199], Loschmidt echo and fidelity [200236], etc. Being described by the same Helmholtz equation for the spatial wavefunction, e.g. $({{\rm{\nabla }}}^{2}+{k}^{2})\psi =0$ or its extensions, where ∇2 is the Laplacian operator and k is the wave number, the quantum billiard can be simulated with other wave systems, such as microwave [55, 5961, 182, 237254], light in optical fibers [62, 66] and optical microcavities [255264], acoustic waves and plate vibrations [68, 265270], liquid surface waves [67, 69, 70, 271273], etc.

Other prototypical models that have been investigated extensively in the development of the field of quantum chaos include kicked rotors in terms of diffusion [274288], entanglement as signatures of referring classical chaos [289291], experimental realizations [292295], and other related topics [285, 296299], and the Dicke model [300306] and the Lipkin–Meshkov–Glick model [307310] to account for the many-body effects. In particular, in the phenomena of dynamical localization of kicked rotors with parameters in the classically chaotic region, the momentum localization length has an integer scaling property versus the reduced Planck constant ${\hslash };$ while in the vicinity of the golden cantori, a fractional ℏ scaling is observed, which was argued as the quantum signature of the golden cantori [311316]. However, in a following work with a random-pair-kicked particle model, it is found that the fractional ℏ scaling can emerge in systems even without the golden cantori structure at all [296], thus it is not a quantum signature of the classical cantori, but has an origin of inherent quantum nature. Abnormal diffusion in one-dimensional tight-binding lattices [317322] is another interesting subject which is related to the kicked rotor model, as if the diagonal potential is periodic, it can be mapped into a periodically driven time-dependent quantum problem [276]. Ionization of Rydberg atoms [323344] and dynamics of Bose–Einstein condensation [197, 345353] have also been investigated extensively in quantum chaos. Due to the interdisciplinary nature, phenomena and effects in quantum chaos have broad applications in nuclei physics [110, 111, 354, 355], cold atom physics [356361], controlled laser emission [64, 256, 257, 259, 362364], quantum information [365370], etc.

Although being an old field, there are still hot topics and astonishing findings emerging recently due to deeper understandings of the theory, the advances of the computation power and the experimental techniques, such as quantum graphs and their microwave network simulations [131, 371389], universal quantum manifestations for different classical dynamics [125, 284, 380, 390396], many-body localization [397404], quantum thermalization [309, 405417], quantum thermaldynamics [304, 418426], out-of-time-ordered correlator (OTOC) [427436], and other related topics [437, 438]. In particular, there are a number of active groups in China publishing recent works in Communications in Theoretical Physics [166, 207, 236, 285, 340, 359, 439, 440], Chinese Physics B [254, 320, 341, 343, 369, 398, 403, 441443], Chinese Physics Letters [175, 344, 416, 444, 445], and Science China Physics, Mechanics & Astronomy [288, 446449].

Among the new developments, one interesting field is to expand the broadly investigated quantum chaos into relativistic quantum systems, and see what happens when the relativistic effect cannot be neglected, e.g. what classical chaos can bring to the relativistic quantum systems. This resulted in the still developing field of relativistic quantum chaos. The first study of relativistic quantum chaos was carried out in 1987, by Berry and Mondragon [450], who invented a two dimensional neutrino billiard by imposing infinite mass confinement on the boundary, i.e. the MIT bag model [451], where the neutrino, with spin 1/2, at that time was believed to be massless, and was described by the massless Dirac equation. The reason for not choosing the conventional electric potential for confinement is that the Klein tunneling for relativistic particles will invalidate such a confinement. We shall denote such system as massless Dirac billiards. The intriguing point is that, with the infinite mass potential, the Hamiltonian breaks the time reversal symmetry, leading to GUE spectral statistics. In a following work by Antoine et al [452], a 2D fermionic billiard in a curved space coupled with a magnetic field is considered. Results were obtained under a generalized boundary condition, which confirmed the results by Berry and Mondragon when the boundary condition reduces to the same one. The generalization of the neutrino billiard in a three dimensional cavity has been investigated in [453], with the finding that the orbital lengths seem to be the same as in the scalar spinless case. After Berry and Mondragon’s seminal investigation of neutrino (or massless Dirac) billiards [450], there are only a few works in this topic [452, 453]. Only when graphene and other 2D Dirac materials emerged in 2000s [454460] rendering experimental observation of the effects possible, the field became prosperous and many different aspects have been investigated extensively, e.g. graphene/Dirac billiards were proposed [461, 462] and has started the enthusiasm in this field with either graphene, or microwave artificial graphene (microwave photonic crystal with honeycomb lattice), or by directly solving the massless Dirac equation in a confined region [463, 464].

Since there are different approaches for relativistic quantum chaos, before we proceed further, we shall define the boundary of the our discussions clearly to avoid confusion. First, it should be distinguished from relativistic chaos, where the motion of the particle is in relativistic regime, i.e. its speed is comparable to the speed of light, but is described by the classical dynamics, not quantum mechanics. There are many interesting results in this topic [465479], but it is not considered as relativistic quantum chaos. Secondly, quantum chaos has a great motivation regarding classical-quantum correspondence. While for relativistic quantum systems, there are quantities such as spin that does not have a classical correspondence. However, for a relativistic quantum systems and its ‘corresponding’ classical counterpart by just considering the ‘trajectory’ of the particle, the properties of the former can be affected significantly by the classical dynamics, i.e. whether chaotic or integrable, of the latter. Therefore, studies of this field are to reveal how classical dynamics may have influence to the ‘corresponding’ relativistic quantum systems, not to demonstrate the one-to-one correspondence of the two limiting cases. In this sense, there are studies of the relation between entanglement and classical dynamics [289291, 353, 443, 445, 480483], spin transport versus classical dynamics [484489], that although there are no direct one-to-one correspondence, there are significant influence to the behavior of entanglement and spin transport from classical dynamics. Thirdly, the term relativistic quantum chaos is actually not new, but was proposed explicitly about three decades ago in a paper by Tomaschitz entitled ‘Relativistic quantum chaos in Robertson–Walker cosmologies’ [490]. In this work, Tomaschitz found localized wave fields, which are solutions of the Klein–Gordon equation, quantized on the bounded trajectories in the classical geodesic motion. Actually there is a series of works on this line in quantum cosmology [490498] concerning chaotic quantum billiards in the vicinity of a cosmological singularity in quantum cosmology, where the local behavior of a part of the metric functions can be described by a billiard on a space of constant negative curvature, leading to the formation of spatial chaos. These results could be helpful to understand the early stages of the Universe. Another line is to examine the spectral properties of the quantum chromodynamics (QCD) lattice Dirac operator [499507] and Dirac operator on quantum graphs [508, 509], where agreement with chiral random matrix theory has been confirmed.

While our focus has been on billiard systems, kicked rotor was an important model for this field and is still an active research topic [442, 510512]. As a side note, looking for semiclassical treatment of quantum spinor particles has been a persistent effort from 1930s by Pauli [513] to early of this century [514531]. These semiclassical results provide insights in understanding the spectral fluctuations in graphene nano-structures [532, 533].

2. Spectral statistics

The main results in level spacing statistics are as follows. For a system with energy levels {En, n=1, 2, ⋯}, let $\widetilde{N}(E)$ be the number of levels below E. Generally, the density of the spectra is not uniform, therefore, to make comparison of level spacings meaningful, the spectra needs to be unfolded: ${x}_{n}\equiv \langle \widetilde{N}({E}_{n})\rangle $, where $\langle \widetilde{N}(E)\rangle $ is the smooth part of $\widetilde{N}(E)$. Then in general the statistics of xn follow universal rules depending only on the symmetry of the original quantum system and the corresponding classical dynamics [113, 114], not on the details of the systems. One important quantity is the level spacing distribution P(S), which is the distribution function of the nearest-neighbor spacing, e.g. ${S}_{n}={x}_{n+1}-{x}_{n}$, of the unfolded spectrum {xn}. Another quantity is the spectral rigidity Δ3(L), for detailed calculations please refer to page 5 of [534] and references therein.

2.1. Berry and Mondragon’s result revisited

Berry and Mondragon investigated two dimensional billiard with the African shape (guaranteeing chaotic dynamics with no geometric symmetry) of confined massless spin-1/2 particles, and found GUE statistics [450]. This result is quite surprising as there is no magnetic field or magnetic flux in the system which are typically required to break the T-symmetry. Here the time reversal symmetry is broken by the confinement boundary. The Hamiltonian is given by$\begin{eqnarray}\hat{H}=-{\rm{i}}{\hslash }v\hat{{\boldsymbol{\sigma }}}\cdot {\boldsymbol{\nabla }}+V({\boldsymbol{r}}){\hat{\sigma }}_{z},\end{eqnarray}$where v is the Fermi velocity for quasiparticles or the speed of light for a true massless relativistic particle, $\hat{{\boldsymbol{\sigma }}}=({\hat{\sigma }}_{x},{\hat{\sigma }}_{y})$ and ${\hat{\sigma }}_{z}$ are Pauli matrices, and $V({\boldsymbol{r}})$ is the infinite-mass confinement potential, i.e. $V({\boldsymbol{r}})=0$ for ${\boldsymbol{r}}$ inside the billiard region D, while $V({\boldsymbol{r}})=\infty $ otherwise. The time-reversal operator is given by $\hat{T}={\rm{i}}{\sigma }_{y}\hat{K}$, where $\hat{K}$ denotes complex conjugate. It can be readily verified that $\hat{T}\hat{H}{\hat{T}}^{-1}=-{\rm{i}}{\hslash }v\hat{{\boldsymbol{\sigma }}}\cdot {\boldsymbol{\nabla }}\,-V({\boldsymbol{r}}){\hat{\sigma }}_{z}\ne \hat{H}$, i.e. the free motion of the particle is unchanged, but the confinement potential changes sign and breaks T-symmetry. Microscopically, since the spin is locked with the momentum, at each reflection there will be an extra phase due to the rotation of the spin. While for periodic orbits, if the period, or the number of bouncings at the boundary N, is even, then the accumulated phase along the orbit counterclockwisely and clockwisely are the same modulo 2π, thus both orientations will satisfy the quantization rule simultaneously, i.e. if one orientation is a solution of the system, the other orientation (time-reversed) will also be a solution. This is the same for non-relativistic quantum billiards without magnetic field. However, if N is odd, then the accumulated phase difference for two opposite orientations will be π modulo 2π. Thus if one orientation satisfies the quantization condition, i.e. the overall accumulated phase along the complete orbit is integer multiples of 2π, and is thus a solution of the system, the reversed orientation will have an extra π phase and will not satisfy the quantization condition, thus will not be a solution. This breaks the T-symmetry as it requires that the two orientations must be or be not solutions of the system simultaneously.

Although this effect is quite subtle, it can result in GUE, instead of GOE, spectral statistics [450], which has also been verified by solving the system using other numerical techniques such as direct discretization [536], conformal mapping [535], and extended boundary integral method [537] (see also figure 1). Figure 1 shows the results for three billiards: the circular, the African, and the heart-shaped billiards. The circular billiard is integrable, leads to Poisson statistics. The African billiard is chaotic, leads to GUE. The heart-shaped billiard has a mirror symmetry, although it is not symmetric under the time-reversal operation for the corresponding Dirac billiard, it is symmetric under the joint parity and time-reversal operations. Thus again the GOE statistics are recovered. Since the pseudoparticles in graphene follow the same 2D massless Dirac equation as in [450], it is quite natural to ask whether the graphene billiard follow the same GUE statistics. In this regard, the experimental work [462] by counting the resonance peaks in the transport measurement as approximations of intrinsic energy levels, obtained GUE statistics. However, subsequent numerical calculations provide concrete results of GOE statistics in chaotic graphene billiards in the absence of magnetic fields [534, 538, 539], see figure 2, which lead to further experimental investigations using artificial graphene with much higher accuracy and confirmed GOE statistics [540].

Figure 1.

New window|Download| PPT slide
Figure 1.Level spacing statistics of the massless Dirac billiards with the boundary being a circle, the Africa shape, the heart shape for left, middle, and right, respectively. The first row shows the unfolded level-spacing distribution P(S), and the second row shows the spectral rigidity Δ3(L). The green dashed–dotted line, cyan dashed line, and blue solid line are for Poisson, GOE, and GUE. Red staircase curves and symbols are numerical results from 13000 energy levels for each shape by diagonalizing the operator $\hat{H}$ given by equation (1). Adapted from [535] with permission.


Figure 2.

New window|Download| PPT slide
Figure 2.(a) Chaotic graphene billiard with Africa shape cut from a graphene sheet. The system has 42 505 carbon atoms. The outline is determined by the equation $x+{\rm{i}}{y}=70a$ $(z+0.2{z}^{2}+0.2{z}^{3}{{\rm{e}}}^{{\rm{i}}\pi /3})$, where z is the unit circle in the complex plane, a=2.46 Å is the lattice constant for graphene. The area is A=1117 nm2. (b)–(d) are the level spacing distribution, integrated level spacing distribution, and the spectral rigidity, respectively, for 664 energy levels in the range $0.02\lt {E}_{n}/t\lt 0.4$, where t is the hopping energy between nearest neighboring atoms. Dashed line is Poisson, solid line is GOE, and dotted line is GUE. The results show clear evidence of GOE. Adopted from [539] with permission.


2.2. Chaotic graphene billiard

Numerically, the graphene billiard is a graphene sheet where the boundary is cut following a specific shape that carries desired classical dynamics. This is effectively an infinite potential well on the graphene sheet: the potential on the boundary is infinite, and the probability to find an electron on the boundary is zero. The general tight-binding Hamiltonian is given by$\begin{eqnarray}\hat{H}=\sum (-{\varepsilon }_{i})| i\rangle \langle i| +\sum (-{t}_{{ij}})| i\rangle \langle j| ,\end{eqnarray}$where i and j are the indices of the atoms (or lattice sites), the first summation is over all the atoms within the billiard and the second summation is over pairs of all necessary neighboring atoms, which could be the nearest neighboring pairs, or the next or next–next nearest neighboring pairs, with their respective hopping energy tij's. Note that hopping energies between atoms close to the boundary may be different from those far from the boundaries. For clean graphene the onsite energy ϵi is identical for all atoms, thus it is convenient to set it to zero. If there are static electric disorders, ϵi will be position dependent. In the atomic (or lattice site) basis $| j\rangle $, the Hamiltonian matrix element can be calculated as ${H}_{{ij}}=\langle i| \hat{H}| j\rangle $, which is given by $(-{\varepsilon }_{i})$ for the diagonal element Hii and $(-{t}_{{ij}})$ for element Hij. Once the Hamiltonian matrix is obtained, it can be diagonalized to yield the eigenenergies and the eigenstates. The results of spectral statistics for the African shaped graphene billiard is shown in figure 2, which assumes ϵi=0 and uniform hopping energies tij=t between only the nearest neighboring atoms. Thus the energy is in units of t, and it is convenient to use En/t for the values of the eigenenergies. It is clear that they follow GOE statistics. Non-idealities such as interactions beyond the nearest neighbors, lattice orientation, effect of boundary bonds and staggered potentials caused by substrates, etc. may have influence to the details of the system, but the GOE statistics are robust and persistent in these non-ideal situations [534].

This might be counterintuitive as one would expect that the graphene chaotic billiards should exhibit the same GUE level-spacing distribution as the massless Dirac billiard [450], since they obey the same equation. The reasoning is as follows. Graphene has two non-equivalent Dirac points (valleys). Quasiparticles in the vicinity of a Dirac point obey the same massless Dirac equation, but the abrupt edge termination in graphene billiard couples the two valleys. As a result, a full set of equations taking into account the effects of both the two nonequivalent Dirac points and the boundary conditions are thus necessary to describe the motion of the relativistic particle. The time-reversal operation for the massless Dirac particle interchanges the two valleys. Thus as a whole, the time-reversal symmetry is preserved [456], resulting in GOE statistics.

Spectral statistics of disordered graphene sheets has also been investigated extensively with both experiments [541] and numerical simulations [542544], where GOE statistics have been identified in general. Reference [545] examined the level spacing statistics for the edge states only for energies close to the Dirac point. Since these states are localized, it was expected that the statistics may follow that of Poisson, but it turned out that the level spacing statistics was GOE, which can be attributed to the chiral symmetry that introduced long-range correlation between the edge states on different sides, and thus level repulsion. Indeed, when the symmetry is broken by non-zero next nearest neighbor hopping energies, the level spacing statistics becomes Poisson.

Much effort has been devoted to searching for GUE in graphene billiards, e.g. by decoupling the two valleys. A smooth varying mass term was added in [538], however, GUE statistics were not found, which was attributed to the residual inter-valley scatterings. Indications of GUE statistics were found in triangular graphene billiards with zigzag edges and smooth impurity potentials [544], and with an asymmetric strain [546] due to the induced pseudomagnetic field [547, 548].

In the spectral statistics, there is a series of works employing microwave artificial graphene, e.g. a manmade honeycomb lattice not for electrons, but for microwaves [253, 540, 549563]. Due to the inherent similarity of the wave equations, the quasiparticles follow the same massless Dirac equation and behave similarly as those in graphene. Especially, the Darmstadt group of A. Richter used super-conducting microwave cavities filling in photonic crystals, obtained spectra with unprecedentedly high accuracy, yielding convincing statistics [240, 253, 540, 562, 563].

2.3. Beyond Berry and Tabor’s conjecture

Berry and Tabor [113] proposed that for generically integrable systems, the energy levels are uncorrelated and the resulting statistics would be Poisson. This has been verified by extensive numerical and experimental studies. However, it is found that for graphene billiard with a sector shape where the corresponding classical dynamics are generically integrable, for energy levels close to the Dirac point, the spectral statistics are in general GOE, not Poisson [564]. Only close to the band edge (E/t=±3) where the pseudoparticles follow the Schrödinger equation, the statistics become Poisson. The reason for this abnormal phenomenon is that when the energy is close to the Dirac point, the edges play an important role. Even for an ideal situation, say, 60° sector with both straight edges being armchair, the level spacing statistics could be Poisson, as figure 3(a) shows, but changing a few atoms around the tip, or adding or removing one line of atoms along one edge, as demonstrated in the insets, the level spacing statistic becomes that of the GOE (figure 3(b)). Thus the system is extremely sensitive to the imperfections of the boundary, and for sectors with arbitrary angles, the results are generally GOE [564]. An interesting question is that, is this result due to the particular lattice structure of graphene, or due to relativistic nature? A preliminary examination reveals that this might be caused by the complex boundary condition provoked by the multi-component spinor wavefunction. Concrete conclusion may require further investigation.

Figure 3.

New window|Download| PPT slide
Figure 3.Level spacing statistics of graphene billiard with the shape of a 60° sector with armchair edges. (a) With perfect edges and 227 254 atoms. (b) With one row of atoms removed along one edge so the structure is no longer symmetric (as indicated by the red dots in the inset) and 226 315 atoms. The energy range is 0.02<En/t < 0.2. Dashed line is Poisson, solid line is GOE. Insets show the magnified view of the lattice structure close to the tip of the sector to illustrate the differences. Adopted from [564] with permission.


3. Quantum scars

Quantum scar has been an important pillar for quantum chaos. In the development of relativistic quantum chaos, one natural question is whether scars exist in relativistic quantum systems, and if so, are there any unique features that can distinguish them from the conventional quantum scars?

3.1. Relativistic quantum scars

The existence of scars in relativistic quantum systems was confirmed with a stadium shaped graphene billiard [565]. Scars in the Wimmer system (distorted circular) filled with graphene was also observed [566]. Employing the tight-binding Hamiltonian equation (2), the eigenstates ψn can be calculated. By examining the spatial distribution of $| {\psi }_{n}{| }^{2}$ for eigenstates close to Dirac point, unequivocal scars on periodic orbits are observed (figure 4). The scarring state can be formed when the particle, after traveling the orbit for a complete cycle, gains a global phase that is an integer multiple of 2π. Thus when there is a scar occurring at the wavenumber k0, as the wavenumber (or energy) is changed, there will be a scar again at (or close to) wavenumber k if ${\rm{\Delta }}k\cdot L=2n\pi $, where ${\rm{\Delta }}k=k-{k}_{0},L$ is the length of the orbit and n is an integer. For two adjacent scarring states, one has ${\rm{\Delta }}k=2\pi /L$. This holds for both massless relativistic and non-relativistic quantum systems. Note that this does not hold for massive relativistic quantum billiard systems, as when varying k (or energy E), besides the Δk·L term, there will be an additional term that would lead to an extra phase depending on k, which would also need to be taken into account in the quantization formula. For massless relativistic and non-relativistic quantum systems, the key difference lies in the dispersion relation, with Ek for the former and Ek2 for the latter. Therefore, in terms of E, it will be either E or $\sqrt{E}$ that will be equally spaced for recurrent scars, corresponding to massless relativistic (graphene) or nonrelativistic quantum cases. Figure 5 shows that for two representative scars as shown in the insets, the energy values where they occur versus the relative index. Despite small fluctuations, the linear relation is apparent, corroborating the massless relativistic predictions. In particular, for graphene, since $E={\hslash }{v}_{F}k$, where ${v}_{F}=\sqrt{3}{ta}/(2{\hslash })$ is the Fermi velocity, t is the hopping energy between the nearest neighbors, a=2.46 Å is the lattice constant, one has ${\rm{\Delta }}E={\hslash }{v}_{F}{\rm{\Delta }}k={{hv}}_{F}/L$. For the scar shown in the left inset, the length of the orbit is 263a, yielding ΔE=0.0207t; while from figure 5, the average ΔE equals to 0.0203t, which agrees well. For the other scar, the length of the orbit is 275a, leading to ΔE=0.0198t, agrees well with 0.0195t from figure 5.

Figure 4.

New window|Download| PPT slide
Figure 4.(a) A stadium shaped graphene billiard with 11814 atoms. (b) and (c) show $| {\psi }_{n}{| }^{2}$ with ${E}_{n}/t=0.363\,58$ and 0.576 65, respectively. Adopted from [565] with permission.


Figure 5.

New window|Download| PPT slide
Figure 5.For two representative scars with orbit length 263a (left) and 275a (right), the energy values where it appears. Vertical axis shows the relative index of these scars. From [464] with permission.


Note that only when the energy is small, the dispersion relation is homogeneous and the pseudoparticles follow the massless Dirac equation. When the energy is large, the dispersion relation is no longer homogeneous but direction dependent, and the group velocity ${{\rm{\nabla }}}_{{\boldsymbol{k}}}E$ is concentrated in only three directions according to the symmetry of the honeycomb lattice. In this case, the motion of the pseudoparticles deviates from the massless Dirac equation. However, along these three directions, E is still approximately linear to $| {\boldsymbol{k}}| $ even for E close to t. Since the scars are also constrained on orbits that are composed by straight lines only in these three directions, the relation ${\rm{\Delta }}E={{hv}}_{F}/L$ holds for almost the whole range from 0 to t. This makes it easier to examine the scars and to verify this relation in experiments. Indeed, this feature of equal spacing of E in the recurring scarring states has been confirmed experimentally in a mesoscopic graphene ring system [567].

