删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Geometry of skew information-based quantum coherence

本站小编 Free考研考试/2022-01-02

Zhao-Qi Wu,1,3,4, Huai-Jing Huang1, Shao-Ming Fei,2,3,4, Xian-Qing Li-Jost31Department of Mathematics, Nanchang University, Nanchang 330031, China
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
3Max-Planck-Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany

First author contact: 4 Authors to whom any correspondence should be addressed.
Received:2020-03-15Revised:2020-05-27Accepted:2020-05-27Online:2020-09-23


Abstract
We study the skew information-based coherence of quantum states and derive explicit formulas for Werner states and isotropic states in a set of autotensors of mutually unbiased bases (MUBs). We also give surfaces of skew information-based coherence for Bell-diagonal states and a special class of X states in both computational basis and in MUBs. Moreover, we depict the surfaces of the skew information-based coherence for Bell-diagonal states under various types of local nondissipative quantum channels. The results show similar as well as different features compared with relative entropy of coherence and l1 norm of coherence.
Keywords: coherence;skew information;mutually unbiased bases;quantum channels


PDF (1571KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Zhao-Qi Wu, Huai-Jing Huang, Shao-Ming Fei, Xian-Qing Li-Jost. Geometry of skew information-based quantum coherence. Communications in Theoretical Physics, 2020, 72(10): 105102- doi:10.1088/1572-9494/aba24a

1. Introduction

Quantum coherence is an intrinsic character of quantum mechanics which plays significant roles in superconductivity, quantum thermodynamics and biological processes, while a theoretic framework to quantify the coherence was not formulated until the work of [1]. It intrigued great interest in studying quantum coherence from different perspectives and aspects.

A large number of valid coherence measures or coherence monotones such as relative entropy of coherence, l1 norm of coherence, robustness of coherence, coherence of formation, max-relative entropy of coherence, modified trace distance of coherence, skew information-based coherence, geometric coherence, coherence weight, affinity distance-based coherence, generalized α-z-relative Rényi entropy of coherence and various entropic-based coherence measures have been proposed to quantify quantum coherence [1-16]. Average coherence and coherence-generating power of quantum channels based on different coherence measures have also been extensively explored [17-26]. Moreover, the interconversion between quantum coherence and quantum entanglement or quantum correlations are formulated [27-34].

On the other hand, the problem of coherence distillation and coherence dilution have also been discussed [35-42], together with the no-broadcasting of quantum coherence [43, 44]. A complete theory of one-shot coherence distillation has been formulated in [45]. Quantum coherence can also be used to certify quantum memories [46]. The quantum coherence among nondegenerate energy subspaces has been shown to be essential for the energy flow in any quantum system [47].

The concept of mutually unbiased bases (MUBs) was raised in quantum state determinations. It is found to be possible to construct d+1 MUBs of the space ${{\mathbb{C}}}^{d}$ if d is a prime power, i.e. d=pn, where p is a prime number and n is an integer [48, 49]. It is still not known yet that what are the maximal sets of MUBs when the dimension d is a composite number [50]. The link between unextendible maximally entangled bases and MUBs has been established [51], and entanglement, compatibility of measurements and uncertainty relations with respect to MUBs have been investigated [52-56].

The geometry of entanglement measures and other correlation measures can provide an intuition towards the quantification of these correlations. The level surfaces of entanglement and quantum discord for Bell-diagonal states [57], the level surfaces of quantum discord for a class of two-qubit states [58], the geometry of one-way information deficit for a class of two-qubit states [59], the surfaces of constant quantum discord and super-quantum discord for Bell-diagonal states [60] have been depicted. Recently, the l1 norm of coherence of quantum states in MUBs has been discussed [61], and the geometry with respect to relative entropy of coherence and l1 norm of coherence for Bell-diagonal states has been investigated [62, 63].

In this paper, we calculate skew information-based coherence of quantum states in MUBs for qubit and two-qubit quantum states, and formulate the corresponding geometries. We explore the geometry of skew information-based coherence of two-qubit Bell-diagonal states and X states in both computational basis and in MUBs. We also investigate the dynamic behavior of the skew information-based coherence under different quantum channels.

2. Skew information-based coherence in autotensor of mutually unbiased bases (AMUBs)

Let ${ \mathcal H }$ be a d-dimensional Hilbert space, and ${ \mathcal B }({ \mathcal H })$, ${ \mathcal S }({ \mathcal H })$ and ${ \mathcal D }({ \mathcal H })$ be the set of all bounded linear operators, Hermitian operators and density operators on ${ \mathcal H }$, respectively. Usually, a state and a channel are mathematically described by a density operator (positive operator of trace 1) and a completely positive trace preserving map, respectively [64].

The set of incoherent states, which are diagonal matrices in the fixed orthonormal base $\{| k\rangle \}{}_{k=1}^{d}$ of the d-dimensional Hilbert space ${ \mathcal H }$, can be represented as$\begin{eqnarray*}{ \mathcal I }=\{\delta \in { \mathcal D }({ \mathcal H })| \delta =\displaystyle \sum _{i}{p}_{i}| i\rangle \langle i| ,\,{p}_{i}\geqslant 0,\,\displaystyle \sum _{i}{p}_{i}=1\}.\end{eqnarray*}$Let Λ be a CPTP map ${\rm{\Lambda }}(\rho )={\sum }_{n}{K}_{n}\rho {K}_{n}^{\dagger },$ where Kn are Kraus operators satisfying ${\sum }_{n}{K}_{n}^{\dagger }{K}_{n}={I}_{d}$ with Id the identity operator. Kn are called incoherent Kraus operators if ${K}_{n}^{\dagger }{ \mathcal I }{K}_{n}\in { \mathcal I }$ for all n, and the corresponding Λ is called an incoherent operation.

A well-defined coherence measure C(ρ) shall satisfy the following conditions [1]:(C1) (Faithfulness) C(ρ)≥0 and C(ρ)=0 iff ρ is incoherent.
(C2) (Convexity) C(·) is convex in ρ.
(C3) (Monotonicity) C(Λ(ρ))≤C(ρ) for any incoherent operation Λ.
(C4) (Strong monotonicity) C(·) does not increase on average under selective incoherent operations, i.e.$\begin{eqnarray*}C(\rho )\geqslant \displaystyle \sum _{n}{p}_{n}C({\varrho }_{n}),\end{eqnarray*}$where ${p}_{n}=\mathrm{Tr}({K}_{n}\rho {K}_{n}^{\dagger })$ are probabilities and ${\varrho }_{n}=\tfrac{{K}_{n}\rho {K}_{n}^{\dagger }}{{p}_{n}}$ are the post-measurement states, Kn are incoherent Kraus operators.


For a state $\rho \in { \mathcal D }({ \mathcal H })$ and an observable $K\in { \mathcal S }({ \mathcal H })$, the Wigner-Yanase (WY) skew information is defined by [65]$\begin{eqnarray}I(\rho ,K)=-\displaystyle \frac{1}{2}\mathrm{Tr}({\left[{\rho }^{\tfrac{1}{2}},K\right]}^{2}),\end{eqnarray}$where $[X,Y]:= {XY}-{YX}$ is the commutator of X and Y.

In an attempt to quantify coherence [66], Girolami proposed to use the WY skew information I(ρ, K) to quantify coherence, and called it K-coherence. Here K is diagonal in the base $\{| k\rangle \}{}_{k=1}^{d}$. More precisely, this quantity should be considered as a quantifier for coherence of ρ with respect to the observable K rather than the associated orthonormal base.