3.2. Chiral scars

Although pseudoparticles close to one Dirac point in graphene and Berry and Mondragon’s ‘neutrino’ follow the same 2D massless Dirac equation, due to the coupling of the two Dirac points by the boundary, a complete description for the pseudoparticles in graphene will be different. Thus it is still intriguing to examine the scars in the ‘neutrino’ billiard and see how the time-reversal symmetry broken by the infinite mass boundary condition is revealed in scars. A direct discretization method was developed to solve the massless Dirac billiard in a confined region, where scars in an African billiard and a bow-tie shaped billiard were identified [536], but due to limited spatial resolution, recurrent rhythm can not be determined. Later, a conformal mapping method was developed where a huge number of eigenstates with extremely high spatial resolution can be obtained [568]. By solving the eigenproblem of a heart-shaped 2D massless Dirac billiard, scars on periodic orbits are identified. Furthermore, it is found that the properties of the scars depend on whether the orbit has even or odd bounces at the boundary, and the relation $k-{k}_{0}=2\pi n/L$ for recurring scars is no longer fulfilled for the odd orbits. Particularly, for a given reference point k0 with pronounced scarring patterns, let $\delta k=2\pi /L$ and define $\eta (m)=({k}_{m}-{k}_{0})/\delta k-[({k}_{m}-{k}_{0})/\delta k]$, where [x] denotes the integer part of x and km is the eigenwavenumber of the mth identified scarring state on the same orbit, if the above relation is satisfied, then numerically, η(m) will take values that are either close to zero or close to one. As shown in figure 6, this is indeed the case for period-4 orbits. But for period-3 orbits, η takes an extra value close to 1/2 [568].

Figure 6.

New window|Download| PPT slide
Figure 6.For scars on two representative orbits, period-4 for the left panels, and period-3 for the right panels, the upper panels show the corresponding eigenenergies of the scars, and the lower panels show η (see text) for these sates. Adopted from [568] with permission.


A complete understanding would involve many more details [569]. Here we would only provide the main arguments. The quantization condition is such that, following the orbit, after a complete cycle, the total phase accumulation should be integer multiples of 2π. For the massless Dirac billiard with a magnetic flux $\alpha {{\rm{\Phi }}}_{0}/2\pi $ (${{\rm{\Phi }}}_{0}\equiv h/e$ is the magnetic flux quanta) at the center of the billiard, the total accumulated phase after one complete cycle is$\begin{eqnarray*}{{\rm{\Phi }}}^{\pm }=\displaystyle \frac{1}{{\hslash }}S-\displaystyle \frac{\sigma \pi }{2}+{\beta }^{\pm },\end{eqnarray*}$where ‘±’ indicates whether the flow of the orbit is counterclockwise or clockwise. ${\beta }^{\pm }={\sum }_{i}{\delta }_{i}^{\pm }$ is the extra phase due to spin rotation imposed by reflections at the boundary, e.g. see figure 7. For a given periodic orbit, at each reflection point, the angle ${\delta }_{i}^{\pm }$ can be calculated explicitly, which determines ${\beta }^{\pm }$ unsuspiciously [569]. The Maslov index σ is the number of conjugate points along the orbit and is canonically invariant [17]. For the heart-shaped chaotic billiard, the value of σ is nothing but the number of reflections along a complete orbit [19]. The action is$\begin{eqnarray*}S=\oint {\boldsymbol{p}}\cdot {\rm{d}}{\boldsymbol{q}}={\hslash }\oint {\boldsymbol{k}}\cdot {\rm{d}}{\boldsymbol{q}}+e\oint {\boldsymbol{A}}\cdot {\rm{d}}{\boldsymbol{q}}=k\cdot L\pm W\alpha ,\end{eqnarray*}$where W is the winding number of the orbit with respective to the flux, i.e. how many times it circulates the flux. One thus has$\begin{eqnarray}{{\rm{\Phi }}}^{\pm }=k\cdot L\pm W\alpha -\displaystyle \frac{\sigma \pi }{2}+{\beta }^{\pm }.\end{eqnarray}$

Figure 7.

New window|Download| PPT slide
Figure 7.Definition of the angles. ${\delta }_{i}^{+}=({\theta }_{i}-{\theta }_{i-1})/2$ is the extra phase due to the rotation of the spin, where ‘+’ indicates counterclockwise orientation. Typically, the phase associated with the time reversed reflection, e.g. ${\delta }_{i}^{-}$, from $-{{\boldsymbol{k}}}_{i}$ to $-{{\boldsymbol{k}}}_{i-1}$, would be different from ${\delta }_{i}^{+}$.


For semiclassically allowed states, the phase accumulation around one cycle should be an integer multiple of 2π, i.e. ${{\rm{\Phi }}}^{\pm }=2\pi n$ (n=1, 2, ⋯) so as to ensure that the wavefunction is single-valued. One thus has$\begin{eqnarray}{k}^{\pm }=(2\pi n\mp W\alpha +\displaystyle \frac{\sigma \pi }{2}-{\beta }^{\pm })/L.\end{eqnarray}$This is the quantization rule for a scarring state on periodic orbit with length L, which tells at (or close to) which value of wavenumber k (or E) a scar can form. A comparison between this formula and numerical results for two representative orbits are shown in figure 8, which shows good agreement. The time-reversal symmetry is then imprinted with whether there are integers for both counterclockwise and clockwise orientations that could satisfy equation (4) simultaneously for the same value of k, and thus both states with counterclockwise and clockwise local current flows are solutions of the system. This requires ${\rm{\Delta }}{\rm{\Phi }}\equiv {{\rm{\Phi }}}^{+}-{{\rm{\Phi }}}^{-}=0$ modulo 2π, or $2W\alpha +{\rm{\Delta }}\beta =0$ modulo 2π, where ${\rm{\Delta }}\beta ={\beta }^{+}-{\beta }^{-}$. For systems without a magnetic flux, α=0, the condition becomes Δβ=0. It is surprising that Δβ only depends on whether the periodic orbit has even or odd number of bounces at the boundary: Δβ=0 modulo 2π for even orbits—orbits with even number of bounces, and Δβ=π modulo 2π for odd orbits. Thus although each reflection breaks the time-reversal symmetry due to the polarization of the spin and the tangential current at each reflection point [569], even orbits, when considering the overall accumulated phase, preserve the T-symmetry, thus only odd orbits lead to T-symmetry broken. This provides an understanding of the behaviors of η in figure 6. For the period-4 orbit, at α=0, the values of k for scars with different orientation coincide with each other, as shown in figure 8(a) thus they are both allowed when k satisfies the quantization rule. The difference in neighboring k is then 2π/L, leading to η to be either close to 1 or close to 0. However, at α=0, for the period-3 orbit, the values of k for scars with different orientation are interlaced, e.g. clockwise, counterclockwise, clockwise, and so on, as shown in figure 8(b), while for each orientation, the space between neighboring k is 2π/L, but if one does not differentiate the orientations, the difference becomes π/L for the two neighboring k values corresponding to different orientations, leading to η=1/2. Note that as the magnetic flux is varied, the system is periodic with α=2π. Furthermore, since ${\rm{\Delta }}{\rm{\Phi }}=2W\alpha +{\rm{\Delta }}\beta $, for period-4 orbit, Δβ=0, W=1, thus when α=π/2, as indicated by the vertical lines in figure 8, Δ Φ will become π, which will be similar as that for period-3 at α=0. On the other hand, for period-3 orbit, Δβ=π, thus when α=π/2, Δ Φ=2π, or 0 modulo 2π, which is similar to the case of periodic-4 at α=0. Thus by applying a magnetic flux of α=π/2, the chirality interchanges for these two orbits.

Figure 8.

New window|Download| PPT slide
Figure 8.Validation of the quantization rule equation (4). Shown are the relations between wavenumber k and magnetic flux α, for (a) the period-4 scar in figure 6(a), and (b) the period-3 scar in figure 6(c). The orange up-triangles indicate scars with a counterclockwise flow, and the blue down-triangles are those with a clockwise flow. The gray squares mark the scars whose flow orientations cannot be identified, which typically occur close to the cross points of the two orientation cases. The solid lines are theoretical predictions of equation (4). Vertical lines indicate the position of α=π/2. The step in the variation of α is 0.01. Adapted from [569] with permission.


3.3. Unification of chiral scar and nonrelativistic quantum scars

Recently we have developed quantization rule for scars in massive 2D Dirac billiards with infinite mass confinement [570]. Compare to the massless case, there is a new phase emerging during each reflection j. For the massless case, the reflection coefficient Rj is 1. While for the massive case, although the module of Rj is still 1, it has a non-trivial phase, i.e. ${R}_{j}^{\pm }={{\rm{e}}}^{{\rm{i}}({\delta }_{j}^{\pm }+2{\omega }_{j}^{\pm })}$, where ${\delta }_{j}^{\pm }=({\theta }_{j}^{\pm }-{\theta }_{j-1}^{\pm })/2$ is the same as in the massless case (figure 7), but $2{\omega }_{j}^{\pm }$ is a complicated function of the angles (${\theta }_{i-1},{\theta }_{j}$), the mass m, and the wavenumber k (or energy E) [570]. Let ${\gamma }^{\pm }={\sum }_{j}2{\omega }_{j}^{\pm }$ and in the absence of magnetic flux, i.e. α=0, the total phase accumulation around one complete cycle is then$\begin{eqnarray}{{\rm{\Phi }}}^{\pm }=k\cdot L-\displaystyle \frac{\sigma \pi }{2}+2{\beta }^{\pm }+{\gamma }^{\pm }.\end{eqnarray}$Since mod(Δ 2β,2π)=0, where ${\beta }^{\pm }={\sum }_{j}{\delta }^{\pm }$, we then have ${\rm{\Delta }}{\rm{\Phi }}={\rm{\Delta }}\gamma \equiv {\gamma }^{+}-{\gamma }^{-}$. Thus for massive Dirac billiards, the complex behavior can be all attributed to Δγ. We have found that when m goes to zero, Δγgoes to 2π or π for even or odd orbits, respectively (see figure 9 when $m\to 0$), degenerating to the massless cases. When the mass m goes to infinity, Δγgoes to zero for both even and odd orbits (see figure 9 when $k\to 0$): hence the difference between even and odd orbits diminish and the system becomes effectively a nonrelativistic quantum billiard. Thus through the modulation of the extra phase in the reflection coeffecients, the relativistic chiral scar and the nonrelativistic quantum scar can be unified as the two limiting cases of the massive Dirac billiards.

Figure 9.

New window|Download| PPT slide
Figure 9.Δγ between counterclockwise and clockwise scaring states on a period-3 orbit (a) and a period-4 orbit (b). The massless Dirac regime is $m\to 0$, while $k\to 0$ is effectively $m\to \infty $ and is the Schrödinger limit. Adapted from [570] with permission.


4. Scattering and tunneling

For open quantum systems, an important topic of quantum chaos is quantum chaotic scattering [50, 158170]. In nonrelativistic systems, a general observation is that, for classically mixed systems, the transmission (or conductance) of the corresponding quantum system exhibit many sharp resonances caused by the strongly localized states around the classically stable periodic orbits, while for classically chaotic system, the peaks are either broadened or removed. That is, chaos regularizes the quantum transport and makes the transmission curve smoother. Note that, for closed systems, such as a quantum billiard, although there are localized scarring state on the unstable periodic orbits for classically chaotic system, these states are unstable that once the system is opened up, due to the spanning chaotic sea in the phase space, they are typically washed out, leaving few or no localized states.

Similar investigation has been carried out for graphene/Dirac quantum dots with different classical dynamics [538, 571577]. It has been found that, classical dynamics can indeed influence the quantum transport, e.g. by varying the boundary of the quantum dot to change the corresponding classical dynamics from mixed to chaotic, most of the sharp resonances are broadened or removed, however, there are residual sharp resonances, with still strong localized states on classically unstable periodic orbits that would not exist for nonrelativistic systems [573]. In particular, a cosine billiard [163] is adopted to demonstrate this phenomenon. The boundary is given by two hard walls at y=0 and $y=W+(M/2)[1-\cos (2\pi x/L)]$ for $0\leqslant x\leqslant L$, with two semi-infinite leads of width W attached at the two openings of the billiard, whose length is L and the widest part is (W+M). By changing the geometric parameters M, W, and L, the classical dynamics can be either mixed, e.g. for W/L= 0.18 and M/L=0.11, or chaotic, e.g. W/L=0.36 and M/L=0.22. A tight-binding approach is employed, and Green’s function formalism is used to calculate the transmission and the local density of states (LDS) [578581].

Assume the isolated dot region (0≤xL) has Hamiltonian Hc with a set of eigenenergies and eigenfuctions $\{{E}_{0\alpha },{\psi }_{0\alpha }| \alpha =1,2,\cdots \}$. The effects of the semi-infinite leads can be incorporated into the retarded self-energy matrices, ${{\rm{\Sigma }}}^{R}={{\rm{\Sigma }}}_{L}^{R}+{{\rm{\Sigma }}}_{R}^{R}$, with the lower indices indicate whether it is due to the left or right leads. Then the whole Hamiltonian with the effects of the leads is ${H}_{c}+{{\rm{\Sigma }}}^{R}$. Since ΣR in general can be complex, and it is small that it can be regarded as a perturbation, the new set of eigenenergies becomes ${E}_{\alpha }={E}_{0\alpha }-{{\rm{\Delta }}}_{\alpha }-{\rm{i}}{\gamma }_{\alpha }$, where Δα and γα are generally small. Δα represents a shift in ${E}_{0\alpha }$, and γα is the width of the resonance for the α's state. 1/γα can be regarded as the life-time of the state [578]. For detailed formulas of calculating γ and the determining factors, please refer to [582].

The values of γα for four cases with mixed or chaotic dynamics and 2-dimensional electron gas (2DEG) or graphene quantum dots are shown in figure 10. Note that smaller γα will result in sharper transmission resonances. For 2DEG quantum dots with mixed dynamics (figure 10(a)), there are many cases that γα takes very small values, in the order of 10−4, indicating extremely sharp resonances. When the classical dynamics change from mixed to chaotic, beside the envelope, the small values in γα are almost all removed (figure 10(b)). For graphene quantum dots, when the classical dynamics is mixed, beside the smooth envelope for γα∼10−2, there is a cluster of points for small γα values (figure 10(c)). When the classical dynamics becomes chaotic (figure 10(d)), although the overall trend is that the small values are shifted upwards, there are still a big cluster of points take apparently smaller values than the envelope, indicating the persistence of the sharp resonances.

Figure 10.

New window|Download| PPT slide
Figure 10.The imaginary part γ of the eigenenergies due to coupling between the dot and the leads, which is an effective indicator of the resonance width. The left panels are for 2DEG quantum dots, and the right panels are for graphene quantum dots. Upper panels are for the cases with mixed dynamics, and lower panels are for classically chaotic dynamics. Adapted from [573] with permission.


In addition, figure 11 shows the LDS for the most pronounced patterns in both the 2DEG and graphene quantum dots. (a) and (d) are for classically mixed dynamics, which show strong localizations on the stable periodic orbits in both cases. (b), (c) and (e), (f) are for classically chaotic dynamics. It is clear that for 2DEG cases, chaos ruined the localized states on the unstable periodic orbits that are present in the closed case, i.e. the scars; but for graphene quantum dot, localization on unstable periodic orbits still persists. Actually, there are many such states, corroborating the results in figure 10. Although weaker, the effect that classical chaos can make the conductance fluctuation becomes smoother can be exploited to articulate a controlling scheme to modulate the conductance fluctuations in quantum transport through a quantum dot, by changing the underlying classical dynamics [583, 584]. In the presence of a strong magnetic field, the difference caused by the classical dynamics can be suppressed further [585].

Figure 11.

New window|Download| PPT slide
Figure 11.Typical local density of states for quantum dots with classically mixed (a), (d) and chaotic (b) ,(c), (e), (f) dynamics. The upper panels are for 2DEG quantum dots, and lower panels are for graphene quantum dots.


The same phenomenon has also been observed in bilayer graphene [586]. The pseudoparticles in bilayer graphene follow the 2D massive Dirac equation. Thus this indicates that the suppression of the effect of eliminating sharp resonances by chaos also persists for massive Dirac systems. In addition, when the pseudoparticle is traveling along the classical ballistic orbit, it tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect.

Besides scattering, there are other phenomena that the effect of chaos has been suppressed. For example, for regulation of tunneling rates by chaos [191, 192], it has been found that if 2DEG is replaced by graphene or the massless Dirac fermion, although the regularization effect persist, it is much weaker than the 2DEG case [193195]. The same hold for persistent currents [587, 588] in Aharonov–Bohm (AB) rings [589]. Conventional metallic [590593] or semiconductor [594] ring systems with a central AB magnetic flux may exhibit dissipationless currents, e.g. the persistent or permanent current. However, the current is quite sensitive that small non-idealities such as boundary deformation or disorders may destroy the persistent current drastically [595598]. While in a ring of massless Dirac fermions, due to the Dirac whispering gallery modes [599601], the persistent current is quite robust against boundary deformations that even in the case where the classical dynamics become chaotic there is still a quite large amount of persistent currents [602604]. Furthermore, recently, Han et al [605] investigated out-of-time-order correlator in relativistic quantum billiard systems and found that the signatures of classical chaos are less pronounced than in the nonrelativistic case. Here again the effect of chaos is suppressed.

5. Quantum chaos in pseudospin-1 Dirac materials

Dirac materials hosting pseudospin-1 quasiparticles with a conical intersection of triple degeneracy in the underlying energy band have attracted a great deal of attention [606633]. The physics of these 2D Dirac materials is described by the generalized Dirac-Weyl equation for massless spin-1 particles [607, 608, 626]. Pseudospin-1 quasiparticles are different from Dirac, Weyl and Majorana fermions, and are of particular interest to the broad research community with diverse experimental realization schemes such as artificial photonic lattices [612, 616, 620, 621, 624], optical [622] and electronic Lieb lattices [631, 632], as well as superconducting qutrits [633]. A striking relativistic quantum hallmark of pseudospin-1 particles is super-Klein tunneling through a scalar potential barrier [608, 610, 623, 634, 635], where omnidirectional and perfect transmission of probability one occurs when the incident energy is about one half of the potential height. Generally, Klein tunneling defines optical-like, negatively refracted ray paths through the barrier interface via angularly resolved transmittance in the short wavelength limit [636638].

A recent study [639] addressed the issue of confinement of quasiparticles in pseudospin-1 materials. When both super-Klein tunneling and chaos are present, one may intuitively expect severe leakage to predominantly occur so that trapping would be impossible. However, quite counterintuitively, an energy range was found in which robust wave confinement occurs in spite of chaos and super-Klein tunneling. Especially, the three-component spinor wave concentrates in a particular region of the boundary through strongly squeezed local current vortices generated there, whose pattern in physical space can be manipulated in a reconfigurable manner, e.g. by deforming the boundary shape or setting the direction of excitation wave. While these modes are distributed unevenly in physical space because of the irregular deformations, even fully developed chaos and super-Klein tunneling are not able to reduce their trapping lifetime. That is, these modes contradict the intuitive expectation that electrostatically confining relativistic type of carriers/particles to a finite chaotic domain is impossible due to the simultaneous presence of two leaking (Q-spoiling) mechanisms: chaos assisted tunneling and Klein tunneling. This phenomenon has no counterpart in nonrelativistic quantum or even in pseudospin-1/2 systems. The resulting narrow resonances are also characteristically different from those due to scarring modes concentrating on periodic orbits in conventional wave chaotic scattering, in quantum dots [573, 640645] or in open optical microcavities [646648].

6. Discussions

Beside the above discussed few topics in relativistic quantum chaos, there are many other interesting topics that have been investigated in depth, such as quantum tunneling without [193, 194] and with electron–electron interactions [195], super-persistent currents that are robust to boundary deformations [602, 603] and the presence of disorders [604], relativistic quantum chimera states that electrons with different spins exhibit distinct scattering behaviors as they follow different classical dynamics [649], OTOC for relativistic quantum systems [605], anomalous entanglement in chaotic Dirac billiards [650], relativistic quantum kicked rotors [442, 510512], kicked relativistic particle in a box [651], etc. More efforts are needed to gain deeper understandings of these interesting subjects. In addition, electron–electron interaction effects [652] in a chaotic graphene quantum billiard have also been considered and compared with scanning tunneling microscopy (STM) experiments, which could explain both the measured density of state values and the experimentally observed topography patterns [198]. Most of the understandings achieved so far for relativistic quantum chaos are for massless cases. Massive Dirac billiards have been considered only recently, where quantization formula for scarred states in confined 2D massive Dirac billiard has been proposed and validated numerically, and restoration of time-reversal symmetry in the infinite mass limit has been unveiled [570]. However, there are many other issues to be understood in the massive Dirac billiards, e.g. to what extent the intriguing observations for massless Dirac billiard persist in the massive case? Pseudo-spin one systems [607609] have attracted much attention recently. Due to the flat band, it has many interesting properties regarding quantum chaotic scattering, such as superscattering that could even defy chaos Q-spoiling and Klein tunneling [635, 639, 653, 654]. There are still many open questions concerning pseudo-spin one system and quantum chaos.

Retrospecting the half-century development of quantum chaos, there are many subjects that would be interesting to extend into the relativistic quantum realm, such as the validity of the proposed indicators of universality corresponding to different classical dynamics, Loschmidt echo, many-body effects, quantum thermalization, etc. that have been discussed in section 1, as it is not straightforward to speculate what will happen when stepping into the relativistic regime. Efforts in trying to understand the behaviors of these subjects in relativistic quantum systems may not only advance the knowledge on the fundamental physics of relativistic quantum chaos, but may also bring new concepts of applications base on the state-of-art Dirac material technologies.

Acknowledgments

We thank Professor Kai Chang for the invitation to contribute a mini-review for Commun. Theor. Phys., and Mr Chenrong Liu for the help with organizing part of the references. We also thank Professor Wenge Wang and Professor Jiao Wang for carefully reading of the paper and detailed constructive suggestions. This work was supported by NSFC under Grants No.11775101 and No.11422541. YCL is supported by ONR through Grant No. N00014-16-1-2828.