The absence of a reference frame has been proven equivalent to constrain quantum dynamics by a superselection rule (SSR) [67], while the ability of a system to act as reference frame is the quantum resource known as asymmetry or frameness [67]. A G-SSR for a quantity Q (supercharge) is defined as a law of invariance of the state of a system with respect to a transformation group G. In [66], it is shown that given a G-SSR with supercharge Q, the skew information $I(\rho ,Q)=-\tfrac{1}{2}\mathrm{Tr}({\left[{\rho }^{\tfrac{1}{2}},Q\right]}^{2})$ satisfies the criteria identifying an asymmetry measure of the state [68]. It is worth noting that quantum asymmetry represents the amount of coherence in the eigenbasis of the supercharge [68].

The K-coherence satisfies (C1) and (C2), but not (C3), as pointed out in [69, 70]. By using the spectral decomposition of the observable K rather than the observable K itself, the authors in [10] have showed that the K-coherence can be simply modified to be a bona fide measure of coherence satisfying the above requirements (C1)-(C3) (where they called it partial coherence).

Another way to solve the problem is proposed in [8] by introducing the skew information-based coherence measure defined by [8]$\begin{eqnarray}{C}_{{I}}(\rho )=\displaystyle \sum _{k=1}^{d}{I}(\rho ,| k\rangle \langle k| ),\end{eqnarray}$where $I(\rho ,| k\rangle \langle k| )=-\tfrac{1}{2}\mathrm{Tr}\{[\rho ,| k\rangle \langle k| ]\}{}^{2}$ is the skew information of the state ρ with respect to the projections $\{| k\rangle \langle k| \}{}_{k=1}^{d}$. Direct calculation shows that the coherence measure (2) can be written as$\begin{eqnarray}{C}_{{I}}(\rho )=1-\displaystyle \sum _{k=1}^{d}\langle k| \sqrt{\rho }| k{\rangle }^{2}.\end{eqnarray}$

In [8], it has been proved that the coherence measure defined in (2) satisfies all the criteria (C1)-(C4), while the K-coherence does not satisfy (C4) (strong monotonicity). The coherence measure has an analytic expression and an obvious operational meaning related to quantum metrology. In terms of this coherence measure, the distribution of the quantum coherence among the multipartite systems has been studied and a corresponding polygamy relation has been proposed. It is also found that the coherence measure gives the natural upper bounds of quantum correlations prepared by incoherent operations. Moreover, it is shown that this coherence measure can be experimentally measured. Since the skew information-based coherence measure (2) is of great significance both theoretically and practically, it is worth evaluating the measure for classes of quantum states in both computational basis and MUBs, and studying the geometrical characters.

A set of orthonormal bases $\{{e}_{k}\}=\{| 0{\rangle }_{k},| 1{\rangle }_{k},\cdots ,| d\,-1{\rangle }_{k}\}$ for a Hilbert space $H={{\mathbb{C}}}^{d}$ is called MUBs if [48, 49]$\begin{eqnarray*}{| }_{k}\langle i| j{\rangle }_{l}| \,=\,\displaystyle \frac{1}{\sqrt{d}}\end{eqnarray*}$holds for all $i,j\in \{0,1,\cdots ,d-1\}$ and $k\ne l$. For d=2, a set of three MUBs is given by$\begin{eqnarray*}{e}_{1}=\{{e}_{11},{e}_{12}\}=\{| 0\rangle ,| 1\rangle \},\end{eqnarray*}$$\begin{eqnarray*}{e}_{2}=\{{e}_{21},{e}_{22}\}=\left\{\displaystyle \frac{1}{\sqrt{2}}(| 0\rangle +| 1\rangle ),\displaystyle \frac{1}{\sqrt{2}}(| 0\rangle -| 1\rangle )\right\},\end{eqnarray*}$$\begin{eqnarray*}{e}_{3}=\{{e}_{31},{e}_{32}\}=\left\{\displaystyle \frac{1}{\sqrt{2}}(| 0\rangle +{\rm{i}}| 1\rangle ),\displaystyle \frac{1}{\sqrt{2}}(| 0\rangle -{\rm{i}}| 1\rangle )\right\}.\end{eqnarray*}$

Let $\{{e}_{k}\}=\{| 0{\rangle }_{k},| 1{\rangle }_{k},\cdots ,| d-1{\rangle }_{k}\}$ be a set of MUBs. The set $\{{a}_{k}\}=\{| i{\rangle }_{k}\otimes | j{\rangle }_{k},i,j=0,1,\cdots ,d-1\}$ is called the AMUBs if [61]$\begin{eqnarray*}| (\langle i{| }_{k}\otimes \langle j{| }_{k})(| m{\rangle }_{l}\otimes | n{\rangle }_{l})| =\displaystyle \frac{1}{d},\,\,\,i,j,m,n=0,\ldots ,d-1,\end{eqnarray*}$for $k\ne l$. The following set is an AMUBs derived from two-dimensional MUBs [61]:$\begin{eqnarray*}\begin{array}{rcl}\{{a}_{1}\} & = & \{{a}_{11},{a}_{12},{a}_{13},{a}_{14}\}\\ & = & \{{e}_{11}\otimes {e}_{11},{e}_{11}\otimes {e}_{12},{e}_{12}\otimes {e}_{11},{e}_{12}\otimes {e}_{12}\},\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{rcl}\{{a}_{2}\} & = & \{{a}_{21},{a}_{22},{a}_{23},{a}_{24}\}\\ & = & \{{e}_{21}\otimes {e}_{21},{e}_{21}\otimes {e}_{22},{e}_{22}\otimes {e}_{21},{e}_{22}\otimes {e}_{22}\},\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{rcl}\{{a}_{3}\} & = & \{{a}_{31},{a}_{32},{a}_{33},{a}_{34}\}\\ & = & \{{e}_{31}\otimes {e}_{31},{e}_{31}\otimes {e}_{32},{e}_{32}\otimes {e}_{31},{e}_{32}\otimes {e}_{32}\}.\end{array}\end{eqnarray*}$

In general, a two qubit X states can be represented as$\begin{eqnarray}{\rho }^{{\rm{X}}}=\displaystyle \frac{1}{4}\left(I\otimes I+{\boldsymbol{r}}\cdot \sigma \otimes I+I\otimes {\boldsymbol{s}}\cdot \sigma +\displaystyle \sum _{i=1}^{3}{c}_{i}{\sigma }_{i}\otimes {\sigma }_{i}\right),\end{eqnarray}$where ${\boldsymbol{r}}$ and ${\boldsymbol{s}}$ are Bloch vectors. As a special class of ρX, for ${\boldsymbol{r}}={\boldsymbol{s}}=0$, one obtains the two-qubit Bell-diagonal states$\begin{eqnarray}{\rho }^{\mathrm{BD}}=\displaystyle \frac{1}{4}\left(I\otimes I+\displaystyle \sum _{i=1}^{3}{c}_{i}{\sigma }_{i}\otimes {\sigma }_{i}\right),\end{eqnarray}$where ${c}_{i}\in [-1,1]$, i=1, 2, 3.

The density matrix of ρBD in basis a1 is of the form$\begin{eqnarray*}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+{c}_{3} & 0 & 0 & {c}_{1}-{c}_{2}\\ 0 & 1-{c}_{3} & {c}_{1}+{c}_{2} & 0\\ 0 & {c}_{1}+{c}_{2} & 1-{c}_{3} & 0\\ {c}_{1}-{c}_{2} & 0 & 0 & 1+{c}_{3}\end{array}\right),\end{eqnarray*}$and the skew information-based coherence of ${\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$ is$\begin{eqnarray}\begin{array}{rcl}{C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}} & = & \displaystyle \frac{1}{4}(2-\sqrt{1-{c}_{1}-{c}_{2}-{c}_{3}}\sqrt{1+{c}_{1}+{c}_{2}-{c}_{3}}\\ & & -\sqrt{1+{c}_{1}-{c}_{2}+{c}_{3}}\sqrt{1-{c}_{1}+{c}_{2}+{c}_{3}}).\end{array}\end{eqnarray}$