Reference By original order
By published year
By cited within times
By Impact factor

Stöckmann H-J 2006 Quantum Chaos: An IntroductionNew YorkCambridge University Press
[Cited within: 1]

Haake F 2010 Quantum Signatures of ChaosSpringer Series in Synergetics3rd ednBerlinSpringer


Gutzwiller M C 2013 Chaos in Classical and Quantum MechanicsNew YorkSpringer
[Cited within: 1]

Xu G 1995 Quantum Chaotic Motions in Quantum SystemsShanghaiShanghai Scientific and Technical Publishers


Gu Y 1996 Quantum ChaosShanghaiShanghai Scientific and Technological Education Publishing House
[Cited within: 1]

Casati G Chirikov B 2006 Quantum Chaos: Between Order and DisorderCambridgeCambridge University Press


Knauf A Sinai Y G 1997 Classical Nonintegrability, Quantum Chaos vol 27BaselBirkhäuser


Cvitanovic P Artuso R Mainieri R Tanner G Vattay G Whelan N Wirzba A 2005 Chaos: Classical and Quantum, ChaosBook.orgCopenhagenNiels Bohr Institute
[Cited within: 2]

Einstein A 1917 Zum quantensatz von Sommerfeld und Epstein
Verh. Dtsch. Phys. Ges. 19 82

[Cited within: 2]

Stone A D 2005 Einstein’s unknown insight and the problem of quantizing chaos
Phys. Today 58 37 43

DOI:10.1063/1.2062917 [Cited within: 1]

Gutzwiller M C 1971 Periodic orbits and classical quantization conditions
J. Math. Phys. 12 343 358

DOI:10.1063/1.1665596 [Cited within: 1]

Berry M V Mount K E 1972 Semiclassical approximations in wave mechanics
Rep. Prog. Phys. 35 315 397

DOI:10.1088/0034-4885/35/1/306

Miller W H 1975 Semiclassical quantization of nonseparable systems: a new look at periodic orbit theory
J. Chem. Phys. 63 996 999

DOI:10.1063/1.431410

Berry M Tabor M 1977 Calculating the bound spectrum by path summation in action-angle variables
J. Phys. A: Math. Gen. Math. Theor. 10 371 379

DOI:10.1088/0305-4470/10/3/009

Mcdonald S W Kaufman A N 1979 Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories
Phys. Rev. Lett. 42 1189 1191

DOI:10.1103/PhysRevLett.42.1189 [Cited within: 1]

Du M L Delos J B 1987 Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field
Phys. Rev. Lett. 58 1731 1733

DOI:10.1103/PhysRevLett.58.1731

Creagh S C Robbins J M Littlejohn R G 1990 Geometrical properties of Maslov indices in the semiclassical trace formula for the density of states
Phys. Rev. A 42 1907

DOI:10.1103/PhysRevA.42.1907 [Cited within: 1]

Cvitanović P Rosenqvist P E Vattay G Rugh H H Fredholm A 1993 Determinant for semiclassical quantization
Chaos 3 619 636

DOI:10.1063/1.165992

Bruus H Whelan N D 1996 Edge diffraction, trace formulae and the cardioid billiard
Nonlinearity 9 1023

DOI:10.1088/0951-7715/9/4/012 [Cited within: 1]

Primack H Smilansky U 1998 On the accuracy of the semiclassical trace formula
J. Phys. A: Math. Gen. 31 6253 6277

DOI:10.1088/0305-4470/31/29/016

Cohen D Primack H Smilansky U 1998 Quantal-classical duality and the semiclassical trace formula
Ann. Phys. 264 108 170

DOI:10.1006/aphy.1997.5776

Yang S Kellman M E 2002 Perspective on semiclassical quantization: how periodic orbits converge to quantizing tori
Phys. Rev. A 66 052113

DOI:10.1103/PhysRevA.66.052113

Müller S Heusler S Braun P Haake F Altland A 2005 Periodic-orbit theory of universality in quantum chaos
Phys. Rev. E 72 046207

DOI:10.1103/PhysRevE.72.046207 [Cited within: 1]

Heller E J 1984 Bound-state eigenfunctions of classically chaotic Hamiltonian systems—scars of periodic-orbits
Phys. Rev. Lett. 53 1515 1518

DOI:10.1103/PhysRevLett.53.1515 [Cited within: 3]

Mcdonald S W Kaufman A N 1988 Wave chaos in the stadium—statistical properties of short-wave solutions of the Helmholtz equation
Phys. Rev. A 37 3067 3086

DOI:10.1103/PhysRevA.37.3067

Wintgen D Hönig A 1989 Irregular wave functions of a hydrogen atom in a uniform magnetic field
Phys. Rev. Lett. 63 1467 1470

DOI:10.1103/PhysRevLett.63.1467

Kus M Zakrzewski J Zyczkowski K 1991 Quantum scars on a sphere
Phys. Rev. A 43 4244 4248

DOI:10.1103/PhysRevA.43.4244

Malta C P Deaguiar M A M Dealmeida A M O 1993 Quantum signature of a period-doubling bifurcation and scars of periodic orbits
Phys. Rev. A 47 1625 1632

DOI:10.1103/PhysRevA.47.1625

Bellomo P Uzer T 1995 Quantum scars and classical ghosts
Phys. Rev. A 51 1669 1672

DOI:10.1103/PhysRevA.51.1669

Agam O 1996 Quantum scars of classical orbits in small interacting electronic systems
Phys. Rev. B 54 2607 2628

DOI:10.1103/PhysRevB.54.2607 [Cited within: 2]

Simonotti F P Vergini E Saraceno M 1997 Quantitative study of scars in the boundary section of the stadium billiard
Phys. Rev. E 56 3859 3867

DOI:10.1103/PhysRevE.56.3859

Li B 1997 Numerical study of scars in a chaotic billiard
Phys. Rev. E 55 5376 5379

DOI:10.1103/PhysRevE.55.5376

Li B Hu B 1998 Statistical analysis of scars in stadium billiard
J. Phys. A: Math. Gen. 31 483

DOI:10.1088/0305-4470/31/2/010 [Cited within: 1]

Bogomolny E B 1988 Smoothed wave-functions of chaotic quantum systems
Physica D 31 169 189

DOI:10.1016/0167-2789(88)90075-9 [Cited within: 1]

Berry M V 1989 Quantum scars of classical closed orbits in phase-space
Proc. R. Soc. A 423 219 231

DOI:10.1098/rspa.1989.0052 [Cited within: 1]

Agam O Fishman S 1993 Quantum eigenfunctions in terms of periodic orbits of chaotic systems
J. Phys. A: Math. Gen. 26 2113 2137

DOI:10.1088/0305-4470/26/9/010

Agam O Fishman S 1994 Semiclassical criterion for scars in wave functions of chaotic systems
Phys. Rev. Lett. 73 806 809

DOI:10.1103/PhysRevLett.73.806

Fishman S Georgeot B Prange R E 1996 Fredholm method for scars
J. Phys. A: Math. Gen. 29 919 937

DOI:10.1088/0305-4470/29/4/019

Eckhardt B Fishman S Keating J Agam O Main J Müller K 1995 Approach to ergodicity in quantum wave functions
Phys. Rev. E 52 5893 5903

DOI:10.1103/PhysRevE.52.5893

Bäcker A Schubert R Stifter P 1998 Rate of quantum ergodicity in Euclidean billiards
Phys. Rev. E 57 5425 5447

DOI:10.1103/PhysRevE.57.5425 [Cited within: 1]

Lichtenberg A J Lieberman M A 1992 Regular and Chaotic Dynamics2nd ednNew YorkSpringer
[Cited within: 1]

Ott E 2002 Chaos in Dynamical Systems2nd ednCambridgeCambridge University Press
[Cited within: 1]

Berry M V 1977 Regular and irregular semiclassical wavefunctions
J. Phys. A: Math. Gen. 10 2083

DOI:10.1088/0305-4470/10/12/016 [Cited within: 1]

Fromhold T M Wilkinson P B Sheard F W Eaves L Miao J Edwards G 1995 Manifestations of classical chaos in the energy level spectrum of a quantum well
Phys. Rev. Lett. 75 1142 1145

DOI:10.1103/PhysRevLett.75.1142 [Cited within: 1]

Wilkinson P B Fromhold T M Eaves L Sheard F W Miura N Takamasu T 1996 Observation of ‘scarred’ wavefunctions in a quantum well with chaotic electron dynamics
Nature 380 608 610

DOI:10.1038/380608a0

Monteiro T S Delande D Connerade J P 1997 Have quantum scars been observed?
Nature 387 863 864

DOI:10.1038/43096

Akis R Ferry D K Bird J P 1997 Wave function scarring effects in open stadium shaped quantum dots
Phys. Rev. Lett. 79 123 126

DOI:10.1103/PhysRevLett.79.123

Narimanov E E Stone A D 1998 Origin of strong scarring of wave functions in quantum wells in a tilted magnetic field
Phys. Rev. Lett. 80 49 52

DOI:10.1103/PhysRevLett.80.49

Bird J P Akis R Ferry D K Vasileska D Cooper J Aoyagi Y Sugano T 1999 Lead-orientation-dependent wave function scarring in open quantum dots
Phys. Rev. Lett. 82 4691 4694

DOI:10.1103/PhysRevLett.82.4691

Crook R Smith C G Graham A C Farrer I Beere H E Ritchie D A 2003 Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard
Phys. Rev. Lett. 91 246803

DOI:10.1103/PhysRevLett.91.246803 [Cited within: 2]

LeRoy B J Bleszynski A C Aidala K E Westervelt R M Kalben A Heller E J Shaw S E J Maranowski K D Gossard A C 2005 Imaging electron interferometer
Phys. Rev. Lett. 94 126801

DOI:10.1103/PhysRevLett.94.126801

Brunner R Akis R Ferry D K Kuchar F Meisels R 2008 Coupling-induced bipartite pointer states in arrays of electron billiards: Quantum Darwinism in action?
Phys. Rev. Lett. 101 024102

DOI:10.1103/PhysRevLett.101.024102 [Cited within: 1]

Burke A M Akis R Day T E Speyer G Ferry D K Bennett B R 2010 Periodic scarred states in open quantum dots as evidence of quantum Darwinism
Phys. Rev. Lett. 104 176801

DOI:10.1103/PhysRevLett.104.176801

Aoki N Brunner R Burke A M Akis R Meisels R Ferry D K Ochiai Y 2012 Direct imaging of electron states in open quantum dots
Phys. Rev. Lett. 108 136804

DOI:10.1103/PhysRevLett.108.136804 [Cited within: 1]

Sridhar S 1991 Experimental observation of scarred eigenfunctions of chaotic microwave cavities
Phys. Rev. Lett. 67 785 788

DOI:10.1103/PhysRevLett.67.785 [Cited within: 2]

Sridhar S Hogenboom D O Willemsen B A 1992 Microwave experiments on chaotic billiards
J. Stat. Phys. 68 239 258

DOI:10.1007/BF01048844

Jensen R V 1992 Quantum chaos
Nature 355 311 318

DOI:10.1038/355311a0

Jensen R V 1992 Quantum mechanics—bringing order out of chaos
Nature 355 591 592

DOI:10.1038/355591a0

Stein J Stöckmann H-J 1992 Experimental determination of billiard wave functions
Phys. Rev. Lett. 68 2867 2870

DOI:10.1103/PhysRevLett.68.2867 [Cited within: 1]

Sridhar S Heller E J 1992 Physical and numerical experiments on the wave mechanics of classically chaotic systems
Phys. Rev. A 46 R1728 R1731

DOI:10.1103/PhysRevA.46.R1728

Kudrolli A Kidambi V Sridhar S 1995 Experimental studies of chaos and localization in quantum wave functions
Phys. Rev. Lett. 75 822 825

DOI:10.1103/PhysRevLett.75.822 [Cited within: 2]

Doya V Legrand O Mortessagne F Miniatura C 2001 Light scarring in an optical fiber
Phys. Rev. Lett. 88 014102

DOI:10.1103/PhysRevLett.88.014102 [Cited within: 2]

Lee S-B Lee J-H Chang J-S Moon H-J Kim S W An K 2002 Observation of scarred modes in asymmetrically deformed microcylinder lasers
Phys. Rev. Lett. 88 033903

DOI:10.1103/PhysRevLett.88.033903

Gmachl C Narimanov E E Capasso F Baillargeon J N Cho A Y 2002 Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators
Opt. Lett. 27 824 826

DOI:10.1364/OL.27.000824 [Cited within: 1]

Harayama T Fukushima T Davis P Vaccaro P O Miyasaka T Nishimura T Aida T 2003 Lasing on scar modes in fully chaotic microcavities
Phys. Rev. E 67 015207

DOI:10.1103/PhysRevE.67.015207

Michel C Doya V Legrand O Mortessagne F 2007 Selective amplification of scars in a chaotic optical fiber
Phys. Rev. Lett. 99 224101

DOI:10.1103/PhysRevLett.99.224101 [Cited within: 2]

Blümel R Davidson I H Reinhardt W P Lin H Sharnoff M 1992 Quasilinear ridge structures in water surface waves
Phys. Rev. A 45 2641 2644

DOI:10.1103/PhysRevA.45.2641 [Cited within: 2]

Chinnery P A Humphrey V F 1996 Experimental visualization of acoustic resonances within a stadium-shaped cavity
Phys. Rev. E 53 272 276

DOI:10.1103/PhysRevE.53.272 [Cited within: 1]

Kudrolli A Abraham M C Gollub J P 2001 Scarred patterns in surface waves
Phys. Rev. E 63 026208

DOI:10.1103/PhysRevE.63.026208 [Cited within: 1]

Agam O Altshuler B L 2001 Scars in parametrically excited surface waves
Physica A 302 310 317

DOI:10.1016/S0378-4371(01)00453-8 [Cited within: 2]

Waterland R L Yuan J-M Martens C C Gillilan R E Reinhardt W P 1988 Classical-quantum correspondence in the presence of global chaos
Phys. Rev. Lett. 61 2733 2736

DOI:10.1103/PhysRevLett.61.2733 [Cited within: 1]

Jensen R V Sanders M M Saraceno M Sundaram B 1989 Inhibition of quantum transport due to scars of unstable periodic-orbits
Phys. Rev. Lett. 63 2771 2775

DOI:10.1103/PhysRevLett.63.2771

Feingold M Littlejohn R G Solina S B Pehling J Piro O 1990 Scars in billiards: The phase space approach
Phys. Lett. A 146 199 203

DOI:10.1016/0375-9601(90)90165-K

Depolavieja G G Borondo F Benito R M 1994 Scars in groups of eigenstates in a classically chaotic system
Phys. Rev. Lett. 73 1613 1616

DOI:10.1103/PhysRevLett.73.1613

Arranz F J Borondo F Benito R M 1998 Scar formation at the edge of the chaotic region
Phys. Rev. Lett. 80 944 947

DOI:10.1103/PhysRevLett.80.944

Wang J Lai C-H Gu Y 2001 Ergodicity and scars of the quantum cat map in the semiclassical regime
Phys. Rev. E 63 056208

DOI:10.1103/PhysRevE.63.056208 [Cited within: 1]

Wisniacki D Vergini E Benito R Borondo F 2006 Scarring by homoclinic and heteroclinic orbits
Phys. Rev. Lett. 97 094101

DOI:10.1103/PhysRevLett.97.094101 [Cited within: 1]

Antonsen T M Ott E Chen Q Oerter R N 1995 Statistics of wave-function scars
Phys. Rev. E 51 111 121

DOI:10.1103/PhysRevE.51.111 [Cited within: 1]

Kaplan L Heller E J 1998 Linear and nonlinear theory of eigenfunction scars
Ann. Phys. 264 171 206

DOI:10.1006/aphy.1997.5773 [Cited within: 1]

Kaplan L 1999 Scars in quantum chaotic wavefunctions
Nonlinearity 12 R1

DOI:10.1088/0951-7715/12/2/009 [Cited within: 1]

Schanz H Kottos T 2003 Scars on quantum networks ignore the Lyapunov exponent
Phys. Rev. Lett. 90 234101

DOI:10.1103/PhysRevLett.90.234101 [Cited within: 1]

Larson J Anderson B M Altland A 2013 Chaos-driven dynamics in spin–orbit-coupled atomic gases
Phys. Rev. A 87 013624

DOI:10.1103/PhysRevA.87.013624 [Cited within: 1]

Luukko P J J Drury B Klales A Kaplan L Heller E J Räsänen E 2016 Strong quantum scarring by local impurities
Sci. Rep. 6 37656

DOI:10.1038/srep37656 [Cited within: 1]

Keski-Rahkonen J Luukko P J J Kaplan L Heller E J Räsänen E 2017 Controllable quantum scars in semiconductor quantum dots
Phys. Rev. B 96 094204

DOI:10.1103/PhysRevB.96.094204

Keski-Rahkonen J Ruhanen A Heller E J Räsänen E 2019 Quantum Lissajous scars
Phys. Rev. Lett. 123 214101

DOI:10.1103/PhysRevLett.123.214101 [Cited within: 1]

Turner C J Michailidis A A Abanin D A Serbyn M Papic Z 2018 Weak ergodicity breaking from quantum many-body scars
Nat. Phys. 14 1

DOI:10.1038/s41567-018-0137-5 [Cited within: 1]

Turner C J Michailidis A A Abanin D A Serbyn M Papić Z 2018 Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations
Phys. Rev. B 98 155134

DOI:10.1103/PhysRevB.98.155134

Moudgalya S Regnault N Bernevig B A 2018 Entanglement of exact excited states of Affleck–Kennedy–Lieb–Tasaki models: exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis
Phys. Rev. B 98 235156

DOI:10.1103/PhysRevB.98.235156

Ho W W Choi S Pichler H Lukin M D 2019 Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach
Phys. Rev. Lett. 122 040603

DOI:10.1103/PhysRevLett.122.040603

Choi S Turner C J Pichler H Ho W W Michailidis A A Papić Z Serbyn M Lukin M D Abanin D A 2019 Emergent SU(2) dynamics and perfect quantum many-body scars
Phys. Rev. Lett. 122 220603

DOI:10.1103/PhysRevLett.122.220603

Lin C-J Motrunich O I 2019 Exact quantum many-body scar states in the Rydberg-blockaded atom chain
Phys. Rev. Lett. 122 173401

DOI:10.1103/PhysRevLett.122.173401

Mamaev M Kimchi I Perlin M A Nandkishore R M Rey A M 2019 Quantum entropic self-localization with ultracold fermions
Phys. Rev. Lett. 123 130402

DOI:10.1103/PhysRevLett.123.130402

Schecter M Iadecola T 2019 Weak ergodicity breaking and quantum many-body scars in spin-1 xy magnets
Phys. Rev. Lett. 123 147201

DOI:10.1103/PhysRevLett.123.147201

Wilming H Goihl M Roth I Eisert J 2019 Entanglement-ergodic quantum systems equilibrate exponentially well
Phys. Rev. Lett. 123 200604

DOI:10.1103/PhysRevLett.123.200604

Iadecola T Schecter M Xu S 2019 Quantum many-body scars from magnon condensation
Phys. Rev. B 100 184312

DOI:10.1103/PhysRevB.100.184312 [Cited within: 1]

Pai S Pretko M 2019 Dynamical scar states in driven fracton systems
Phys. Rev. Lett. 123 136401

DOI:10.1103/PhysRevLett.123.136401 [Cited within: 1]

Wigner E P 1955 Characteristic vectors of bordered matrices with infinite dimensions
Ann. Math. 62 548 564

DOI:10.2307/1970079 [Cited within: 1]

Wigner E P 1957 Characteristic vectors of bordered matrices with infinite dimensions ii
Ann. Math. 65 203 207

DOI:10.2307/1969956

Wigner E P 1958 On the distribution of the roots of certain symmetric matrices
Ann. Math. 62 325 327

DOI:10.2307/1970008 [Cited within: 1]

Dyson F J 1962 Statistical theory of the energy levels of complex systems. I
J. Math. Phys. 3 140 156

DOI:10.1063/1.1703773 [Cited within: 1]

Dyson F J 1962 Statistical theory of the energy levels of complex systems. II
J. Math. Phys. 3 157 165

DOI:10.1063/1.1703774

Dyson F J 1962 Statistical theory of the energy levels of complex systems. III
J. Math. Phys. 3 166 175

DOI:10.1063/1.1703775

Dyson F J Mehta M L 1963 Statistical theory of the energy levels of complex systems. IV
J. Math. Phys. 4 701 712

DOI:10.1063/1.1704008

Mehta M L Dyson F J 1963 Statistical theory of the energy levels of complex systems. V
J. Math. Phys. 4 713 719

DOI:10.1063/1.1704009 [Cited within: 1]

Wigner E P 1967 Random matrices in physics
SIAM Rev. 9 1C23

DOI:10.1137/1009001 [Cited within: 2]

Mehta M L 2004 Random Matrices vol 142New YorkAcademic
[Cited within: 1]

Brody T A Flores J French J B Mello P A Pandey A Wong S S M 1981 Random-matrix physics: spectrum and strength fluctuations
Rev. Mod. Phys. 53 385 479

DOI:10.1103/RevModPhys.53.385

Guhr T Groeling A M Weidenmüller H A 1998 Random-matrix theories in quantum physics: common concepts
Phys. Rep. 299 189 425

DOI:10.1016/S0370-1573(97)00088-4

Alhassid Y 2000 The statistical theory of quantum dots
Rev. Mod. Phys. 72 895 968

DOI:10.1103/RevModPhys.72.895

Weidenmüller H A Mitchell G E 2009 Random matrices and chaos in nuclear physics: nuclear structure
Rev. Mod. Phys. 81 539 589

DOI:10.1103/RevModPhys.81.539 [Cited within: 1]

Mitchell G E Richter A Weidenmüller H A 2010 Random matrices and chaos in nuclear physics: nuclear reactions
Rev. Mod. Phys. 82 2845 2901

DOI:10.1103/RevModPhys.82.2845 [Cited within: 2]

Caselle M Magnea U 2004 Random matrix theory and symmetric spaces
Phys. Rep. 394 41 156

DOI:10.1016/j.physrep.2003.12.004 [Cited within: 1]

Berry M V Tabor M 1977 Level clustering in the regular spectrum
Proc. R. Soc. A 356 375 394

DOI:10.1098/rspa.1977.0140 [Cited within: 3]

Bohigas O Giannoni M J Schmit C 1984 Characterization of chaotic quantum spectra and universality of level fluctuation laws
Phys. Rev. Lett. 52 1 4

DOI:10.1103/PhysRevLett.52.1 [Cited within: 2]

Berry M V 1985 Semiclassical theory of spectral rigidity
Proc. R. Soc. A 400 229 251

DOI:10.1098/rspa.1985.0078 [Cited within: 2]

Bohigas O Haq R U Pandey A 1985 Higher-order correlations in spectra of complex systems
Phys. Rev. Lett. 54 1645 1648

DOI:10.1103/PhysRevLett.54.1645 [Cited within: 1]

Terasaka T Matsushita T 1985 Statistical properties of the quantized energy spectrum of a Hamiltonian system with classically regular and chaotic trajectories: a numerical study of level-spacing distributions for two-dimensional coupled Morse-oscillator systems
Phys. Rev. A 32 538 551