Similarly, the density matrix of ρBD in basis a2 and a3 are given by$\begin{eqnarray*}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{2}}=\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+{c}_{1} & 0 & 0 & {c}_{3}-{c}_{2}\\ 0 & 1-{c}_{1} & {c}_{3}+{c}_{2} & 0\\ 0 & {c}_{3}+{c}_{2} & 1-{c}_{1} & 0\\ {c}_{3}-{c}_{2} & 0 & 0 & 1+{c}_{1}\end{array}\right)\end{eqnarray*}$and$\begin{eqnarray*}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{3}}=\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+{c}_{2} & 0 & 0 & {c}_{3}-{c}_{1}\\ 0 & 1-{c}_{2} & {c}_{3}+{c}_{1} & 0\\ 0 & {c}_{3}+{c}_{1} & 1-{c}_{2} & 0\\ {c}_{3}-{c}_{1} & 0 & 0 & 1+{c}_{2}\end{array}\right),\end{eqnarray*}$with the skew information-based coherence$\begin{eqnarray}\begin{array}{rcl}{C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{2}} & = & \displaystyle \frac{1}{4}(2-\sqrt{1+{c}_{1}+{c}_{2}-{c}_{3}}\sqrt{1+{c}_{1}-{c}_{2}+{c}_{3}}\\ & & -\sqrt{1-{c}_{1}-{c}_{2}-{c}_{3}}\sqrt{1-{c}_{1}+{c}_{2}+{c}_{3}}),\end{array}\end{eqnarray}$and$\begin{eqnarray}\begin{array}{rcl}{C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{3}} & = & \displaystyle \frac{1}{4}(2-\sqrt{1-{c}_{1}-{c}_{2}-{c}_{3}}\sqrt{1+{c}_{1}-{c}_{2}+{c}_{3}}\\ & & -\sqrt{1+{c}_{1}+{c}_{2}-{c}_{3}}\sqrt{1-{c}_{1}+{c}_{2}+{c}_{3}}),\end{array}\end{eqnarray}$respectively. We plot the level surfaces of ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$ in figure 1.

Figure 1.

New window|Download| PPT slide
Figure 1.Surfaces of constant ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$: (a) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=0.05;$ (b) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=0.2;$ (c) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=1$.


The Bell-diagonal state ρBD becomes the Werner state ρW if we take ${c}_{1}={c}_{2}={c}_{3}=\tfrac{3}{4}p-1$ (0≤p≤1). We have$\begin{eqnarray*}{\left({\rho }^{{\rm{W}}}\right)}_{{a}_{i}}=\left(\begin{array}{cccc}\tfrac{1}{3}p & 0 & 0 & 0\\ 0 & \tfrac{1}{6}(3-2p) & \tfrac{1}{6}(4p-3) & 0\\ 0 & \tfrac{1}{6}(4p-3) & \tfrac{1}{6}(3-2p) & 0\\ 0 & 0 & 0 & \tfrac{1}{3}p\end{array}\right),\,\,\,i=1,2,3,\end{eqnarray*}$and$\begin{eqnarray}{C}_{{I}}{\left({\rho }^{{\rm{W}}}\right)}_{{a}_{i}}=\displaystyle \frac{1}{16}(8-\sqrt{p(48-27p)}-3p),\,\,\,i=1,2,3.\end{eqnarray}$

Taking ${c}_{1}={c}_{3}=\tfrac{4F-1}{3}$, ${c}_{2}=-\tfrac{4F-1}{3}$ (0≤F≤1), we have the isotropic state ρiso,$\begin{eqnarray*}\begin{array}{l}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{i}}\\ =\,\left(\begin{array}{cccc}\tfrac{1}{6}(1+2F) & 0 & 0 & \tfrac{1}{6}(4F-1)\\ 0 & \tfrac{1}{3}(1-F) & 0 & 0\\ 0 & 0 & \tfrac{1}{3}(1-F) & 0\\ \tfrac{1}{6}(4F-1) & 0 & 0 & \tfrac{1}{6}(1+2F)\end{array}\right),\,\,i=1,2,\end{array}\end{eqnarray*}$and$\begin{eqnarray*}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{3}}=\left(\begin{array}{cccc}\tfrac{1}{3}(1-F) & 0 & 0 & 0\\ 0 & \tfrac{1}{6}(1+2F) & 0 & 0\\ 0 & 0 & \tfrac{1}{6}(1+2F) & 0\\ 0 & 0 & 0 & \tfrac{1}{3}(1-F)\end{array}\right),\end{eqnarray*}$from which we obtain$\begin{eqnarray}{C}_{{I}}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{i}}=\displaystyle \frac{1}{6}(1+2F-2\sqrt{3F(1-F)}),\,\,\,i=1,2,3.\end{eqnarray}$

The C-axis stands for ${C}_{{I}}{({\rho }^{{\rm{W}}})}_{{a}_{i}}$ and ${C}_{{I}}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{i}}(i=1,2,3)$ in figures 2(a) and (b), respectively.

Figure 2.

New window|Download| PPT slide
Figure 2.(a) ${C}_{{I}}{({\rho }^{{\rm{W}}})}_{{a}_{i}}(i=1,2,3)$ as a function of p; (b) ${C}_{{I}}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{i}}(i=1,2,3)$ as a function of F.


Denote the sum of the skew information-based coherence of Bell-diagonal states in bases ${\{{a}_{i}\}}_{i=1}^{3}$ by$\begin{eqnarray}{C}_{{I}}{\left({\rho }^{{\rm{BD}}}\right)}_{a}={C}_{{I}}{\left({\rho }^{{\rm{BD}}}\right)}_{{a}_{1}}+{C}_{{I}}{\left({\rho }^{{\rm{BD}}}\right)}_{{a}_{2}}+{C}_{{I}}{\left({\rho }^{{\rm{BD}}}\right)}_{{a}_{3}}.\end{eqnarray}$In figure 3, we plot the surfaces of constant ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}$ of Bell-diagonal states ${\rho }^{\mathrm{BD}}$. Comparing figure 1 with 3, it can be seen that the volume of the surface expands when both the value of ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$ and ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}$ increases. Moreover, when ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$ or ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}$ equals to 1, both of the surfaces approaches to a tetrahedron.

Figure 3.

New window|Download| PPT slide
Figure 3.Surfaces of constant ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}$: (a) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=0.05;$ (b) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=0.2;$ (c) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=1$.


Now, we consider another special class of two qubit X states. By taking ${\boldsymbol{r}}=(0,0,r)$ and ${\boldsymbol{s}}=(0,0,s)$, state (11) becomes the following one [61]$\begin{eqnarray}{\rho }_{z}^{{\rm{X}}}=\displaystyle \frac{1}{4}\left(I\otimes I+r{\sigma }_{3}\otimes I+I\otimes s{\sigma }_{3}+\displaystyle \sum _{i=1}^{3}{c}_{i}{\sigma }_{i}\otimes {\sigma }_{i}\right),\end{eqnarray}$which can be written as the following matrix in basis a1$\begin{eqnarray*}\begin{array}{l}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=\,\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+r+s+{c}_{3} & 0 & 0 & {c}_{1}-{c}_{2}\\ 0 & 1+r-s-{c}_{3} & {c}_{1}+{c}_{2} & 0\\ 0 & {c}_{1}+{c}_{2} & 1-r+s-{c}_{3} & 0\\ {c}_{1}-{c}_{2} & 0 & 0 & 1-r-s+{c}_{3}\end{array}\right).\end{array}\end{eqnarray*}$