DOI:10.1103/PhysRevA.32.538 [Cited within: 1]

Jiang Y 1988 Level statistics of doublet spectrum of Sinai’s billiard
Chin. Phys. Lett. 5 541 544

DOI:10.1088/0256-307X/5/12/004

Delande D Gay J C 1986 Quantum chaos and statistical properties of energy levels: numerical study of the hydrogen atom in a magnetic field
Phys. Rev. Lett. 57 2006 2009

DOI:10.1103/PhysRevLett.57.2006

Fromhold T M Wilkinson P B Sheard F W Eaves L Miao J Edwards G 1995 Manifestations of classical chaos in the energy-level spectrum of a quantum-well
Phys. Rev. Lett. 75 1142 1145

DOI:10.1103/PhysRevLett.75.1142

Zhou W Chen Z Zhang B Yu C H Lu W Shen S C 2010 Magnetic field control of the quantum chaotic dynamics of hydrogen analogs in an anisotropic crystal field
Phys. Rev. Lett. 105 024101

DOI:10.1103/PhysRevLett.105.024101 [Cited within: 1]

Sieber M 2000 Spectral statistics in chaotic systems with a point interaction
J. Phys. A: Math. Gen. 33 6263 6278

DOI:10.1088/0305-4470/33/36/301 [Cited within: 1]

Sieber M Richter K 2001 Correlations between periodic orbits and their role in spectral statistics
Phys. Scr. T90 128

DOI:10.1238/Physica.Topical.090a00128

Heusler S Müller S Braun P Haake F 2004 universal spectral form factor for chaotic dynamics
J. Phys. A: Math. Gen. 37 L31 L37

DOI:10.1088/0305-4470/37/3/L02

Müller S Heusler S Braun P Haake F Altland A 2004 Semiclassical foundation of universality in quantum chaos
Phys. Rev. Lett. 93 014103

DOI:10.1103/PhysRevLett.93.014103 [Cited within: 2]

Nagao T Saito K 2007 Semiclassical approach to parametric spectral correlation with spin 1/2
J. Phys. A: Math. Gen. 40 12055 12070

DOI:10.1088/1751-8113/40/40/004 [Cited within: 1]

Kos P Ljubotina M Prosen T C V 2018 Many-body quantum chaos: analytic connection to random matrix theory
Phys. Rev. X 8 021062

DOI:10.1103/PhysRevX.8.021062 [Cited within: 1]

Bolte J Steil G Steiner F 1992 Arithmetical chaos and violation of universality in energy level statistics
Phys. Rev. Lett. 69 2188 2191

DOI:10.1103/PhysRevLett.69.2188 [Cited within: 1]

Chirikov B V Shepelyansky D L 1995 Shnirelman peak in level spacing statistics
Phys. Rev. Lett. 74 518 521

DOI:10.1103/PhysRevLett.74.518 [Cited within: 1]

Lehmann K K Coy S L 1987 The Gaussian orthogonal ensemble with missing and spurious levels: A model for experimental level spacing distributions
J. Chem. Phys. 87 5415 5418

DOI:10.1063/1.453660 [Cited within: 1]

Białous M Yunko V Bauch S Ławniczak M Dietz B Sirko L 2016 Power spectrum analysis and missing level statistics of microwave graphs with violated time reversal invariance
Phys. Rev. Lett. 117 144101

DOI:10.1103/PhysRevLett.117.144101 [Cited within: 2]

Poli C Luna-Acosta G A Stöckmann H-J 2012 Nearest level spacing statistics in open chaotic systems: Generalization of the Wigner surmise
Phys. Rev. Lett. 108 174101

DOI:10.1103/PhysRevLett.108.174101 [Cited within: 1]

Richens P Berry M 1981 Pseudo-integrable systems in classical and quantum mechanics
Physica D 2 495 512

DOI:10.1016/0167-2789(81)90024-5 [Cited within: 3]

Berry M V Robnik M 1984 Semiclassical level spacings when regular and chaotic orbits coexist
J. Phys. A: Math. Gen. 17 2413 2421

DOI:10.1088/0305-4470/17/12/013 [Cited within: 1]

Cheon T Cohen T D 1989 Quantum level statistics of pseudo-integrable billiards
Phys. Rev. Lett. 62 2769 2772

DOI:10.1103/PhysRevLett.62.2769 [Cited within: 1]

Izrailev F M 1989 Intermediate statistics of the quasi-energy spectrum and quantum localisation of classical chaos
J. Phys. A: Math. Gen. 22 865 878

DOI:10.1088/0305-4470/22/7/017

Šeba P 1990 Wave chaos in singular quantum billiard
Phys. Rev. Lett. 64 1855 1858

DOI:10.1103/PhysRevLett.64.1855 [Cited within: 1]

Prosen T Robnik M 1994 Semiclassical energy level statistics in the transition region between integrability and chaos: transition from Brody-like to Berry–Robnik behaviour
J. Phys. A: Math. Gen. 27 8059 8077

DOI:10.1088/0305-4470/27/24/017 [Cited within: 1]

Bogomolny E B Gerland U Schmit C 1999 Models of intermediate spectral statistics
Phys. Rev. E 59 R1315 R1318

DOI:10.1103/PhysRevE.59.R1315 [Cited within: 2]

Shigehara T Yoshinaga N Cheon T Mizusaki T 1993 Level-spacing distribution of a singular billiard
Phys. Rev. E 47 R3822 R3825

DOI:10.1103/PhysRevE.47.R3822 [Cited within: 1]

Shigehara T 1994 Conditions for the appearance of wave chaos in quantum singular systems with a pointlike scatterer
Phys. Rev. E 50 4357 4370

DOI:10.1103/PhysRevE.50.4357

Bogomolny E Gerland U Schmit C 2001 Singular statistics
Phys. Rev. E 63 036206

DOI:10.1103/PhysRevE.63.036206

Bogomolny E Giraud O Schmit C 2002 Nearest-neighbor distribution for singular billiards
Phys. Rev. E 65 056214

DOI:10.1103/PhysRevE.65.056214

García-García A M Wang J 2006 Semi-Poisson statistics in quantum chaos
Phys. Rev. E 73 036210

DOI:10.1103/PhysRevE.73.036210

Tuan P H Liang H C Tung J C Chiang P Y Huang K F Chen Y F 2015 Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks
Phys. Rev. E 92 062906

DOI:10.1103/PhysRevE.92.062906

Białous M Yunko V Bauch S Ławniczak M Dietz B Sirko L 2016 Long-range correlations in rectangular cavities containing pointlike perturbations
Phys. Rev. E 94 042211

DOI:10.1103/PhysRevE.94.042211 [Cited within: 1]

Shklovskii B I Shapiro B Sears B R Lambrianides P Shore H B 1993 Statistics of spectra of disordered systems near the metal-insulator transition
Phys. Rev. B 47 11487 11490

DOI:10.1103/PhysRevB.47.11487 [Cited within: 1]

Shapiro M Ronkin J Brumer P 1988 Scaling laws and correlation lengths of quantum and classical ergodic states
Chem. Phys. Lett. 148 177 182

DOI:10.1016/0009-2614(88)80295-1 [Cited within: 1]

Srivasta N Muller G 1990 Quantum images of Hamiltonian chaos
Phys. Lett. A 147 282 286

DOI:10.1016/0375-9601(90)90448-W

Lan B L Wardlaw D M 1993 Signatures of chaos in the modulus and phase of time-dependent wave functions
Phys. Rev. E 47 2176 2179

DOI:10.1103/PhysRevE.47.2176

Wang W Xu G Fu D 1994 Manifestation of destruction of quantum integrability with expectation and uncertainty values of quantum observables
Phys. Lett. A 190 377 381

DOI:10.1016/0375-9601(94)90718-8

Bies W E Kaplan L Haggerty M R Heller E J 2001 Localization of eigenfunctions in the stadium billiard
Phys. Rev. E 63 066214

DOI:10.1103/PhysRevE.63.066214

Blum G Gnutzmann S Smilansky U 2002 Nodal domains statistics: a criterion for quantum chaos
Phys. Rev. Lett. 88 114101

DOI:10.1103/PhysRevLett.88.114101

Berkolaiko G Keating J P Winn B 2003 Intermediate wave function statistics
Phys. Rev. Lett. 91 134103

DOI:10.1103/PhysRevLett.91.134103

Kotimäki V Räsänen E Hennig H Heller E J 2013 Fractal dynamics in chaotic quantum transport
Phys. Rev. E 88 022913

DOI:10.1103/PhysRevE.88.022913

Mason D J Borunda M F Heller E J 2015 Revealing the flux: using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport
Phys. Rev. B 91 165405

DOI:10.1103/PhysRevB.91.165405

Jain S R Samajdar R 2017 Nodal portraits of quantum billiards: domains, lines, and statistics
Rev. Mod. Phys. 89 045005

DOI:10.1103/RevModPhys.89.045005 [Cited within: 1]

Blümel R Smilansky U 1988 Classical irregular scattering and its quantum-mechanical implications
Phys. Rev. Lett. 60 477 480

DOI:10.1103/PhysRevLett.60.477 [Cited within: 2]

Lewenkopf C Weidenm H 1991 Stochastic versus semiclassical approach to quantum chaotic scattering
Ann. Phys. 212 53 83

DOI:10.1016/0003-4916(91)90372-F

Lai Y-C Blümel R Ott E Grebogi C 1992 Quantum manifestations of chaotic scattering
Phys. Rev. Lett. 68 3491 3494

DOI:10.1103/PhysRevLett.68.3491

Baranger H U Jalabert R A Stone A D 1993 Quantum chaotic scattering effects in semiconductor microstructures
Chaos 3 665 682

DOI:10.1063/1.165928

Ketzmerick R 1996 Fractal conductance fluctuations in generic chaotic cavities
Phys. Rev. B 54 10841 10844

DOI:10.1103/PhysRevB.54.10841

Huckestein B Ketzmerick R Lewenkopf C H 2000 Quantum transport through ballistic cavities: soft vs hard quantum chaos
Phys. Rev. Lett. 84 5504 5507

DOI:10.1103/PhysRevLett.84.5504 [Cited within: 1]

Casati G Guarneri I Maspero G 2000 Fractal survival probability fluctuations
Phys. Rev. Lett. 84 63 66

DOI:10.1103/PhysRevLett.84.63

Bäcker A Manze A Huckestein B Ketzmerick R 2002 Isolated resonances in conductance fluctuations and hierarchical states
Phys. Rev. E 66 016211

DOI:10.1103/PhysRevE.66.016211

Huang W-M Mou C-Y Chang C-H 2010 Scattering phase correction for semiclassical quantization rules in multi-dimensional quantum systems
Commun. Theor. Phys. 53 250

DOI:10.1088/0253-6102/53/2/09 [Cited within: 2]

Marcus C M Rimberg A J Westervelt R M Hopkins P F Gossard A C 1992 Conductance fluctuations and chaotic scattering in ballistic microstructures
Phys. Rev. Lett. 69 506 509

DOI:10.1103/PhysRevLett.69.506 [Cited within: 1]

Marcus C M Westervelt R M Hopkins P F Gossard A C 1993 Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures
Chaos 3 643 653

DOI:10.1063/1.165927

Taylor R Pet al. 1997 Self-similar magnetoresistance of a semiconductor Sinai billiard
Phys. Rev. Lett. 78 1952 1955

DOI:10.1103/PhysRevLett.78.1952

Sachrajda A S Ketzmerick R Gould C Feng Y Kelly P J Delage A Wasilewski Z 1998 Fractal conductance fluctuations in a soft-wall stadium and a Sinai billiard
Phys. Rev. Lett. 80 1948 1951

DOI:10.1103/PhysRevLett.80.1948 [Cited within: 2]

Blanchard P Olkiewicz R 2003 Decoherence-induced continuous pointer states
Phys. Rev. Lett. 90 010403

DOI:10.1103/PhysRevLett.90.010403 [Cited within: 1]

Ferry D K Akis R Bird J P 2004 Einselection in action: Decoherence and pointer states in open quantum dots
Phys. Rev. Lett. 93 026803

DOI:10.1103/PhysRevLett.93.026803

Ferry D K Huang L Yang R Lai Y-C Akis R 2010 Open quantum dots in graphene: scaling relativistic pointer states
J. Phys.: Conf. Ser. 220 012015

DOI:10.1088/1742-6596/220/1/012015

Wang W-G He L Gong J 2012 Preferred states of decoherence under intermediate system-environment coupling
Phys. Rev. Lett. 108 070403

DOI:10.1103/PhysRevLett.108.070403

Yang Y-B Wang W-G 2015 A phenomenon of decoherence induced by chaotic environment, Chinese
Phys. Lett. 32 030301

DOI:10.1088/0256-307X/32/3/030301 [Cited within: 2]

Lee P A Stone A D 1985 universal conductance fluctuations in metals
Phys. Rev. Lett. 55 1622 1625

DOI:10.1103/PhysRevLett.55.1622 [Cited within: 1]

Kaplan S B Hartstein A 1986 universal conductance fluctuations in narrow Si accumulation layers
Phys. Rev. Lett. 56 2403 2406

DOI:10.1103/PhysRevLett.56.2403

Skocpol W J Mankiewich P M Howard R E Jackel L D Tennant D M Stone A D 1986 universal conductance fluctuations in silicon inversion-layer nanostructures
Phys. Rev. Lett. 56 2865 2868

DOI:10.1103/PhysRevLett.56.2865

Iida S Weidenmüller H A Zuk J A 1990 Wave propagation through disordered media and universal conductance fluctuations
Phys. Rev. Lett. 64 583 586

DOI:10.1103/PhysRevLett.64.583

Kharitonov M Y Efetov K B 2008 Universal conductance fluctuations in graphene
Phys. Rev. B 78 033404

DOI:10.1103/PhysRevB.78.033404 [Cited within: 1]

Tomsovic S Ullmo D 1994 Chaos-assisted tunneling
Phys. Rev. E 50 145 162

DOI:10.1103/PhysRevE.50.145 [Cited within: 1]

Dembowski C Gräf H-D Heine A Hofferbert R Rehfeld H Richter A 2000 First experimental evidence for chaos-assisted tunneling in a microwave annular billiard
Phys. Rev. Lett. 84 867 870

DOI:10.1103/PhysRevLett.84.867 [Cited within: 1]

Steck D A Oskay W H Raizen M G 2001 Observation of chaos-assisted tunneling between islands of stability
Science 293 274 278

DOI:10.1126/science.1061569

Tomsovic S 2001 Tunneling and chaos
Phys. Scr. T90 162 165

DOI:10.1238/Physica.Topical.090a00162

de Moura A P S Lai Y-C Akis R Bird J Ferry D K 2002 Tunneling and nonhyperbolicity in quantum dots
Phys. Rev. Lett. 88 236804

DOI:10.1103/PhysRevLett.88.236804

Bäcker A Ketzmerick R Monastra A G 2005 Flooding of chaotic eigenstates into regular phase space islands
Phys. Rev. Lett. 94 054102

DOI:10.1103/PhysRevLett.94.054102

Bäcker A Ketzmerick R Löck S Robnik M Vidmar G Höhmann R Kuhl U Stöckmann H-J 2008 Dynamical tunneling in mushroom billiards
Phys. Rev. Lett. 100 174103

DOI:10.1103/PhysRevLett.100.174103

Bäcker A Ketzmerick R Löck S Schilling L 2008 Regular-to-chaotic tunneling rates using a fictitious integrable system
Phys. Rev. Lett. 100 104101

DOI:10.1103/PhysRevLett.100.104101

Rong S Hai W Xie Q Zhu Q 2009 Chaos enhancing tunneling in a coupled Bose–Einstein condensate with a double driving
Chaos 19 033129

DOI:10.1063/1.3215764

Löck S Bäcker A Ketzmerick R Schlagheck P 2010 Regular-to-chaotic tunneling rates: from the quantum to the semiclassical regime
Phys. Rev. Lett. 104 114101

DOI:10.1103/PhysRevLett.104.114101

Pecora L M Lee H Wu D H Antonsen T Lee M J Ott E 2011 Chaos regularization of quantum tunneling rates
Phys. Rev. E 83 065201

DOI:10.1103/PhysRevE.83.065201 [Cited within: 1]

Lee M J Antonsen T M Ott E Pecora L M 2012 Theory of chaos regularization of tunneling in chaotic quantum dots
Phys. Rev. E 86 056212

DOI:10.1103/PhysRevE.86.056212 [Cited within: 1]

Ni X Huang L Lai Y-C Pecora L M 2012 Effect of chaos on relativistic quantum tunneling
Europhys. Lett. 98 50007

DOI:10.1209/0295-5075/98/50007 [Cited within: 2]

Ni X Huang L Ying L Lai Y-C 2013 Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems
Phys. Rev. B 87 224304

DOI:10.1103/PhysRevB.87.224304 [Cited within: 1]

Ying L Wang G Huang L Lai Y-C 2014 Quantum chaotic tunneling in graphene systems with electron-electron interactions
Phys. Rev. B 90 224301

DOI:10.1103/PhysRevB.90.224301 [Cited within: 4]

Ugajin R 1997 Spectral statistics of correlated electrons in a square-well quantum dot
Physica A 237 220 228

DOI:10.1016/S0378-4371(96)00381-0

Zhang C Liu J Raizen M G Niu Q 2004 Quantum chaos of Bogoliubov waves for a Bose–Einstein condensate in stadium billiards
Phys. Rev. Lett. 93 074101

DOI:10.1103/PhysRevLett.93.074101 [Cited within: 1]

Hagymási I Vancsó P Pálinkás A Osváth Z 2017 Interaction effects in a chaotic graphene quantum billiard
Phys. Rev. B 95 075123

DOI:10.1103/PhysRevB.95.075123 [Cited within: 1]

Bychek A A Muraev P S Kolovsky A R 2019 Probing quantum chaos in many-body quantum systems by the induced dissipation
Phys. Rev. A 100 013610

DOI:10.1103/PhysRevA.100.013610 [Cited within: 1]

Peres A 1984 Stability of quantum motion in chaotic and regular systems
Phys. Rev. A 30 1610 1615

DOI:10.1103/PhysRevA.30.1610 [Cited within: 1]

Bonci L Roncaglia R West B J Grigolini P 1991 Quantum irreversibility and chaos
Phys. Rev. Lett. 67 2593 2596

DOI:10.1103/PhysRevLett.67.2593

Tomsovic S Heller E J 1991 Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy
Phys. Rev. Lett. 67 664 667

DOI:10.1103/PhysRevLett.67.664

Tomsovic S Heller E J 1993 Long-time semiclassical dynamics of chaos: the stadium billiard
Phys. Rev. E 47 282 299

DOI:10.1103/PhysRevE.47.282

Jie Q Xu G 1995 Quantum signature of classical chaos in the temporal mean of expectation values of observables
Chin. Phys. Lett. 12 577 580

DOI:10.1088/0256-307X/12/10/001

Xie R-H Xu G-O 1996 Quantum signature of classical chaos in a Lipkin model: Sensitivity of eigenfunctions to parameter perturbations
Chin. Phys. Lett. 13 329 332

DOI:10.1088/0256-307X/13/5/003

Jie Q-L Xu G-O 1996 Numerical evidence of quantum correspondence to the classical ergodicity
Commun. Theor. Phys. 26 191 196

DOI:10.1088/0253-6102/26/2/191

Xing Y-Z Xu G-O Li J-Q 2001 The relation between one-to-one correspondent orthonormal eigenstates of h0 and $h(\lambda )={h}_{0}+\lambda v$
Commun. Theor. Phys. 35 11 14

DOI:10.1088/0253-6102/35/1/11 [Cited within: 1]

Jacquod P Silvestrov P Beenakker C 2001 Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
Phys. Rev. E 64 055203

DOI:10.1103/PhysRevE.64.055203

Jalabert R A Pastawski H M 2001 Environment-independent decoherence rate in classically chaotic systems
Phys. Rev. Lett. 86 2490 2493

DOI:10.1103/PhysRevLett.86.2490

Li J-Q Liu F Xing Y-Z Zuo W 2002 Quantitative measurement of the exponential growth of spreading width of a quantum wave packet in chaotic systems
Commun. Theor. Phys. 37 671 674

DOI:10.1088/0253-6102/37/6/671

Karkuszewski Z P Jarzynski C Zurek W H 2002 Quantum chaotic environments, the butterfly effect, and decoherence
Phys. Rev. Lett. 89 170405

DOI:10.1103/PhysRevLett.89.170405

Cerruti N R Tomsovic S 2002 Sensitivity of wave field evolution and manifold stability in chaotic systems
Phys. Rev. Lett. 88 054103

DOI:10.1103/PhysRevLett.88.054103

Cucchietti F M Lewenkopf C H Mucciolo E R Pastawski H M Vallejos R O 2002 Measuring the Lyapunov exponent using quantum mechanics
Phys. Rev. E 65 046209

DOI:10.1103/PhysRevE.65.046209

Cucchietti F M Dalvit D A R Paz J P Zurek W H 2003 Decoherence and the Loschmidt echo
Phys. Rev. Lett. 91 210403

DOI:10.1103/PhysRevLett.91.210403

Jacquod P Adagideli İ Beenakker C W J 2003 Anomalous power law of quantum reversibility for classically regular dynamics
Europhys. Lett. 61 729 735

DOI:10.1209/epl/i2003-00289-y

Adamov Y Gornyi I V Mirlin A D 2003 Loschmidt echo and Lyapunov exponent in a quantum disordered system
Phys. Rev. E 67 056217

DOI:10.1103/PhysRevE.67.056217

Vaníček J Heller E J 2003 Semiclassical evaluation of quantum fidelity
Phys. Rev. E 68 056208

DOI:10.1103/PhysRevE.68.056208

Sankaranarayanan R Lakshminarayan A 2003 Recurrence of fidelity in nearly integrable systems
Phys. Rev. E 68 036216

DOI:10.1103/PhysRevE.68.036216

Gorin T Prosen T Seligman T H Strunz W T 2004 Connection between decoherence and fidelity decay in echo dynamics
Phys. Rev. A 70 042105

DOI:10.1103/PhysRevA.70.042105

Liu J Wang W Zhang C Niu Q Li B 2005 Fidelity for the quantum evolution of a Bose–Einstein condensate
Phys. Rev. A 72 063623

DOI:10.1103/PhysRevA.72.063623

Weinstein Y S Hellberg C S 2005 Quantum fidelity decay in quasi-integrable systems
Phys. Rev. E 71 016209

DOI:10.1103/PhysRevE.71.016209

Prosen T Žnidarič M 2005 Quantum freeze of fidelity decay for chaotic dynamics
Phys. Rev. Lett. 94 044101

DOI:10.1103/PhysRevLett.94.044101

Wang W-G Li B 2005 Uniform semiclassical approach to fidelity decay: from weak to strong perturbation
Phys. Rev. E 71 066203