Direct computation shows that$\begin{eqnarray}\begin{array}{rcl}{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}} & = & 1-\displaystyle \frac{1}{16}\displaystyle \frac{1}{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}\\ & & \times \left[\left(\sqrt{1-{c}_{3}+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}}\right.\right.\\ & & \times (r-s+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}})\\ & & +\sqrt{1-{c}_{3}-\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}}\\ & & \times {\left.(-r+s+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}\right)}^{2}\\ & & +\left(\sqrt{1-{c}_{3}-\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}}\right.\\ & & \times (r-s+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}})\\ & & +\sqrt{1-{c}_{3}+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}}\\ & & \times \left.{\left.(-r+s+\sqrt{{\left({c}_{1}+{c}_{2}\right)}^{2}+{\left(r-s\right)}^{2}}\right)}^{2}\right]\\ & & -\displaystyle \frac{1}{16}\displaystyle \frac{1}{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}\\ & & \times \left[\left(\sqrt{1+{c}_{3}+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}}\right.\right.\\ & & \times (-r-s+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}})\\ & & +\sqrt{1+{c}_{3}+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}}\\ & & \times {\left.(r+s+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}\right)}^{2}\\ & & +\left(\sqrt{1+{c}_{3}-\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}}\right.\\ & & \times (r+s-\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}})\\ & & -\sqrt{1+{c}_{3}+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}}\\ & & \times \left.{\left.(r+s+\sqrt{{\left({c}_{1}-{c}_{2}\right)}^{2}+{\left(r+s\right)}^{2}}\right)}^{2}\right].\end{array}\end{eqnarray}$

The surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}$ are shown in figure 4. It can be seen that for r=s, the volume given by the surfaces expands for larger coherence, see figures 4(a) and (c) or (b) and (d).

Figure 4.

New window|Download| PPT slide
Figure 4.Surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}$ with fixed r and s: (a) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.1;$ (b) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.1;$ (c) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.5;$ (d) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.5$.


Similarly, the matrix form of (12) in basis a2 and a3 are$\begin{eqnarray*}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{2}}=\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+{c}_{1} & s & r & {c}_{3}-{c}_{2}\\ s & 1-{c}_{1} & {c}_{2}+{c}_{3} & r\\ r & {c}_{2}+{c}_{3} & 1-{c}_{1} & s\\ {c}_{3}-{c}_{2} & r & s & 1+{c}_{1}\end{array}\right)\end{eqnarray*}$and$\begin{eqnarray*}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{3}}=\displaystyle \frac{1}{4}\left(\begin{array}{cccc}1+{c}_{2} & s & r & {c}_{3}-{c}_{1}\\ s & 1-{c}_{2} & {c}_{1}+{c}_{3} & r\\ r & {c}_{1}+{c}_{3} & 1-{c}_{2} & s\\ {c}_{3}-{c}_{1} & r & s & 1+{c}_{2}\end{array}\right),\end{eqnarray*}$respectively, and ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{2}}$ and ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{3}}$ can be similarly calculated.

Moreover, denoting the sum of the skew information-based coherence of ${\rho }_{z}^{{\rm{X}}}$ in bases ${\{{a}_{i}\}}_{i=1}^{3}$ by$\begin{eqnarray}{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}={C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}+{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{2}}+{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{3}},\end{eqnarray}$we obtain that$\begin{eqnarray}\begin{array}{rcl}{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a} & = & \displaystyle \frac{1}{4}\left(6-\sqrt{1-\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\right.\\ & & \times \sqrt{1+\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\\ & & -\sqrt{1-\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\\ & & \times \sqrt{1+\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\\ & & \sqrt{1-\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\\ & & \times \sqrt{1+\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\\ & & -\sqrt{1-\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\\ & & \times \sqrt{1-\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\\ & & -\sqrt{1-\sqrt{\left({c}_{1}+{c}_{2}\right){}^{2}+{\left(r-s\right)}^{2}}-{c}_{3}}\\ & & \times \sqrt{1+\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\\ & & -\sqrt{1-\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\\ & & \times \left.\sqrt{1+\sqrt{\left({c}_{1}-{c}_{2}\right){}^{2}+{\left(r+s\right)}^{2}}+{c}_{3}}\right),\end{array}\end{eqnarray}$and the surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}$ are shown in figure 5. It can be seen that similar properties hold compared with the surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}$ in figure 4.