DOI:10.1103/PhysRevE.71.066203

Gorin T Prosen T Seligman T H Z˘nidaric M 2006 Dynamics of Loschmidt echoes and fidelity decay
Phys. Rep. 435 33 156

DOI:10.1016/j.physrep.2006.09.003

Quan H T Song Z Liu X F Zanardi P Sun C P 2006 Decay of Loschmidt echo enhanced by quantum criticality
Phys. Rev. Lett. 96 140604

DOI:10.1103/PhysRevLett.96.140604

Pellegrini F Montangero S 2007 Fractal fidelity as a signature of quantum chaos
Phys. Rev. A 76 052327

DOI:10.1103/PhysRevA.76.052327

Zanardi P Quan H T Wang X Sun C P 2007 Mixed-state fidelity and quantum criticality at finite temperature
Phys. Rev. A 75 032109

DOI:10.1103/PhysRevA.75.032109

Ian H Gong Z R Liu Y-X Sun C P Nori F 2008 Cavity optomechanical coupling assisted by an atomic gas
Phys. Rev. A 78 013824

DOI:10.1103/PhysRevA.78.013824

Höhmann R Kuhl U Stöckmann H-J 2008 Algebraic fidelity decay for local perturbations
Phys. Rev. Lett. 100 124101

DOI:10.1103/PhysRevLett.100.124101

Huang J-F Li Y Liao J-Q Kuang L-M Sun C P 2009 Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality
Phys. Rev. A 80 063829

DOI:10.1103/PhysRevA.80.063829

Quan H T Cucchietti F M 2009 Quantum fidelity and thermal phase transitions
Phys. Rev. E 79 031101

DOI:10.1103/PhysRevE.79.031101

Gutkin B Waltner D Gutiérrez M Kuipers J Richter K 2010 Quantum corrections to fidelity decay in chaotic systems
Phys. Rev. E 81 036222

DOI:10.1103/PhysRevE.81.036222

Kohler H Sommers H-J Åberg S Guhr T 2010 Exact fidelity and full fidelity statistics in regular and chaotic surroundings
Phys. Rev. E 81 050103

DOI:10.1103/PhysRevE.81.050103

Rams M M Damski B 2011 Quantum fidelity in the thermodynamic limit
Phys. Rev. Lett. 106 055701

DOI:10.1103/PhysRevLett.106.055701

Cai C Y Ai Q Quan H T Sun C P 2012 Sensitive chemical compass assisted by quantum criticality
Phys. Rev. A 85 022315

DOI:10.1103/PhysRevA.85.022315

Wang W-G 2019 A renormalized-Hamiltonian-flow approach to eigenenergies and eigenfunctions
Commun. Theor. Phys. 71 861

DOI:10.1088/0253-6102/71/7/861 [Cited within: 2]

Stöckmann H J Stein J 1990 Quantum chaos in billiards studied by microwave-absorption
Phys. Rev. Lett. 64 2215 2218

DOI:10.1103/PhysRevLett.64.2215 [Cited within: 1]

Doron E Smilansky U Frenkel A 1990 Experimental demonstration of chaotic scattering of microwaves
Phys. Rev. Lett. 65 3072 3075

DOI:10.1103/PhysRevLett.65.3072

Haake F Lenz G Seba P Stein J Stöckmann H-J Życzkowski K 1991 Manifestation of wave chaos in pseudo-integrable microwave resonators
Phys. Rev. A 44 R6161 R6164

DOI:10.1103/PhysRevA.44.R6161

Gräf H-D Harney H L Lengeler H Lewenkopf C H Rangacharyulu C Richter A Schardt P Weidenmüller H A 1992 Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics
Phys. Rev. Lett. 69 1296 1299

DOI:10.1103/PhysRevLett.69.1296 [Cited within: 1]

Kudrolli A Sridhar S Pandey A Ramaswamy R 1994 Signatures of chaos in quantum billiards: microwave experiments
Phys. Rev. E 49 R11 R14

DOI:10.1103/PhysRevE.49.R11

So P Anlage S M Ott E Oerter R N 1995 Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics
Phys. Rev. Lett. 74 2662 2665

DOI:10.1103/PhysRevLett.74.2662

Deus S Koch P M Sirko L 1995 Statistical properties of the eigenfrequency distribution of three-dimensional microwave cavities
Phys. Rev. E 52 1146 1155

DOI:10.1103/PhysRevE.52.1146

Stoffregen U Stein J Stöckmann H-J Kuś M Haake F 1995 Microwave billiards with broken time reversal symmetry
Phys. Rev. Lett. 74 2666 2669

DOI:10.1103/PhysRevLett.74.2666

Alt H Gräf H-D Hofferbert R Rangacharyulu C Rehfeld H Richter A Schardt P Wirzba A 1996 Chaotic dynamics in a three-dimensional superconducting microwave billiard
Phys. Rev. E 54 2303 2312

DOI:10.1103/PhysRevE.54.2303

Alt H Gräf H-D Guhr T Harney H L Hofferbert R Rehfeld H Richter A Schardt P 1997 Correlation-hole method for the spectra of superconducting microwave billiards
Phys. Rev. E 55 6674 6683

DOI:10.1103/PhysRevE.55.6674

Sirko L Koch P M Blümel R 1997 Experimental identification of non-newtonian orbits produced by ray splitting in a dielectric-loaded microwave cavity
Phys. Rev. Lett. 78 2940 2943

DOI:10.1103/PhysRevLett.78.2940

Kottos T Smilansky U Fortuny J Nesti G 1999 Chaotic scattering of microwaves
Radio Sci. 34 747 758

DOI:10.1029/1999RS900037

Sirko L Bauch S Hlushchuk Y Koch P Blümel R Barth M Kuhl U Stöckmann H-J 2000 Observation of dynamical localization in a rough microwave cavity
Phys. Lett. A 266 331 335

DOI:10.1016/S0375-9601(00)00052-9

Stöckmann H-J Barth M Dörr U Kuhl U Schanze H 2001 Microwave studies of chaotic billiards and disordered systems
Physica E 9 571 577

DOI:10.1016/S1386-9477(00)00264-2

Dembowski C Dietz B Gräf H-D Heine A Leyvraz F Miski-Oglu M Richter A Seligman T H 2003 Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry
Phys. Rev. Lett. 90 014102

DOI:10.1103/PhysRevLett.90.014102

Kuhl U Stöckmann H-J Weaver R 2005 Classical wave experiments on chaotic scattering
J. Phys. A: Math. Gen. 38 10433 10463

DOI:10.1088/0305-4470/38/49/001

Dietz B Richter A 2015 Quantum and wave dynamical chaos in superconducting microwave billiards
Chaos 25 097601

DOI:10.1063/1.4915527 [Cited within: 2]

Zhang R Zhang W Dietz B Chai G Huang L 2019 Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Chin. Phys. B 28 100502

DOI:10.1088/1674-1056/ab3f96 [Cited within: 2]

Slusher R Weisbuch C 1994 Optical microcavities in condensed matter systems
Solid State Commun. 92 149 158

DOI:10.1016/0038-1098(94)90868-0 [Cited within: 1]

Gmachl C Capasso F Narimanov E E Nockel J U Stone A D Faist J Sivco D L Cho A Y 1998 High-power directional emission from microlasers with chaotic resonators
Science 280 1556 1564

DOI:10.1126/science.280.5369.1556 [Cited within: 1]

Vahala K J 2003 Optical microcavities
Nature 424 839 846

DOI:10.1038/nature01939 [Cited within: 1]

Lee S-B Yang J Moon S Lee S-Y Shim J-B Kim S W Lee J-H An K 2009 Observation of an exceptional point in a chaotic optical microcavity
Phys. Rev. Lett. 103 134101

DOI:10.1103/PhysRevLett.103.134101

Song Q Fang W Liu B Ho S-T Solomon G S Cao H 2009 Chaotic microcavity laser with high quality factor and unidirectional output
Phys. Rev. A 80 041807

DOI:10.1103/PhysRevA.80.041807 [Cited within: 1]

Peng B Oezdemir S K Lei F Monifi F Gianfreda M Long G L Fan S Nori F Bender C M Yang L 2014 Parity-time-symmetric whispering-gallery microcavities
Nat. Phys. 10 394 398

DOI:10.1038/nphys2927

Wang L Lippolis D Li Z Jiang X Gong Q Xiao Y 2016 Statistics of chaotic resonances in an optical microcavity
Phys. Rev. E 93 040201

DOI:10.1103/PhysRevE.93.040201

Jiang X Shao L Zhang S Yi X Wiersig J Wang L Gong Q Loncar M Yang L Xiao Y 2017 Chaos-assisted broadband momentum transformation in optical microresonators
Science 358 344 347

DOI:10.1126/science.aao0763

Bittner S Guazzotti S Zeng Y Hu X Yilmaz H Kim K Oh S S Wang Q J Hess O Cao H 2018 Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities
Science 361 1225 1231

DOI:10.1126/science.aas9437

Guidry M Aet al. 2019 Three-dimensional micro-billiard lasers: the square pyramid
Europhys. Lett. 126 64004

DOI:10.1209/0295-5075/126/64004 [Cited within: 1]

Legrand O Schmit C Sornette D 1992 Quantum chaos methods applied to high-frequency plate vibrations
Europhys. Lett. 18 101 106

DOI:10.1209/0295-5075/18/2/002 [Cited within: 1]

Mortessagne F Legrand O Sornette D 1993 Transient chaos in room acoustics
Chaos 3 529 541

DOI:10.1063/1.165958

Ellegaard C Guhr T Lindemann K Lorensen H Q Nygård J Oxborrow M 1995 Spectral statistics of acoustic resonances in aluminum blocks
Phys. Rev. Lett. 75 1546 1549

DOI:10.1103/PhysRevLett.75.1546

Ellegaard C Guhr T Lindemann K Nygård J Oxborrow M 1996 Symmetry breaking and spectral statistics of acoustic resonances in quartz blocks
Phys. Rev. Lett. 77 4918 4921

DOI:10.1103/PhysRevLett.77.4918

Leitner D M 1997 Effects of symmetry breaking on statistical properties of near-lying acoustic resonances
Phys. Rev. E 56 4890 4891

DOI:10.1103/PhysRevE.56.4890

Bogomolny E Hugues E 1998 Semiclassical theory of flexural vibrations of plates
Phys. Rev. E 57 5404 5424

DOI:10.1103/PhysRevE.57.5404 [Cited within: 1]

Lindelof P E Norregaard J Hanberg J 1986 New light on the scattering mechanisms in Si inversion layers by weak localization experiments
Phys. Scr. 1986 17 26

DOI:10.1088/0031-8949/1986/T14/003 [Cited within: 1]

Nunez-Fernandez Y Trallero-Giner C Buchleitner A 2008 Liquid surface waves in parabolic tanks
Phys. Fluids 20 117106

DOI:10.1063/1.3025890

Tang Y Shen Y Yang J Liu X Zi J Li B 2008 Experimental evidence of wave chaos from a double slit experiment with water surface waves
Phys. Rev. E 78 047201

DOI:10.1103/PhysRevE.78.047201 [Cited within: 1]

Casati G Chirikov B V Izraelev F M Ford J 1979 Stochastic behavior of a quantum pendulum under a periodic perturbation
Stochastic Behavior in Classical and Quantum Hamiltonian SystemsCasati G Ford J BerlinSpringer334 352

[Cited within: 1]

Fishman S Grempel D R Prange R E 1982 Chaos, quantum recurrences, and Anderson localization
Phys. Rev. Lett. 49 509 512

DOI:10.1103/PhysRevLett.49.509

Grempel D R Fishman S Prange R E 1982 Localization in an incommensurate potential: an exactly solvable model
Phys. Rev. Lett. 49 833 836

DOI:10.1103/PhysRevLett.49.833 [Cited within: 1]

Prange R E Grempel D R Fishman S 1984 Solvable model of quantum motion in an incommensurate potential
Phys. Rev. B 29 6500 6512

DOI:10.1103/PhysRevB.29.6500

Berry M V 1984 Incommensurability in an exactly-soluble quantal and classical model for a kicked rotator
Physica D 10 369 378

DOI:10.1016/0167-2789(84)90185-4

Fishman S Prange R E Griniasty M 1989 Scaling theory for the localization length of the kicked rotor
Phys. Rev. A 39 1628 1633

DOI:10.1103/PhysRevA.39.1628

Izrailev F M 1990 Simple models of quantum chaos: spectrum and eigenfunctions
Phys. Rep. 196 299 392

DOI:10.1016/0370-1573(90)90067-C

Chirikov B V 1991 A theory of quantum diffusion localization
Chaos 1 95 100

DOI:10.1063/1.165820

Iomin A Fishman S Zaslavsky G M 2002 Quantum localization for a kicked rotor with accelerator mode islands
Phys. Rev. E 65 036215

DOI:10.1103/PhysRevE.65.036215

Gong J Wang J 2007 Quantum diffusion dynamics in nonlinear systems: a modified kicked-rotor model
Phys. Rev. E 76 036217

DOI:10.1103/PhysRevE.76.036217

García-García A M Wang J 2008 Universality in quantum chaos and the one-parameter scaling theory
Phys. Rev. Lett. 100 070603

DOI:10.1103/PhysRevLett.100.070603 [Cited within: 1]

Zhao W-L Jie Q-L 2009 Quantum to classical transition in a system of two coupled kicked rotors
Commun. Theor. Phys. 51 465

DOI:10.1088/0253-6102/51/3/17 [Cited within: 2]

Wang H Wang J Guarneri I Casati G Gong J 2013 Exponential quantum spreading in a class of kicked rotor systems near high-order resonances
Phys. Rev. E 88 052919

DOI:10.1103/PhysRevE.88.052919

Wang J Tian C Altland A 2014 Unconventional quantum criticality in the kicked rotor
Phys. Rev. B 89 195105

DOI:10.1103/PhysRevB.89.195105

Fang P Wang J 2016 Superballistic wavepacket spreading in double kicked rotors
Sci. China-Phys. Mech. Astron. 59 680011

DOI:10.1007/s11433-016-0076-y [Cited within: 2]

Wang X Ghose S Sanders B C Hu B 2004 Entanglement as a signature of quantum chaos
Phys. Rev. E 70 016217

DOI:10.1103/PhysRevE.70.016217 [Cited within: 2]

Ghose S Stock R Jessen P Lal R Silberfarb A 2008 Chaos, entanglement, and decoherence in the quantum kicked top
Phys. Rev. A 78 042318

DOI:10.1103/PhysRevA.78.042318

Lombardi M Matzkin A 2011 Entanglement and chaos in the kicked top
Phys. Rev. E 83 016207

DOI:10.1103/PhysRevE.83.016207 [Cited within: 2]

Prange R E Fishman S 1989 Experimental realizations of kicked quantum chaotic systems
Phys. Rev. Lett. 63 704 707

DOI:10.1103/PhysRevLett.63.704 [Cited within: 1]

Ammann H Gray R Shvarchuck I Christensen N 1998 Quantum delta-kicked rotor: experimental observation of decoherence
Phys. Rev. Lett. 80 4111 4115

DOI:10.1103/PhysRevLett.80.4111

Chaudhury S Smith A Anderson B Ghose S Jessen P S 2009 Quantum signatures of chaos in a kicked top
Nature 461 768

DOI:10.1038/nature08396

Hainaut C Fang P Rançon A Clément J-F M C Szriftgiser P Garreau J-C Tian C Chicireanu R 2018 Experimental observation of a time-driven phase transition in quantum chaos
Phys. Rev. Lett. 121 134101

DOI:10.1103/PhysRevLett.121.134101 [Cited within: 1]

Wang J Monteiro T S Fishman S Keating J P Schubert R 2007 Fractional ${\hslash }$ scaling for quantum kicked rotors without cantori
Phys. Rev. Lett. 99 234101

DOI:10.1103/PhysRevLett.99.234101 [Cited within: 2]

Wang J García-García A M 2009 Anderson transition in a three-dimensional kicked rotor
Phys. Rev. E 79 036206

DOI:10.1103/PhysRevE.79.036206

Wang J Gong J 2009 Butterfly floquet spectrum in driven SU(2) systems
Phys. Rev. Lett. 102 244102

DOI:10.1103/PhysRevLett.102.244102

Zhou L Gong J 2018 Floquet topological phases in a spin-1/2 double kicked rotor
Phys. Rev. A 97 063603

DOI:10.1103/PhysRevA.97.063603 [Cited within: 1]

Dicke R H 1954 Coherence in spontaneous radiation processes
Phys. Rev. 93 99 110

DOI:10.1103/PhysRev.93.99 [Cited within: 1]

Lewenkopf C H Nemes M C Marvulle V Pato M P Wreszinski W F 1991 Level statistics transitions in the spin-boson model
Phys. Lett. A 155 113 116

DOI:10.1016/0375-9601(91)90575-S

Cibils M B Cuche Y Marvulle V Wreszinski W F Amiet J P Beck H 1991 The semiclassical limit of the spin boson model
J. Phys. A: Math. Gen. 24 1661 1675

DOI:10.1088/0305-4470/24/7/035

Emary C Brandes T 2003 Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model
Phys. Rev. Lett. 90 044101

DOI:10.1103/PhysRevLett.90.044101

Altland A Haake F 2012 Quantum chaos and effective thermalization
Phys. Rev. Lett. 108 073601

DOI:10.1103/PhysRevLett.108.073601 [Cited within: 1]

Chávez-Carlos J López-del Carpio B Bastarrachea-Magnani M A Stránský P Lerma-Hernández S Santos L F Hirsch J G 2019 Quantum and classical Lyapunov exponents in atom-field interaction systems
Phys. Rev. Lett. 122 024101

DOI:10.1103/PhysRevLett.122.024101

Lewisswan R J Safavinaini A Bollinger J J Rey A M 2019 Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model
Nat. Commun. 10 1581

DOI:10.1038/s41467-019-09436-y [Cited within: 1]

Lipkin H J Meshkov N Glick A J 1965 Validity of many-body approximation methods for a solvable model. i. exact solutions and perturbation theory
Nucl. Phys. 62 188 198

DOI:10.1016/0029-5582(65)90862-X [Cited within: 1]

Meredith D C Koonin S E Zirnbauer M R 1988 Quantum chaos in a schematic shell model
Phys. Rev. A 37 3499 3513

DOI:10.1103/PhysRevA.37.3499

Relaño A 2018 Anomalous thermalization in quantum collective models
Phys. Rev. Lett. 121 030602

DOI:10.1103/PhysRevLett.121.030602 [Cited within: 1]

Wang J Wang W-G 2018 Characterization of random features of chaotic eigenfunctions in unperturbed basis
Phys. Rev. E 97 062219

DOI:10.1103/PhysRevE.97.062219 [Cited within: 1]

Geisel T Radons G Rubner J 1986 Kolmogorov-Arnol’d-Moser barriers in the quantum dynamics of chaotic systems
Phys. Rev. Lett. 57 2883 2886

DOI:10.1103/PhysRevLett.57.2883 [Cited within: 1]

Fishman S Grempel D R Prange R E 1987 Temporal crossover from classical to quantal behavior near dynamical critical points
Phys. Rev. A 36 289 305

DOI:10.1103/PhysRevA.36.289

Radons G Prange R E 1988 Wave functions at the critical Kolmogorov-Arnol’d-Moser surface
Phys. Rev. Lett. 61 1691 1694

DOI:10.1103/PhysRevLett.61.1691

Maitra N T Heller E J 2000 Quantum transport through cantori
Phys. Rev. E 61 3620 3631

DOI:10.1103/PhysRevE.61.3620

Creffield C E Hur G Monteiro T S 2006 Localization-delocalization transition in a system of quantum kicked rotors
Phys. Rev. Lett. 96 024103

DOI:10.1103/PhysRevLett.96.024103

Creffield C E Fishman S Monteiro T S 2006 Theory of $2\delta $-kicked quantum rotors
Phys. Rev. E 73 066202

DOI:10.1103/PhysRevE.73.066202 [Cited within: 1]

Hufnagel L Ketzmerick R Kottos T Geisel T 2001 Superballistic spreading of wave packets
Phys. Rev. E 64 012301

DOI:10.1103/PhysRevE.64.012301 [Cited within: 1]

Zhang Z Tong P Gong J Li B 2012 Quantum hyperdiffusion in one-dimensional tight-binding lattices
Phys. Rev. Lett. 108 070603

DOI:10.1103/PhysRevLett.108.070603

Qin P Yin C Chen S 2014 Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices
Phys. Rev. B 90 054303

DOI:10.1103/PhysRevB.90.054303

Likhachev V N Shevaleevskii O I Vinogradov G A 2016 Quantum dynamics of charge transfer on the one-dimensional lattice: wave packet spreading and recurrence
Chin. Phys. B 25 018708

DOI:10.1088/1674-1056/25/1/018708 [Cited within: 1]

Zhao W-L Gong J Wang W-G Casati G Liu J Fu L-B 2016 Exponential wave-packet spreading via self-interaction time modulation
Phys. Rev. A 94 053631

DOI:10.1103/PhysRevA.94.053631

Gholami E Lashkami Z M 2017 Noise, delocalization, and quantum diffusion in one-dimensional tight-binding models
Phys. Rev. E 95 022216

DOI:10.1103/PhysRevE.95.022216 [Cited within: 1]

Bayfield J E Koch P M 1974 Multiphoton ionization of highly excited hydrogen atoms
Phys. Rev. Lett. 33 258 261

DOI:10.1103/PhysRevLett.33.258 [Cited within: 1]

Leopold J G Percival I C 1978 Microwave ionization and excitation of Rydberg atoms
Phys. Rev. Lett. 41 944 947

DOI:10.1103/PhysRevLett.41.944

Casati G Chirikov B V Shepelyansky D L 1984 Quantum limitations for chaotic excitation of the hydrogen atom in a monochromatic field
Phys. Rev. Lett. 53 2525 2528

DOI:10.1103/PhysRevLett.53.2525

van Leeuwen K A H Oppen G v Renwick S Bowlin J B Koch P M Jensen R V Rath O Richards D Leopold J G 1985 Microwave ionization of hydrogen atoms: experiment versus classical dynamics
Phys. Rev. Lett. 55 2231 2234

DOI:10.1103/PhysRevLett.55.2231

Casati G Chirikov B V Guarneri I Shepelyansky D L 1986 Dynamical stability of quantum ‘chaotic’ motion in a hydrogen atom
Phys. Rev. Lett. 56 2437 2440

DOI:10.1103/PhysRevLett.56.2437

Casati G Chirikov B V Shepelyansky D L Guarneri I 1986 New photoelectric ionization peak in the hydrogen atom
Phys. Rev. Lett. 57 823 826

DOI:10.1103/PhysRevLett.57.823

Casati G Chirikov B V Guarneri I Shepelyansky D L 1987 Localization of diffusive excitation in the two-dimensional hydrogen atom in a monochromatic field
Phys. Rev. Lett. 59 2927 2930

DOI:10.1103/PhysRevLett.59.2927

Casati G Chirikov B V Shepelyansky D L Guarneri I 1987 Relevance of classical chaos in quantum mechanics: the hydrogen atom in a monochromatic field
Phys. Rep. 154 77 123

DOI:10.1016/0370-1573(87)90009-3

Casati G Chirikov B V Shepelyansky D L Guarneri I 1987 Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field
Phys. Rep. 154 77 123

DOI:10.1016/0370-1573(87)90009-3

Chirikov B V Izrailev F M Shepelyansky D L 1988 Quantum chaos: localization versus ergodicity
Physica D 33 77 88

DOI:10.1016/S0167-2789(98)90011-2

Blümel R Smilansky U 1989 Ionization of excited hydrogen atoms by microwave fields: a test case for quantum chaos
Phys. Scr. 40 386 393

DOI:10.1088/0031-8949/40/3/022

Bayfield J E Casati G Guarneri I Sokol D W 1989 Localization of classically chaotic diffusion for hydrogen atoms in microwave fields
Phys. Rev. Lett. 63 364 367

DOI:10.1103/PhysRevLett.63.364

Blümel R Graham R Sirko L Smilansky U Walther H Yamada K 1989 Microwave excitation of Rydberg atoms in the presence of noise
Phys. Rev. Lett. 62 341 344

DOI:10.1103/PhysRevLett.62.341

Jensen R Susskind S Sanders M 1991 Chaotic ionization of highly excited hydrogen atoms: Comparison of classical and quantum theory with experiment
Phys. Rep. 201 1 56

DOI:10.1016/0370-1573(91)90113-Z

Yoakum S Sirko L Koch P M 1992 Stueckelberg oscillations in the multiphoton excitation of helium Rydberg atoms: Observation with a pulse of coherent field and suppression by additive noise
Phys. Rev. Lett. 69 1919 1922

DOI:10.1103/PhysRevLett.69.1919

Haffmans A Blümel R Koch P M Sirko L 1994 Prediction of a new peak in two-frequency microwave ‘ionization’ of excited hydrogen atoms
Phys. Rev. Lett. 73 248 251

DOI:10.1103/PhysRevLett.73.248

Koch P M van Leeuwen K H A 1995 The importance of resonances in microwave ‘ionization’ of excited hydrogen atoms
Phys. Rep. 256 289 403

DOI:10.1016/0370-1573(94)00093-I

Kang S Chen C-Y 2010 Statistics and correlation properties of diamagnetic high Rydberg hydrogen atom
Commun. Theor. Phys. 53 105

DOI:10.1088/0253-6102/53/1/23 [Cited within: 1]

Xu X Zhang Y Cai X Zhao G Kang L 2016 Fractal dynamics in the ionization of helium Rydberg atoms
Chin. Phys. B 25 110301

DOI:10.1088/1674-1056/25/11/110301 [Cited within: 1]

Aßmann M Thewes J Fröhlich D Bayer M 2016 Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons
Nat. Mater. 15 741 745

DOI:10.1038/nmat4622

Zhang Y Xu X Kang L Cai X Tang X 2018 Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Chin. Phys. B 27 053401

DOI:10.1088/1674-1056/27/5/053401 [Cited within: 1]

Xu L Fu L-B 2019 Understanding tunneling ionization of atoms in laser fields using the principle of multiphoton absorption
Chin.. Phys. Lett. 36 043202

DOI:10.1088/0256-307X/36/4/043202 [Cited within: 2]

Salmond G L Holmes C A Milburn G J 2002 Dynamics of a strongly driven two-component Bose–Einstein condensate
Phys. Rev. A 65 033623

DOI:10.1103/PhysRevA.65.033623 [Cited within: 1]

Gardiner S A 2002 Quantum chaos in Bose–Einstein condensates
J. Mod. Opt. 49 1971 1977

DOI:10.1080/09500340210140777

Franzosi R Penna V 2003 Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose–Einstein condensates
Phys. Rev. E 67 046227

DOI:10.1103/PhysRevE.67.046227

Xie Q Hai W 2005 Quantum entanglement and chaos in kicked two-component Bose–Einstein condensates
Euro. Phys. J. D 33 265 272

DOI:10.1140/epjd/e2005-00054-4

Mahmud K W Perry H Reinhardt W P 2005 Quantum phase-space picture of Bose–Einstein condensates in a double well
Phys. Rev. A 71 023615

DOI:10.1103/PhysRevA.71.023615

Jun X Wen-Hua H Hui L 2007 Generation and control of chaos in a Bose–Einstein condensate
Chin. Phys. 16 2244

DOI:10.1088/1009-1963/16/8/015

Kronjäger J Sengstock K Bongs K 2008 Chaotic dynamics in spinor Bose–Einstein condensates
New J. Phys. 10 045028

DOI:10.1088/1367-2630/10/4/045028

Koberle P Cartarius H Fabcic T Main J Wunner G 2009 Bifurcations, order and chaos in the Bose–Einstein condensation of dipolar gases
New J. Phys. 11 023017

DOI:10.1088/1367-2630/11/2/023017

Valdez M A Shchedrin G Heimsoth M Creffield C E Sols F Carr L D 2018 Many-body quantum chaos and entanglement in a quantum ratchet
Phys. Rev. Lett. 120 234101

DOI:10.1103/PhysRevLett.120.234101 [Cited within: 2]

Bohigas O Weidenmuller H 1988 Aspects of chaos in nuclear physics
Annu. Rev. Nucl. Part. 38 421 453

DOI:10.1146/annurev.ns.38.120188.002225 [Cited within: 1]

Zelevinsky V Volya A 2006 Quantum chaos and nuclear physics
Phys. Scr. 2006 147

DOI:10.1088/0031-8949/2006/T125/034 [Cited within: 1]

Raizen M G 1999 Quantum chaos with cold atoms
Adv. At. Mol. Opt. Phys. 41 199

[Cited within: 1]

Klappauf B Oskay W Steck D Raizen M 1999 Quantum chaos with cesium atoms: pushing the boundaries
Physica D 131 78 89

DOI:10.1016/S0167-2789(98)00221-8

d’Arcy M Summy G Fishman S Guarneri I 2004 Novel quantum chaotic dynamics in cold atoms
Phys. Scr. 69 C25

DOI:10.1238/Physica.Regular.069a00C25

Li H Hai W-H Xu J 2008 Quantum signatures of chaos in adiabatic interaction between a trapped ion and a laser standing wave
Commun. Theor. Phys. 49 143

DOI:10.1088/0253-6102/49/1/32 [Cited within: 1]

Krivolapov Y Fishman S Ott E Antonsen T M 2011 Quantum chaos of a mixed open system of kicked cold atoms
Phys. Rev. E 83 016204

DOI:10.1103/PhysRevE.83.016204

Frisch A Mark M Aikawa K Ferlaino F Bohn J L Makrides C Petrov A Kotochigova S 2014 Quantum chaos in ultracold collisions of gas-phase erbium atoms
Nature 507 475 479

DOI:10.1038/nature13137 [Cited within: 1]

Spillane S M Kippenberg T J Vahala K J 2002 Ultralow-threshold Raman laser using a spherical dielectric microcavity
Nature 415 621 623

DOI:10.1038/415621a [Cited within: 1]

Gensty T Becker K Fischer I Elsäßer W Degen C Debernardi P Bava G P 2005 Wave chaos in real-world vertical-cavity surface-emitting lasers
Phys. Rev. Lett. 94 233901

DOI:10.1103/PhysRevLett.94.233901

Fang W Cao H Solomon G S 2007 Control of lasing in fully chaotic open microcavities by tailoring the shape factor
Appl. Phys. Lett. 90 081108

DOI:10.1063/1.2535692 [Cited within: 1]

Schack R Caves C M 1996 Information-theoretic characterization of quantum chaos
Phys. Rev. E 53 3257

DOI:10.1103/PhysRevE.53.3257 [Cited within: 1]

Baranger H Mello P 1996 Short paths and information theory in quantum chaotic scattering: transport through quantum dots
Europhys. Lett. 33 465

DOI:10.1209/epl/i1996-00364-5

Prosen T Znidaric M 2001 Can quantum chaos enhance the stability of quantum computation?
J. Phys. A: Math. Gen. 34 L681

DOI:10.1088/0305-4470/34/47/103

Poulin D Laflamme R Milburn G J Paz J P 2003 Testing integrability with a single bit of quantum information
Phys. Rev. A 68 022302

DOI:10.1103/PhysRevA.68.022302

Wang X-Q Ma J Zhang X-H Wang X-G 2011 Chaos and quantum fisher information in the quantum kicked top
Chin. Phys. B 20 050510

DOI:10.1088/1674-1056/20/5/050510 [Cited within: 1]

Lashkari N Dymarsky A Liu H 2018 Universality of quantum information in chaotic cfts
J. High Energy Phys. 2018 70

DOI:10.1007/JHEP03(2018)070 [Cited within: 1]

Pauling L 1936 The diamagnetic anisotropy of aromatic molecules
J. Chem. Phys. 4 673 677

DOI:10.1063/1.1749766 [Cited within: 1]

Kottos T Smilansky U 1997 Quantum chaos on graphs
Phys. Rev. Lett. 79 4794 4797

DOI:10.1103/PhysRevLett.79.4794

Kottos T Smilansky U 1999 Periodic orbit theory and spectral statistics for quantum graphs
Ann. Phys. 274 76 124

DOI:10.1006/aphy.1999.5904

Barra F Gaspard P 2000 On the level spacing distribution in quantum graphs
J. Stat. Phys. 101 283 319

DOI:10.1023/A:1026495012522

Kottos T Smilansky U 2000 Chaotic scattering on graphs
Phys. Rev. Lett. 85 968 971

DOI:10.1103/PhysRevLett.85.968

Pakonski P Zyczkowski K Kus M 2001 Classical 1d maps, quantum graphs and ensembles of unitary matrices
J. Phys. A: Math. Gen. 34 9303

DOI:10.1088/0305-4470/34/43/313

Berkolaiko G Bogomolny E B Keating J P 2001 Star graphs and Seba billiards
J. Phys. A: Math. Gen. 34 335 350

DOI:10.1088/0305-4470/34/3/301

Blümel R Dabaghian Y Jensen R 2002 Explicitly solvable cases of one-dimensional quantum chaos
Phys. Rev. Lett. 88 044101

DOI:10.1103/PhysRevLett.88.044101

Pakoński P Tanner G Życzkowski K 2003 Families of line-graphs and their quantization
J. Stat. Phys. 111 1331 1352

DOI:10.1023/A:1023012502046

Gnutzmann S Altland A 2004 universal spectral statistics in quantum graphs
Phys. Rev. Lett. 93 194101

DOI:10.1103/PhysRevLett.93.194101 [Cited within: 1]

Gnutzmann S Smilansky U 2006 Quantum graphs: applications to quantum chaos and universal spectral statistics
Adv. Phys. 55 527 625

DOI:10.1080/00018730600908042

Ławniczak M Bauch S Hul O Sirko L 2010 Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption
Phys. Rev. E 81 046204

DOI:10.1103/PhysRevE.81.046204

Ławniczak M Bauch S Hul O Sirko L 2011 Experimental investigation of the enhancement factor and the cross-correlation function for graphs with and without time-reversal symmetry: the open system case
Phys. Scr. 2011 014014

DOI:10.1088/0031-8949/2011/T143/014014

Hul O Ławniczak M Bauch S Sawicki A Kuś M Sirko L 2012 Are scattering properties of graphs uniquely connected to their shapes?
Phys. Rev. Lett. 109 040402

DOI:10.1103/PhysRevLett.109.040402

Allgaier M Gehler S Barkhofen S Stöckmann H-J Kuhl U 2014 Spectral properties of microwave graphs with local absorption
Phys. Rev. E 89 022925

DOI:10.1103/PhysRevE.89.022925

Rehemanjiang A Allgaier M Joyner C H Müller S Sieber M Kuhl U Stöckmann H-J 2016 Microwave realization of the Gaussian symplectic ensemble
Phys. Rev. Lett. 117 064101

DOI:10.1103/PhysRevLett.117.064101

Dietz B Yunko V Bialous M Bauch S Ławniczak M Sirko L 2017 Nonuniversality in the spectral properties of time-reversal-invariant microwave networks and quantum graphs
Phys. Rev. E 95 052202

DOI:10.1103/PhysRevE.95.052202

Ławniczak M Lipovský J C V Sirko L 2019 Non-Weyl microwave graphs
Phys. Rev. Lett. 122 140503

DOI:10.1103/PhysRevLett.122.140503

Białous M Dietz B Sirko L 2019 Experimental investigation of the elastic enhancement factor in a microwave cavity emulating a chaotic scattering system with varying openness
Phys. Rev. E 100 012210

DOI:10.1103/PhysRevE.100.012210 [Cited within: 1]

Simons B D Altshuler B L 1993 universal velocity correlations in disordered and chaotic systems
Phys. Rev. Lett. 70 4063 4066

DOI:10.1103/PhysRevLett.70.4063 [Cited within: 1]

Aurich R Bolte J Steiner F 1994 universal signatures of quantum chaos
Phys. Rev. Lett. 73 1356 1359

DOI:10.1103/PhysRevLett.73.1356

Blum G Gnutzmann S Smilansky U 2002 Nodal domains statistics: a criterion for quantum chaos
Phys. Rev. Lett. 88 114101

DOI:10.1103/PhysRevLett.88.114101

Relaño A Gómez J M G Molina R A Retamosa J Faleiro E 2002 Quantum chaos and 1/f noise
Phys. Rev. Lett. 89 244102

DOI:10.1103/PhysRevLett.89.244102

Faleiro E Gómez J M G Molina R A Muñoz L Relaño A Retamosa J 2004 Theoretical derivation of 1/f noise in quantum chaos
Phys. Rev. Lett. 93 244101

DOI:10.1103/PhysRevLett.93.244101

Hemmady S Zheng X Ott E Antonsen T M Anlage S M 2005 universal impedance fluctuations in wave chaotic systems
Phys. Rev. Lett. 94 014102

DOI:10.1103/PhysRevLett.94.014102

Pluhař Z Weidenmüller H A 2014 universal quantum graphs
Phys. Rev. Lett. 112 144102

DOI:10.1103/PhysRevLett.112.144102 [Cited within: 1]

Pal A Huse D A 2010 Many-body localization phase transition
Phys. Rev. B 82 174411

DOI:10.1103/PhysRevB.82.174411 [Cited within: 1]

Jiang Y-Z Chen Y-Y Guan X-W 2015 Understanding many-body physics in one dimension from the Lieb-Liniger model
Chin. Phys. B 24 050311

DOI:10.1088/1674-1056/24/5/050311 [Cited within: 1]

Nandkishore R Huse D A 2015 Many-body localization and thermalization in quantum statistical mechanics
Annu. Rev. Condens. Matter Phys. 6 15 38

DOI:10.1146/annurev-conmatphys-031214-014726

Schreiber M Hodgman S Bordia P Luschen H P Fischer M H Vosk R Altman E Schneider U Bloch I 2015 Observation of many-body localization of interacting fermions in a quasirandom optical lattice
Science 349 842 845

DOI:10.1126/science.aaa7432

Choi J Hild S Zeiher J Schaus P Rubioabadal A Yefsah T Khemani V Huse D A Bloch I Gross C 2016 Exploring the many-body localization transition in two dimensions
Science 352 1547 1552

DOI:10.1126/science.aaf8834

Imbrie J Z 2016 On many-body localization for quantum spin chains
J. Stat. Phys. 163 998 1048

DOI:10.1007/s10955-016-1508-x

Li H-B Yang Y Wang P Wang X-G 2017 Identifying the closeness of eigenstates in quantum many-body systems
Chin. Phys. B 26 080502

DOI:10.1088/1674-1056/26/8/080502 [Cited within: 1]

Alet F Laflorencie N 2018 Many-body localization: an introduction and selected topics
C. R. Phys. 19 498 525

DOI:10.1016/j.crhy.2018.03.003 [Cited within: 1]

Srednicki M 1994 Chaos and quantum thermalization
Phys. Rev. E 50 888

DOI:10.1103/PhysRevE.50.888 [Cited within: 1]

Rigol M Dunjko V Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems
Nature 452 854

DOI:10.1038/nature06838

Rigol M Santos L F 2010 Quantum chaos and thermalization in gapped systems
Phys. Rev. A 82 011604

DOI:10.1103/PhysRevA.82.011604

Alba V 2015 Eigenstate thermalization hypothesis and integrability in quantum spin chains
Phys. Rev. B 91 155123

DOI:10.1103/PhysRevB.91.155123

De Palma G Serafini A Giovannetti V Cramer M 2015 Necessity of eigenstate thermalization
Phys. Rev. Lett. 115 220401

DOI:10.1103/PhysRevLett.115.220401

Kaufman A M Tai M E Lukin A Rispoli M Schittko R Preiss P M Greiner M 2016 Quantum thermalization through entanglement in an isolated many-body system
Science 353 794 800

DOI:10.1126/science.aaf6725

D’Alessio L Kafri Y Polkovnikov A Rigol M 2016 From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
Adv. Phys. 65 239 362

DOI:10.1080/00018732.2016.1198134

Tian C Yang K Fang P Zhou H-J Wang J 2018 Hidden thermal structure in fock space
Phys. Rev. E 98 060103

DOI:10.1103/PhysRevE.98.060103

Fang P Zhao L Tian C 2018 Concentration-of-measure theory for structures and fluctuations of waves
Phys. Rev. Lett. 121 140603

DOI:10.1103/PhysRevLett.121.140603

Anza F Gogolin C Huber M 2018 Eigenstate thermalization for degenerate observables
Phys. Rev. Lett. 120 150603

DOI:10.1103/PhysRevLett.120.150603

Deutsch J M 2018 Eigenstate thermalization hypothesis
Rep. Prog. Phys. 81 082001

DOI:10.1088/1361-6633/aac9f1

Xu J Li Y 2019 Eigenstate distribution fluctuation of a quenched disordered bose-hubbard system in thermal-to-localized transitions
Chin. Phys. Lett. 36 027201

DOI:10.1088/0256-307X/36/2/027201 [Cited within: 1]

Foini L Kurchan J 2019 Eigenstate thermalization hypothesis and out of time order correlators
Phys. Rev. E 99 042139

DOI:10.1103/PhysRevE.99.042139 [Cited within: 1]

Lostaglio M Korzekwa K Jennings D Rudolph T 2015 Quantum coherence, time-translation symmetry, and thermodynamics
Phys. Rev. X 5 021001

DOI:10.1103/PhysRevX.5.021001 [Cited within: 1]

Brandao F Horodecki M Ng N Oppenheim J Wehner S 2015 The second laws of quantum thermodynamics
Proc. Natl Acad. Sci. 112 3275 3279

DOI:10.1073/pnas.1411728112

Pekola J P 2015 Towards quantum thermodynamics in electronic circuits
Nat. Phys. 11 118

DOI:10.1038/nphys3169

Narasimhachar V Gour G 2015 Low-temperature thermodynamics with quantum coherence
Nat. Commun. 6 7689

DOI:10.1038/ncomms8689

Binder F Vinjanampathy S Modi K Goold J 2015 Quantum thermodynamics of general quantum processes
Phys. Rev. E 91 032119

DOI:10.1103/PhysRevE.91.032119

Millen J Xuereb A 2016 Perspective on quantum thermodynamics
New J. Phys. 18 011002

DOI:10.1088/1367-2630/18/1/011002

Vinjanampathy S Anders J 2016 Quantum thermodynamics
Contemp. Phys. 57 545 579

DOI:10.1080/00107514.2016.1201896

Campisi M Goold J 2017 Thermodynamics of quantum information scrambling
Phys. Rev. E 95 062127

DOI:10.1103/PhysRevE.95.062127

Binder F Correa L A Gogolin C Anders J Adesso G 2018 Thermodynamics in the quantum regime
Fundamental Theories of PhysicsBerlinSpringer

[Cited within: 1]

Aleiner I L Faoro L Ioffe L B 2016 Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves
Ann. Phys. 375 378 406

DOI:10.1016/j.aop.2016.09.006 [Cited within: 1]

Rozenbaum E B Galitski V Ganeshan S 2017 Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system
Phys. Rev. Lett. 118 086801

DOI:10.1103/PhysRevLett.118.086801

Halpern N Y 2017 Jarzynski-like equality for the out-of-time-ordered correlator
Phys. Rev. A 95 012120

DOI:10.1103/PhysRevA.95.012120

Huang Y Zhang Y-L Chen X 2017 Out-of-time-ordered correlators in many-body localized systems
Ann. Phys. 529 1600318

DOI:10.1002/andp.201600318

Li J Fan R Wang H Ye B Zeng B Zhai H Peng X Du J 2017 Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator
Phys. Rev. X 7 031011

DOI:10.1103/PhysRevX.7.031011

Halpern N Y Swingle B Dressel J 2018 Quasiprobability behind the out-of-time-ordered correlator
Phys. Rev. A 97 042105

DOI:10.1103/PhysRevA.97.042105

Garciamata I Jalabert R A Saraceno M Roncaglia A J Wisniacki D A 2018 Chaos signatures in the short and long time behavior of the out-of-time ordered correlator
Phys. Rev. Lett. 121 210601

DOI:10.1103/PhysRevLett.121.210601

Rakovszky T Pollmann F Von Keyserlingk C 2018 Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation
Phys. Rev. X 8 031058

DOI:10.1103/PhysRevX.8.031058

Alonso J R G Halpern N Y Dressel J 2019 Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling
Phys. Rev. Lett. 122 040404

DOI:10.1103/PhysRevLett.122.040404

Lakshminarayan A 2019 Out-of-time-ordered correlator in the quantum bakers map and truncated unitary matrices
Phys. Rev. E 99 012201

DOI:10.1103/PhysRevE.99.012201 [Cited within: 1]

Chen Y Tian C 2014 Planck’s quantum-driven integer quantum Hall effect in chaos
Phys. Rev. Lett. 113 216802

DOI:10.1103/PhysRevLett.113.216802 [Cited within: 1]

Tian C Chen Y Wang J 2016 Emergence of integer quantum Hall effect from chaos
Phys. Rev. B 93 075403

DOI:10.1103/PhysRevB.93.075403 [Cited within: 1]

Zhao W-L Jie Q-L Zhou B 2010 Quantum to classical transition by a classically small interaction
Commun. Theor. Phys. 54 247

DOI:10.1088/0253-6102/54/2/09 [Cited within: 1]

Xu Y-Y 2013 Interference of quantum chaotic systems in phase space
Commun. Theor. Phys. 60 453

DOI:10.1088/0253-6102/60/4/12 [Cited within: 1]

Zhang Y-H Zhang J-Q Xu X-Y Lin S-L 2009 The quantum spectral analysis of the two-dimensional annular billiard system
Chin. Phys. B 18 35 39

DOI:10.1088/1674-1056/18/1/006 [Cited within: 1]

Yu H Ren Z Zhang X 2019 Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Chin. Phys. B 28 20504

DOI:10.1088/1674-1056/28/2/020504 [Cited within: 2]

Liu C-R Yu P Chen X-Z Xu H-Y Huang L Lai Y-C 2019 Enhancing von neumann entropy by chaos in spin-orbit entanglement
Chin. Phys. B 28 100501

DOI:10.1088/1674-1056/ab3dff [Cited within: 2]

Xu X-Y Gao S Guo W-H Zhang Y-H Lin S-L 2006 Semiclassical analysis of quarter stadium billiards
Chin. Phys. Lett. 23 765 767

DOI:10.1088/0256-307X/23/4/001 [Cited within: 1]

Tan J-T Luo Y-R Zhou Z Hai W-H 2016 Combined effect of classical chaos and quantum resonance on entanglement dynamics
Chin. Phys. Lett. 33 070302

DOI:10.1088/0256-307X/33/7/070302 [Cited within: 2]

Ge M Zhang Y Wang D Du M Lin S 2005 The dynamical properties of Rydberg hydrogen atom near a metal surface
Sci. China-Phys. Mech. Astron. 48 667 675

DOI:10.1360/142004-85 [Cited within: 1]

Li H Gao S Xu X Lin S 2008 Scattering matrix theory for Cs Rydberg atoms in magnetic field
Sci. China-Phys. Mech. Astron. 51 499 506

DOI:10.1007/s11433-008-0063-0

Xin J Liang J 2014 Exact solutions of a spin–orbit coupling model in two-dimensional central-potentials and quantum–classical correspondence
Sci. China-Phys. Mech. Astron. 57 1504 1510

DOI:10.1007/s11433-014-5531-0

Zhao Y Wu B 2019 Quantum-classical correspondence in integrable systems
Sci. China-Phys. Mech. Astron. 62 997011

DOI:10.1007/s11433-018-9348-2 [Cited within: 1]

Berry M V Mondragon R J 1987 Neutrino billiards—time-reversal symmetry-breaking without magnetic-fields
Proc. R. Soc. A 412 53 74

DOI:10.1098/rspa.1987.0080 [Cited within: 6]

Chodos A Jaffe R L Johnson K Thorn C B 1974 Baryon structure in the bag theory
Phys. Rev. D 10 2599 2604

DOI:10.1103/PhysRevD.10.2599 [Cited within: 1]

Antoine M Comtet A Knecht M 1990 Heat kernel expansion for fermionic billiards in an external magnetic field
J. Phys. A: Math. Gen. 23 L35

DOI:10.1088/0305-4470/23/1/007 [Cited within: 2]

Phatak S C Pal S Biswas D 1995 Semiclassical features in the quantum description of a Dirac particle in a cavity
Phys. Rev. E 52 1333 1344

DOI:10.1103/PhysRevE.52.1333 [Cited within: 2]

Novoselov K S Geim A K Morozov S V Jiang D Zhang Y Dubonos S V Grigorieva I V Firsov A A 2004 Electric field effect in atomically thin carbon films
Science 306 666 669

DOI:10.1126/science.1102896 [Cited within: 1]

Novoselov K S Geim A K Morozov S V Jiang D Katsnelson M I Grigorieva I V Dubonos S V Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene
Nature 438 197 200

DOI:10.1038/nature04233

Beenakker C W J 2008 Colloquium: Andreev reflection and Klein tunneling in graphene
Rev. Mod. Phys. 80 1337 1354

DOI:10.1103/RevModPhys.80.1337 [Cited within: 1]

Castro Neto A H Guinea F Peres N M R Novoselov K S Geim A K 2009 The electronic properties of graphene
Rev. Mod. Phys. 81 109 162

DOI:10.1103/RevModPhys.81.109

Hasan M Z Kane C L 2010 Colloquium: topological insulators
Rev. Mod. Phys. 82 3045 3067

DOI:10.1103/RevModPhys.82.3045

Qi X-L Zhang S-C 2011 Topological insulators and superconductors
Rev. Mod. Phys. 83 1057 1110

DOI:10.1103/RevModPhys.83.1057

Wehling T Black-Schaffer A Balatsky A 2014 Dirac materials
Adv. Phys. 63 1 76

DOI:10.1080/00018732.2014.927109 [Cited within: 1]

Miao F Wijeratne S Zhang Y Coskun U Bao W Lau C 2007 Phase-coherent transport in graphene quantum billiards
Science 317 1530 1533

DOI:10.1126/science.1144359 [Cited within: 1]

Ponomarenko L Schedin F Katsnelson M Yang R Hill E Novoselov K Geim A 2008 Chaotic Dirac billiard in graphene quantum dots
Science 320 356 358

DOI:10.1126/science.1154663 [Cited within: 2]

Lai Y-C Xu H-Y Huang L Grebogi C 2018 Relativistic quantum chaos: an emergent interdisciplinary field
Chaos 28 052101

DOI:10.1063/1.5026904 [Cited within: 1]

Huang L Xu H-Y Grebogi C Lai Y-C 2018 Relativistic quantum chaos
Phys. Rep. 753 1 128

DOI:10.1016/j.physrep.2018.06.006 [Cited within: 2]

Barrow J D 1982 General relativistic chaos and nonlinear dynamics
Gen. Relat. Grav. 14 523 530

DOI:10.1007/BF00756214 [Cited within: 1]

Barrow J D 1982 Chaotic behaviour in general relativity
Phys. Rep. 85 1 49

DOI:10.1016/0370-1573(82)90171-5

Lockhart C M Misra B Prigogine I 1982 Geodesic instability and internal time in relativistic cosmology
Phys. Rev. D 25 921 929

DOI:10.1103/PhysRevD.25.921

Chernikov A A Tél T Vattay G Zaslavsky G M 1989 Chaos in the relativistic generalization of the standard map
Phys. Rev. A 40 4072 4076

DOI:10.1103/PhysRevA.40.4072

Nomura Y Ichikawa Y H Horton W 1992 Nonlinear dynamics of the relativistic standard map
Phys. Rev. A 45 1103 1115

DOI:10.1103/PhysRevA.45.1103

Kim J-H Lee H-W 1995 Relativistic chaos in the driven harmonic oscillator
Phys. Rev. E 51 1579 1581

DOI:10.1103/PhysRevE.51.1579

Drake S P Dettmann C P Frankel N E Cornish N J 1996 Chaos in special relativistic dynamics
Phys. Rev. E 53 1351 1361

DOI:10.1103/PhysRevE.53.1351

Podolský J V Veselý K 1998 Chaos in pp-wave spacetimes
Phys. Rev. D 58 081501

DOI:10.1103/PhysRevD.58.081501

Barrow J D Levin J 1998 Chaos in the Einstein-Yang-Mills equations
Phys. Rev. Lett. 80 656 659

DOI:10.1103/PhysRevLett.80.656

Tomaschitz R 2000 Tachyons, Lamb shifts and superluminal chaos
Euro. Phys. J. B 17 523 536

DOI:10.1007/s100510070130

Burnell F Mann R B Ohta T 2003 Chaos in a relativistic 3-body self-gravitating system
Phys. Rev. Lett. 90 134101

DOI:10.1103/PhysRevLett.90.134101

Motter A E 2003 Relativistic chaos is coordinate invariant
Phys. Rev. Lett. 91 231101

DOI:10.1103/PhysRevLett.91.231101

Motter A E Saa A 2009 Relativistic invariance of Lyapunov exponents in bounded and unbounded systems
Phys. Rev. Lett. 102 184101

DOI:10.1103/PhysRevLett.102.184101

Bernal J D Seoane J M Sanjuán M A F 2017 Global relativistic effects in chaotic scattering
Phys. Rev. E 95 032205

DOI:10.1103/PhysRevE.95.032205

Bernal J D Seoane J M Sanjuán M A F 2018 Uncertainty dimension and basin entropy in relativistic chaotic scattering
Phys. Rev. E 97 042214

DOI:10.1103/PhysRevE.97.042214 [Cited within: 1]

Hou X-W Hu B 2004 Decoherence, entanglement, and chaos in the Dicke model
Phys. Rev. A 69 042110

DOI:10.1103/PhysRevA.69.042110 [Cited within: 1]

Santos L F Rigolin G Escobar C O 2004 Entanglement versus chaos in disordered spin chains
Phys. Rev. A 69 042304

DOI:10.1103/PhysRevA.69.042304

Mejía-Monasterio C Benenti G Carlo G G Casati G 2005 Entanglement across a transition to quantum chaos
Phys. Rev. A 71 062324

DOI:10.1103/PhysRevA.71.062324

Wang G-L Huang L Lai Y-C Grebogi C 2014 Nonlinear dynamics and quantum entanglement in optomechanical systems
Phys. Rev. Lett. 112 110406

DOI:10.1103/PhysRevLett.112.110406 [Cited within: 1]

Pershin Y V Privman V 2004 Low spin relaxation in two-dimensional electron systems with antidots
Phys. Rev. B 69 073310

DOI:10.1103/PhysRevB.69.073310 [Cited within: 1]

Zaitsev O Frustaglia D Richter K 2004 Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots
Phys. Rev. Lett. 94 026809

DOI:10.1103/PhysRevLett.94.026809

Chang C H Mal’shukov A G Chao K A 2004 Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin–orbit coupling
Phys. Rev. B 70 245309

DOI:10.1103/PhysRevB.70.245309

Akguc G B Gong J 2008 Spin-dependent electron transport in two-dimensional waveguides of arbitrary geometry
Phys. Rev. B 77 205302

DOI:10.1103/PhysRevB.77.205302

Ying L Lai Y-C 2016 Enhancement of spin polarization by chaos in graphene quantum dot systems
Phys. Rev. B 93 085408

DOI:10.1103/PhysRevB.93.085408

Liu C-R Chen X-Z Xu H-Y Huang L Lai Y-C 2018 Effect of chaos on two-dimensional spin transport
Phys. Rev. B 98 115305

DOI:10.1103/PhysRevB.98.115305 [Cited within: 1]

Tomaschitz R 1991 Relativistic quantum chaos in Robertson-Walker cosmologies
J. Math. Phys. 32 2571 2579

DOI:10.1063/1.529102 [Cited within: 2]

Berger B K 1989 Quantum chaos in the mixmaster universe
Phys. Rev. D 39 2426 2429

DOI:10.1103/PhysRevD.39.2426

Kirillov A A Melnikov V N 1995 Dynamics of inhomogeneities of the metric in the vicinity of a singularity in multidimensional cosmology
Phys. Rev. D 52 723 729

DOI:10.1103/PhysRevD.52.723

Calzetta E Gonzalez J J 1995 Chaos and semiclassical limit in quantum cosmology
Phys. Rev. D 51 6821 6828

DOI:10.1103/PhysRevD.51.6821

Cornish N J Shellard E P S 1998 Chaos in quantum cosmology
Phys. Rev. Lett. 81 3571 3574

DOI:10.1103/PhysRevLett.81.3571

Damour T Henneaux M 2001 ${E}_{10},{\mathrm{BE}}_{10}$ and arithmetical chaos in superstring cosmology
Phys. Rev. Lett. 86 4749 4752

DOI:10.1103/PhysRevLett.86.4749

Bojowald M Date G 2004 Quantum suppression of the generic chaotic behavior close to cosmological singularities
Phys. Rev. Lett. 92 071302

DOI:10.1103/PhysRevLett.92.071302

Kleinschmidt A Koehn M Nicolai H 2009 Supersymmetric quantum cosmological billiards
Phys. Rev. D 80 061701

DOI:10.1103/PhysRevD.80.061701

Koehn M 2012 Relativistic wavepackets in classically chaotic quantum cosmological billiards
Phys. Rev. D 85 063501

DOI:10.1103/PhysRevD.85.063501 [Cited within: 1]

Leutwyler H Smilga A 1992 Spectrum of Dirac operator and role of winding number in QCD
Phys. Rev. D 46 5607 5632

DOI:10.1103/PhysRevD.46.5607 [Cited within: 1]

Shuryak E Verbaarschot J J M 1993 Random matrix theory and spectral sum rules for the Dirac operator in QCD
Nucl. Phys. 560 306 320

DOI:10.1016/0375-9474(93)90098-I

Verbaarschot J J M Zahed I 1993 Spectral density of the QCD Dirac operator near zero virtuality
Phys. Rev. Lett. 70 3852 3855

DOI:10.1103/PhysRevLett.70.3852

Verbaarschot J 1994 Spectrum of the QCD Dirac operator and chiral random matrix theory
Phys. Rev. Lett. 72 2531 2533

DOI:10.1103/PhysRevLett.72.2531

Halasz M A Verbaarschot J J M 1995 universal fluctuations in spectra of the lattice Dirac operator
Phys. Rev. Lett. 74 3920 3923

DOI:10.1103/PhysRevLett.74.3920

Berg B A Markum H Pullirsch R 1999 Quantum chaos in compact lattice QED
Phys. Rev. D 59 097504

DOI:10.1103/PhysRevD.59.097504

Akemann G Kanzieper E 2000 Spectra of massive and massless QCD Dirac operators: a novel link
Phys. Rev. Lett. 85 1174 1177

DOI:10.1103/PhysRevLett.85.1174

Toublan D Verbaarschot J 2001 Statistical properties of the spectrum of the QCD Dirac operator at low energy
Nucl. Phys. B 603 343 368

DOI:10.1016/S0550-3213(01)00093-1

Beenakker C W J 2015 Random-matrix theory of Majorana fermions and topological superconductors
Rev. Mod. Phys. 87 1037 1066

DOI:10.1103/RevModPhys.87.1037 [Cited within: 1]

Bolte J Harrison J 2003 Spectral statistics for the Dirac operator on graphs
J. Phys. A: Math. Gen. 36 2747 2769

DOI:10.1088/0305-4470/36/11/307 [Cited within: 1]

Harrison J M Weyand T Kirsten K 2016 Zeta functions of the Dirac operator on quantum graphs
J. Math. Phys. 57 102301

DOI:10.1063/1.4964260 [Cited within: 1]

Matrasulov D U Milibaeva G M Salomov U R Sundaram B 2005 Relativistic kicked rotor
Phys. Rev. E 72 016213

DOI:10.1103/PhysRevE.72.016213 [Cited within: 2]

Zhao Q Müller C A Gong J 2014 Quantum and classical superballistic transport in a relativistic kicked-rotor system
Phys. Rev. E 90 022921

DOI:10.1103/PhysRevE.90.022921

Rozenbaum E B Galitski V 2017 Dynamical localization of coupled relativistic kicked rotors
Phys. Rev. B 95 064303

DOI:10.1103/PhysRevB.95.064303 [Cited within: 2]

Pauli W 1932 Diracs wellengleichung des elektrons und geometrische optik
Helv. Phys. Acta 5 447

[Cited within: 1]

Rubinow S I Keller J B 1963 Asymptotic solution of the Dirac equation
Phys. Rev. 131 2789 2796

DOI:10.1103/PhysRev.131.2789 [Cited within: 1]

Yabana K Horiuchi H 1986 Adiabatic viewpoint for the WKB treatment of coupled channel system appearance of the Berry phase and another extra phase accompanying the adiabatic motion
Prog. Theor. Phys. 75 592 618

DOI:10.1143/PTP.75.592

Berry M V Wilkinson M 1984 Diabolical points in the spectra of triangles
Proc. R. Soc. A 392 15 43

DOI:10.1098/rspa.1984.0022

Wilczek F Shapere A 1989 Geometric Phases in Physics vol 5SingaporeWorld Scientific


Kuratsuji H Iida S 1985 Effective action for adiabatic process dynamical meaning of Berry and Simon's phase
Prog. Theor. Phys. 74 439 445

DOI:10.1143/PTP.74.439

Kuratsuji H Iida S 1988 Deformation of symplectic structure and anomalous commutators in field theories
Phys. Rev. D 37 441 447

DOI:10.1103/PhysRevD.37.441

Littlejohn R G Flynn W G 1991 Geometric phases in the asymptotic theory of coupled wave equations
Phys. Rev. A 44 5239 5256

DOI:10.1103/PhysRevA.44.5239

Littlejohn R G Flynn W G 1991 Geometric phases and the Bohr–Sommerfeld quantization of multicomponent wave fields
Phys. Rev. Lett. 66 2839 2842

DOI:10.1103/PhysRevLett.66.2839

Emmrich C Weinstein A 1996 Geometry of the transport equation in multicomponent WKB approximations
Commun. Math. Phys. 176 701 711

DOI:10.1007/BF02099256

Yajima K 1982 The quasiclassical approximation to Dirac equation. I
J. Fac Sci. Univ. Tokyo Math. 29 161 194Sect. 1 A



Bagrov V G Belov V V Trifonov A Y Yevseyevich A A 1994 Quantization of closed orbits in Dirac theory by Maslov's complex germ method
J. Phys. A: Math. Gen. 27 1021 1043

DOI:10.1088/0305-4470/27/3/039

Bagrov V G Belov V V Trifonov A Y Yevseyevicht A A 1994 Quasi-classical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori
J. Phys. A: Math. Gen. 27 5273 5306

DOI:10.1088/0305-4470/27/15/025

Spohn H 2000 Semiclassical limit of the Dirac equation and spin precession
Ann. Phys., NY 282 420 431

DOI:10.1006/aphy.2000.6039

Bolte J Keppeler S 1999 A semiclassical approach to the Dirac equation
Ann. Phys., NY 274 125 162

DOI:10.1006/aphy.1999.5912

Bolte J Keppeler S 1999 Semiclassical form factor for chaotic systems with spin 1/2
J. Phys. A: Math. Gen. 32 8863

DOI:10.1088/0305-4470/32/50/307

Bolte J Keppeler S 1998 Semiclassical time evolution and trace formula for relativistic spin-1/2 particles
Phys. Rev. Lett. 81 1987 1991

DOI:10.1103/PhysRevLett.81.1987

Bolte J Glaser R Keppeler S 2001 Quantum and classical ergodicity of spinning particles
Ann. Phys., NY 293 1 14

DOI:10.1006/aphy.2001.6164

Keppeler S 2003 Semiclassical quantisation rules for the Dirac and Pauli equations
Ann. Phys., NY 304 40 71

DOI:10.1016/S0003-4916(03)00007-1 [Cited within: 1]

Wurm J Richter K Adagideli I 2011 Edge effects in graphene nanostructures: from multiple reflection expansion to density of states
Phys. Rev. B 84 075468

DOI:10.1103/PhysRevB.84.075468 [Cited within: 1]

Wurm J Richter K Adagideli I 2011 Edge effects in graphene nanostructures: semiclassical theory of spectral fluctuations and quantum transport
Phys. Rev. B 84 205421

DOI:10.1103/PhysRevB.84.205421 [Cited within: 1]

Huang L Lai Y-C Grebogi C 2011 Characteristics of level-spacing statistics in chaotic graphene billiards
Chaos 21 013102

DOI:10.1063/1.3537814 [Cited within: 3]

Huang L Xu H-Y Lai Y-C Grebogi C 2014 Level spacing statistics for two-dimensional massless Dirac billiards
Chin. Phys. B 23 070507

DOI:10.1088/1674-1056/23/7/070507 [Cited within: 2]

Ni X Huang L Lai Y-C Grebogi C 2012 Scarring of Dirac fermions in chaotic billiards
Phys. Rev. E 86 016702

DOI:10.1103/PhysRevE.86.016702 [Cited within: 2]

Yu P Dietz B Huang L 2019 Quantizing neutrino billiards: an expanded boundary integral method
New J. Phys. 21 073039

DOI:10.1088/1367-2630/ab2fde [Cited within: 1]

Wurm J Rycerz A Adagideli İ Wimmer M Richter K Baranger H U 2009 Symmetry classes in graphene quantum dots: universal spectral statistics, weak localization, and conductance fluctuations
Phys. Rev. Lett. 102 056806

DOI:10.1103/PhysRevLett.102.056806 [Cited within: 3]

Huang L Lai Y-C Grebogi C 2010 Relativistic quantum level-spacing statistics in chaotic graphene billiards
Phys. Rev. E 81 055203

DOI:10.1103/PhysRevE.81.055203 [Cited within: 2]

Dietz B Klaus T Miski-Oglu M Richter A Wunderle M Bouazza C 2016 Spectral properties of Dirac billiards at the van Hove singularities
Phys. Rev. Lett. 116 023901

DOI:10.1103/PhysRevLett.116.023901 [Cited within: 3]

Tan C-L Tan Z-B Ma L Chen J Yang F Qu F-M Liu G-T Yang H-F Yang C-L L 2009 Quantum chaos in graphene nanoribbon quantum dot
Acta Phys. Sin. 58 5726

[Cited within: 1]

Libisch F Stampfer C Burgdörfer J 2009 Graphene quantum dots: beyond a Dirac billiard
Phys. Rev. B 79 115423

DOI:10.1103/PhysRevB.79.115423 [Cited within: 1]

Amanatidis I Evangelou S N 2009 Quantum chaos in weakly disordered graphene
Phys. Rev. B 79 205420

DOI:10.1103/PhysRevB.79.205420

Rycerz A 2012 Random matrices and quantum chaos in weakly disordered graphene nanoflakes
Phys. Rev. B 85 245424

DOI:10.1103/PhysRevB.85.245424 [Cited within: 2]

Wimmer M Akhmerov A R Guinea F 2010 Robustness of edge states in graphene quantum dots
Phys. Rev. B 82 045409

DOI:10.1103/PhysRevB.82.045409 [Cited within: 1]

Rycerz A 2013 Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes
Phys. Rev. B 87 195431

DOI:10.1103/PhysRevB.87.195431 [Cited within: 1]

Zhang D-B Seifert G Chang K 2014 Strain-induced pseudomagnetic fields in twisted graphene nanoribbons
Phys. Rev. Lett. 112 096805

DOI:10.1103/PhysRevLett.112.096805 [Cited within: 1]

Liu Z Zhang D-B Seifert G Liu Y Chang K 2019 Interfacial Landau levels in bent graphene racetracks
Phys. Rev. B 99 165416

DOI:10.1103/PhysRevB.99.165416 [Cited within: 1]

Polini M Guinea F Lewenstein M Manoharan H C Pellegrini V 2013 Artificial honeycomb lattices for electrons, atoms and photons
Nat. Nanotechnol. 8 625 633

DOI:10.1038/nnano.2013.161 [Cited within: 1]

Zandbergen S R de Dood M J A 2010 Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene
Phys. Rev. Lett. 104 043903

DOI:10.1103/PhysRevLett.104.043903

Bittner S Dietz B Miski-Oglu M Oria Iriarte P Richter A Schäfer F 2010 Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene
Phys. Rev. B 82 014301

DOI:10.1103/PhysRevB.82.014301

Kuhl U Barkhofen S Tudorovskiy T Stöckmann H-J Hossain T de Forges de Parny L Mortessagne F 2010 Dirac point and edge states in a microwave realization of tight-binding graphene-like structures
Phys. Rev. B 82 094308

DOI:10.1103/PhysRevB.82.094308

Bellec M Kuhl U Montambaux G Mortessagne F 2013 Topological transition of Dirac points in a microwave experiment
Phys. Rev. Lett. 110 033902

DOI:10.1103/PhysRevLett.110.033902

Poo Y Wu R-X Lin Z Yang Y Chan C T 2011 Experimental realization of self-guiding unidirectional electromagnetic edge states
Phys. Rev. Lett. 106 093903

DOI:10.1103/PhysRevLett.106.093903

Bittner S Dietz B Miski-Oglu M Richter A 2012 Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard
Phys. Rev. B 85 064301

DOI:10.1103/PhysRevB.85.064301

Bellec M Kuhl U Montambaux G Mortessagne F 2013 Tight-binding couplings in microwave artificial graphene
Phys. Rev. B 88 115437

DOI:10.1103/PhysRevB.88.115437

Wang X Jiang H T Yan C Sun Y Li Y H Shi Y L Chen H 2013 Anomalous transmission of disordered photonic graphenes at the Dirac point
Europhys. Lett. 103 17003

DOI:10.1209/0295-5075/103/17003

Plotnik Yet al. 2013 Observation of unconventional edge states in photonic graphene
Nat. Mater. 13 57 62

DOI:10.1038/nmat3783

Dietz B Iachello F Miski-Oglu M Pietralla N Richter A von Smekal L Wambach J 2013 Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards
Phys. Rev. B 88 104101

DOI:10.1103/PhysRevB.88.104101

Wang X Jiang H T Yan C Deng F S Sun Y Li Y H Shi Y L Chen H 2014 Transmission properties near Dirac-like point in two-dimensional dielectric photonic crystals
Europhys. Lett. 108 14002

DOI:10.1209/0295-5075/108/14002

Wang X Jiang H Li Y Yan C Deng F Sun Y Li Y Shi Y Chen H 2015 Transport properties of disordered photonic crystals around a Dirac-like point
Opt. Exp. 23 5126 5133

DOI:10.1364/OE.23.005126

Dietz B Klaus T Miski-Oglu M Richter A 2015 Spectral properties of superconducting microwave photonic crystals modeling Dirac billiards
Phys. Rev. B 91 035411

DOI:10.1103/PhysRevB.91.035411 [Cited within: 1]

Dietz B Richter A 2019 From graphene to fullerene: experiments with microwave photonic crystals
Phys. Scr. 94 014002

DOI:10.1088/1402-4896/aaec96 [Cited within: 2]

Yu P Li Z-Y Xu H-Y Huang L Dietz B Grebogi C Lai Y-C 2016 Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
Phys. Rev. E 94 062214

DOI:10.1103/PhysRevE.94.062214 [Cited within: 3]

Huang L Lai Y-C Ferry D K Goodnick S M Akis R 2009 Relativistic quantum scars
Phys. Rev. Lett. 103 054101

DOI:10.1103/PhysRevLett.103.054101 [Cited within: 2]

Mason D J Borunda M F Heller E J 2013 Semiclassical deconstruction of quantum states in graphene
Phys. Rev. B 88 165421

DOI:10.1103/PhysRevB.88.165421 [Cited within: 1]

Cabosart D Felten A Reckinger N Iordanescu A Toussaint S Faniel S Hackens B 2017 Recurrent quantum scars in a mesoscopic graphene ring
Nano Lett. 17 1344 1349

DOI:10.1021/acs.nanolett.6b03725 [Cited within: 1]

Xu H Y Huang L Lai Y-C Grebogi C 2013 Chiral scars in chaotic Dirac fermion systems
Phys. Rev. Lett. 110 064102

DOI:10.1103/PhysRevLett.110.064102 [Cited within: 3]

Wang C-Z Huang L Chang K 2017 Scars in Dirac fermion systems: the influence of an Aharonov–Bohm flux
New J. Phys. 19 013018

DOI:10.1088/1367-2630/aa50bf [Cited within: 4]

Song M-Y Li Z-Y Xu H-Y Huang L Lai Y-C 2019 Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars
Phys. Rev. Res. 1 033008

DOI:10.1103/PhysRevResearch.1.033008 [Cited within: 4]

Bardarson J H Titov M Brouwer P W 2009 Electrostatic confinement of electrons in an integrable graphene quantum dot
Phys. Rev. Lett. 102 226803

DOI:10.1103/PhysRevLett.102.226803 [Cited within: 1]

Schneider M Brouwer P W 2011 Resonant scattering in graphene with a gate-defined chaotic quantum dot
Phys. Rev. B 84 115440

DOI:10.1103/PhysRevB.84.115440

Yang R Huang L Lai Y-C Grebogi C 2011 Quantum chaotic scattering in graphene systems
Europhys. Lett. 94 40004

DOI:10.1209/0295-5075/94/40004 [Cited within: 3]

Barros M S M Júnior A J N Macedo-Junior A F Ramos J G G S Barbosa A L R 2013 Open chaotic Dirac billiards: weak (anti)localization, conductance fluctuations, and decoherence
Phys. Rev. B 88 245133

DOI:10.1103/PhysRevB.88.245133

Schomerus H Marciani M Beenakker C W J 2015 Effect of chiral symmetry on chaotic scattering from Majorana zero modes
Phys. Rev. Lett. 114 166803

DOI:10.1103/PhysRevLett.114.166803

Ramos J G G S Hussein M S Barbosa A L R 2016 Fluctuation phenomena in chaotic Dirac quantum dots: Artificial atoms on graphene flakes
Phys. Rev. B 93 125136

DOI:10.1103/PhysRevB.93.125136

Vasconcelos T C Ramos J G G S Barbosa A L R 2016 universal spin Hall conductance fluctuations in chaotic Dirac quantum dots
Phys. Rev. B 93 115120

DOI:10.1103/PhysRevB.93.115120 [Cited within: 1]

Datta S 1995 Electronic Transport in Mesoscopic systemsCambridgeCambridge University Press
[Cited within: 2]

Li T C Lu S-P 2008 Quantum conductance of graphene nanoribbons with edge defects
Phys. Rev. B 77 085408

DOI:10.1103/PhysRevB.77.085408

Huang L Lai Y Ferry D K Akis R Goodnick S M 2009 Transmission and scarring in graphene quantum dots
J. Phys.: Condens. Matter 21 344203

DOI:10.1088/0953-8984/21/34/344203

Zhang S-H Yang W Chang K 2017 General Green's function formalism for layered systems: Wave function approach
Phys. Rev. B 95 075421

DOI:10.1103/PhysRevB.95.075421 [Cited within: 1]

Huang L Lai Y-C Luo H-G Grebogi C 2015 universal formalism of Fano resonance
AIP Adv. 5 017137

DOI:10.1063/1.4906797 [Cited within: 1]

Yang R Huang L Lai Y-C Pecora L M 2012 Modulating quantum transport by transient chaos
Appl. Phys. Lett. 100 093105

DOI:10.1063/1.3690046 [Cited within: 1]

Yang R Huang L Lai Y-C Grebogi C Pecora L M 2013 Harnessing quantum transport by transient chaos
Chaos 23 013125

DOI:10.1063/1.4790863 [Cited within: 1]

Ying L Huang L Lai Y-C Grebogi C 2012 Conductance fluctuations in graphene systems: the relevance of classical dynamics
Phys. Rev. B 85 245448

DOI:10.1103/PhysRevB.85.245448 [Cited within: 1]

Bao R Huang L Lai Y-C Grebogi C 2015 Conductance fluctuations in chaotic bilayer graphene quantum dots
Phys. Rev. E 92 012918

DOI:10.1103/PhysRevE.92.012918 [Cited within: 1]

Büttiker M Imry Y Landauer R 1983 Josephson behavior in small normal one-dimensional rings
Phys. Lett. A 96 365 367

DOI:10.1016/0375-9601(83)90011-7 [Cited within: 1]

Sheng J S Chang K 2006 Spin states and persistent currents in mesoscopic rings: spin–orbit interactions
Phys. Rev. B 74 235315

DOI:10.1103/PhysRevB.74.235315 [Cited within: 1]

Aharonov Y Bohm D 1959 Significance of electromagnetic potentials in the quantum theory
Phys. Rev. 115 485

DOI:10.1103/PhysRev.115.485 [Cited within: 1]

Lévy L P Dolan G Dunsmuir J Bouchiat H 1990 Magnetization of mesoscopic copper rings: evidence for persistent currents
Phys. Rev. Lett. 64 2074 2077

DOI:10.1103/PhysRevLett.64.2074 [Cited within: 1]

Chandrasekhar V Webb R A Brady M J Ketchen M B Gallagher W J Kleinsasser A 1991 Magnetic response of a single, isolated gold loop
Phys. Rev. Lett. 67 3578 3581

DOI:10.1103/PhysRevLett.67.3578

Bleszynski-Jayich1 A C Shanks W E Peaudecerf B Ginossar E von Oppen F Glazman L Harris J G E 2009 Persistent currents in normal metal rings
Science 326 272 275

DOI:10.1126/science.1178139

Bluhm H Koshnick N C Bert J A Huber M E Moler K A 2009 Persistent currents in normal metal rings
Phys. Rev. Lett. 102 136802

DOI:10.1103/PhysRevLett.102.136802 [Cited within: 1]

Mailly D chelier C Benoit A 1993 Experimental observation of persistent currents in GaAs-AlGaAs single loop
Phys. Rev. Lett. 70 2020 2023

DOI:10.1103/PhysRevLett.70.2020 [Cited within: 1]

Chakraborty T Pietiläinen P 1995 Persistent currents in a quantum ring: effects of impurities and interactions
Phys. Rev. B 52 1932 1935

DOI:10.1103/PhysRevB.52.1932 [Cited within: 1]

Kawabata S 1999 Persistent currents in quantum chaotic systems
Phys. Rev. B 59 12256 12259

DOI:10.1103/PhysRevB.59.12256

Pershin Y V Piermarocchi C 2005 Persistent and radiation-induced currents in distorted quantum rings
Phys. Rev. B 72 125348

DOI:10.1103/PhysRevB.72.125348

Bruno-Alfonso A Latgé A 2008 Quantum rings of arbitrary shape and non-uniform width in a threading magnetic field
Phys. Rev. B 77 205303

DOI:10.1103/PhysRevB.77.205303 [Cited within: 1]

Chang K Lou W-K 2011 Helical quantum states in HgTe quantum dots with inverted band structures
Phys. Rev. Lett. 106 206802

DOI:10.1103/PhysRevLett.106.206802 [Cited within: 1]

Li J Lou W-K Zhang D Li X-J Yang W Chang K 2014 Single- and few-electron states in topological-insulator quantum dots
Phys. Rev. B 90 115303

DOI:10.1103/PhysRevB.90.115303

Zhao Y Wyrick J Natterer F D Rodriguez-Nieva J F Lewandowski C Watanabe K Taniguchi T Levitov L S Zhitenev N B Stroscio J A 2015 Creating and probing electron whispering-gallery modes in graphene
Science 348 672 675

DOI:10.1126/science.aaa7469 [Cited within: 1]

Xu H-Y Huang L Lai Y-C Grebogi C 2015 Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems
Sci. Rep. 5 8963

DOI:10.1038/srep08963 [Cited within: 2]

Xu H-Y Huang L Lai Y-C 2016 A robust relativistic quantum two-level system with edge-dependent currents and spin polarization
Europhys. Lett. 115 20005

DOI:10.1209/0295-5075/115/20005 [Cited within: 1]

Ying L Lai Y-C 2017 Robustness of persistent currents in two-dimensional Dirac systems with disorder
Phys. Rev. B 96 165407

DOI:10.1103/PhysRevB.96.165407 [Cited within: 2]

Han C-D Xu H-Y Huang L Lai Y-C 2019 Manifestations of chaos in relativistic quantum systems—a study based on out-of-time-order correlator
Phys. Open 1 100001

DOI:10.1016/j.physo.2019.100001 [Cited within: 2]

Sutherland B 1986 Localization of electronic wave functions due to local topology
Phys. Rev. B 34 5208 5211

DOI:10.1103/PhysRevB.34.5208 [Cited within: 1]

Bercioux D Urban D F Grabert H Häusler W 2009 Massless Dirac-Weyl fermions in a T3 optical lattice
Phys. Rev. A 80 063603

DOI:10.1103/PhysRevA.80.063603 [Cited within: 2]

Shen R Shao L B Wang B Xing D Y 2010 Single Dirac cone with a flat band touching on line-centered-square optical lattices
Phys. Rev. B 81 041410

DOI:10.1103/PhysRevB.81.041410 [Cited within: 2]

Green D Santos L Chamon C 2010 Isolated flat bands and spin-1 conical bands in two-dimensional lattices
Phys. Rev. B 82 075104

DOI:10.1103/PhysRevB.82.075104 [Cited within: 1]

Dóra B Kailasvuori J Moessner R 2011 Lattice generalization of the Dirac equation to general spin and the role of the flat band
Phys. Rev. B 84 195422

DOI:10.1103/PhysRevB.84.195422 [Cited within: 1]

Wang F Ran Y 2011 Nearly flat band with Chern number c=2 on the dice lattice
Phys. Rev. B 84 241103

DOI:10.1103/PhysRevB.84.241103

Huang X Lai Y Hang Z H Zheng H Chan C T 2011 Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials
Nat. Mater. 10 582 586

DOI:10.1038/nmat3030 [Cited within: 1]

Mei J Wu Y Chan C T Zhang Z-Q 2012 First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
Phys. Rev. B 86 035141

DOI:10.1103/PhysRevB.86.035141

Moitra P Yang Y-M Anderson Z Kravchenko I I Briggs D P Valentine J 2013 Realization of an all-dielectric zero-index optical metamaterial
Nat. Photon. 7 791 795

DOI:10.1038/nphoton.2013.214

Raoux A Morigi M Fuchs J-N Piéchon F Montambaux G 2014 From dia- to paramagnetic orbital susceptibility of massless fermions
Phys. Rev. Lett. 112 026402

DOI:10.1103/PhysRevLett.112.026402

Guzmán-Silva D Mejía-Cortés C Bandres M A Rechtsman M C Weimann S Nolte S Segev M Szameit A Vicencio R A 2014 Experimental observation of bulk and edge transport in photonic Lieb lattices
New J. Phys. 16 063061

DOI:10.1088/1367-2630/16/6/063061 [Cited within: 1]

Romhányi J Penc K Ganesh R 2015 Hall effect of triplons in a dimerized quantum magnet
Nat. Commun. 6 6805

DOI:10.1038/ncomms7805

Giovannetti G Capone M van den Brink J Ortix C 2015 Kekulé textures, pseudospin-one Dirac cones, and quadratic band crossings in a graphene-hexagonal indium chalcogenide bilayer
Phys. Rev. B 91 121417

DOI:10.1103/PhysRevB.91.121417

Li Y Kita s Munoz P Reshef O Vulis D I Yin M Loncar M Mazur E 2015 On-chip zero-index metamaterials
Nat. Photon. 9 738 742

DOI:10.1038/nphoton.2015.198

Mukherjee S Spracklen A Choudhury D Goldman N Öhberg P Andersson E Thomson R R 2015 Observation of a localized flat-band state in a photonic Lieb lattice
Phys. Rev. Lett. 114 245504

DOI:10.1103/PhysRevLett.114.245504 [Cited within: 1]

Vicencio R A Cantillano C Morales-Inostroza L Real B Mejía-Cortés C Weimann S Szameit A Molina M I 2015 Observation of localized states in Lieb photonic lattices
Phys. Rev. Lett. 114 245503

DOI:10.1103/PhysRevLett.114.245503 [Cited within: 1]

Taie S Ozawa H Ichinose T Nishio T Nakajima S Takahashi Y 2015 Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice
Sci. Adv. 1 e1500854

DOI:10.1126/sciadv.1500854 [Cited within: 1]

Fang A Zhang Z Q Louie S G Chan C T 2016 Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves
Phys. Rev. B 93 035422

DOI:10.1103/PhysRevB.93.035422 [Cited within: 1]

Diebel F Leykam D Kroesen S Denz C Desyatnikov A S 2016 Conical diffraction and composite Lieb Bosons in photonic lattices
Phys. Rev. Lett. 116 183902

DOI:10.1103/PhysRevLett.116.183902 [Cited within: 1]

Zhu L Wang S-S Guan S Liu Y Zhang T Chen G Yang S A 2016 Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2D emergent fermions
Nano Lett. 16 6548 6554

DOI:10.1021/acs.nanolett.6b03208

Bradlyn B Cano J Wang Z Vergniory M G Felser C Cava R J Bernevig B A Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals
Science 353 1 7

DOI:10.1126/science.aaf5037 [Cited within: 1]

Fulga I C Stern A 2017 Triple point fermions in a minimal symmorphic model
Phys. Rev. B 95 241116

DOI:10.1103/PhysRevB.95.241116

Ezawa M 2017 Triplet fermions and Dirac fermions in borophene
Phys. Rev. B 96 035425

DOI:10.1103/PhysRevB.96.035425

Zhong C Chen Y Yu Z-M Xie Y Wang H Yang S A Zhang S 2017 Three-dimensional pentagon carbon with a genesis of emergent fermions
Nat. Commun. 8 15641

DOI:10.1038/ncomms15641

Zhu Y-Q Zhang D-W Yan H Xing D-Y Zhu S-L 2017 Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
Phys. Rev. A 96 033634

DOI:10.1103/PhysRevA.96.033634

Drost R Ojanen T Harju A Liljeroth P 2017 Topological states in engineered atomic lattices
Nat. Phys. 13 668

DOI:10.1038/nphys4080 [Cited within: 1]

Slot M R Gardenier T S Jacobse P H van Miert G C P Kempkes S N Zevenhuizen S J M Smith C M Vanmaekelbergh D Swart I 2017 Experimental realization and characterization of an electronic Lieb lattice
Nat. Phys. 13 672

DOI:10.1038/nphys4105 [Cited within: 1]

Tan X Zhang D-W Liu Q Xue G Yu H-F Zhu Y-Q Yan H Zhu S-L Yu Y 2018 Topological Maxwell metal bands in a superconducting qutrit
Phys. Rev. Lett. 120 130503

DOI:10.1103/PhysRevLett.120.130503 [Cited within: 2]

Urban D F Bercioux D Wimmer M Häusler W 2011 Barrier transmission of Dirac-like pseudospin-one particles
Phys. Rev. B 84 115136

DOI:10.1103/PhysRevB.84.115136 [Cited within: 1]

Xu H-Y Lai Y-C 2016 Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles
Phys. Rev. B 94 165405

DOI:10.1103/PhysRevB.94.165405 [Cited within: 2]

Cheianov V V Fal’ko V Altshuler B L 2007 The focusing of electron flow and a Veselago lens in graphene p–n junctions
Science 315 1252 1255

DOI:10.1126/science.1138020 [Cited within: 1]

Lee G-H Park G-H Lee H-J 2015 Observation of negative refraction of Dirac fermions in graphene
Nat. Phys. 11 925 929letter

DOI:10.1038/nphys3460

Chen Set al. 2016 Electron optics with p–n junctions in ballistic graphene
Science 353 1522 1525

DOI:10.1126/science.aaf5481 [Cited within: 1]

Xu H-Y Lai Y-C 2019 Pseudospin-1 wave scattering that defies chaos Q-spoiling and Klein tunneling
Phys. Rev. B 99 235403

DOI:10.1103/PhysRevB.99.235403 [Cited within: 2]

Akis R Ferry D K Bird J P 1997 Wave function scarring effects in open stadium shaped quantum dots
Phys. Rev. Lett. 79 123 126

DOI:10.1103/PhysRevLett.79.123 [Cited within: 1]

Akis R Bird J P Ferry D K 2002 The persistence of eigenstates in open quantum dots
Appl. Phys. Lett. 81 129 131

DOI:10.1063/1.1490404

Harayama T Davis P Ikeda K S 2003 Stable oscillations of a spatially chaotic wave function in a microstadium laser
Phys. Rev. Lett. 90 063901

DOI:10.1103/PhysRevLett.90.063901

Lee S-Y Kurdoglyan M S Rim S Kim C-M 2004 Resonance patterns in a stadium-shaped microcavity
Phys. Rev. A 70 023809

DOI:10.1103/PhysRevA.70.023809

Fang W Yamilov A Cao H 2005 Analysis of high-quality modes in open chaotic microcavities
Phys. Rev. A 72 023815

DOI:10.1103/PhysRevA.72.023815

Lebental M Lauret J S Hierle R Zyss J 2006 Highly directional stadium-shaped polymer microlasers
Appl. Phys. Lett. 88 031108

DOI:10.1063/1.2159099 [Cited within: 1]

Nöckel J U Stone A D Chang R K 1994 Q spoiling and directionality in deformed ring cavities
Opt. Lett. 19 1693 1695

DOI:10.1364/OL.19.001693 [Cited within: 1]

Mekis A Nöckel J U Chen G Stone A D Chang R K 1995 Ray chaos and Q spoiling in lasing droplets
Phys. Rev. Lett. 75 2682 2685

DOI:10.1103/PhysRevLett.75.2682

Nöckel J U Stone A D 1997 Ray and wave chaos in asymmetric resonant optical cavities
Nature 385 45 47

DOI:10.1038/385045a0 [Cited within: 1]

Xu H-Y Wang G-L Huang L Lai Y-C 2018 Chaos in Dirac electron optics: emergence of a relativistic quantum chimera
Phys. Rev. Lett. 120 124101

DOI:10.1103/PhysRevLett.120.124101 [Cited within: 1]

Ramos J G G S da Silva I M L Barbosa A L R 2014 Anomalous entanglement in chaotic Dirac billiards
Phys. Rev. B 90 245107

DOI:10.1103/PhysRevB.90.245107 [Cited within: 1]

Yusupov J Otajanov D Eshniyazov V Matrasulov D 2018 Classical and quantum dynamics of a kicked relativistic particle in a box
Phys. Lett. A 382 633 638

DOI:10.1016/j.physleta.2018.01.002 [Cited within: 1]

Ihnatsenka S Kirczenow G 2012 Effect of electron–electron interactions on the electronic structure and conductance of graphene nanoconstrictions
Phys. Rev. B 86 075448

DOI:10.1103/PhysRevB.86.075448 [Cited within: 1]

Xu H Lai Y-C 2017 Superscattering of a pseudospin-1 wave in a photonic lattice
Phys. Rev. A 95 012119

DOI:10.1103/PhysRevA.95.012119 [Cited within: 1]

Wang C-Z Xu H-Y Huang L Lai Y-C 2017 Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system
Phys. Rev. B 96 115440

DOI:10.1103/PhysRevB.96.115440 [Cited within: 1]

相关话题/Perspectives relativistic quantum