Figure 5.

New window|Download| PPT slide
Figure 5.Surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}$ with fixed r and s: (a) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.1;$ (b) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.1;$ (c) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.5;$ (d) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.5$.


3. Skew information-based coherence under quantum channels

We now consider the evolution of the skew information-based quantum coherence under different quantum channels. Consider the following type of quantum channel Φ:$\begin{eqnarray}{\rm{\Phi }}(\rho )=\displaystyle \sum _{i,j}({E}_{i}\otimes {E}_{j})\rho {\left({E}_{i}\otimes {E}_{j}\right)}^{\dagger },\end{eqnarray}$where {Ek} is the set of Kraus operators on a single qubit, satisfying ${\sum }_{k}{E}_{k}^{\dagger }{E}_{k}=I$. The Kraus operators for four kinds of quantum channels are listed in table 1 [71].


Table 1.
Table 1.Kraus operators for the quantum channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and generalized amplitude damping (GAD), where p and γ are decoherence probabilities, $0\lt p\lt 1$, 0<γ<1.
ChannelKrausoperators
BF${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{1}$
PF${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{3}$
BPF${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{2}$
GAD${E}_{0}=\sqrt{p}\left(\begin{array}{cc}1 & 0\\ 0 & \sqrt{1-\gamma }\end{array}\right),\,\,\,{E}_{2}=\sqrt{1-p}\left(\begin{array}{cc}\sqrt{1-\gamma } & 0\\ 0 & 1\end{array}\right)$
${E}_{1}=\sqrt{p}\left(\begin{array}{cc}0 & \sqrt{\gamma }\\ 0 & 0\end{array}\right),\,\,\,{E}_{3}=\sqrt{1-p}\left(\begin{array}{cc}0 & 0\\ \sqrt{\gamma } & 0\end{array}\right)$

New window|CSV

Noting that a Bell-diagonal state under BF, PF and BPF in table 1 remains the same form, which is also the case under GAD for p=1/2 and any γ, we have$\begin{eqnarray}{\rm{\Phi }}\left({\rho }^{\mathrm{BD}}\right)=\displaystyle \frac{1}{4}\left(I\otimes I+\displaystyle \sum _{i=1}^{3}{c}_{i}^{{\prime} }{\sigma }_{i}\otimes {\sigma }_{i}\right),\end{eqnarray}$where ρBD is a two-qubit Bell-diagonal state, and the parameters ${c}_{i}^{{\prime} }$ (i=1, 2, 3) are listed in table 2 [71].


Table 2.
Table 2.Correlation coefficients with respect to the following channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and generalized amplitude damping (GAD). For GAD, we have fixed p=1/2 and replaced γ by p.
Channel${c}_{1}^{{\prime} }$${c}_{2}^{{\prime} }$${c}_{3}^{{\prime} }$
BF${c}_{1}$${c}_{2}{(1-p)}^{2}$${c}_{3}{(1-p)}^{2}$
PF${c}_{1}{(1-p)}^{2}$${c}_{2}{(1-p)}^{2}$${c}_{3}$
BPF${c}_{1}{(1-p)}^{2}$${c}_{2}$${c}_{3}{(1-p)}^{2}$
GAD${c}_{1}(1-p)$${c}_{2}(1-p)$${c}_{3}{(1-p)}^{2}$

New window|CSV

By replacing ci by ${c}_{i}^{{\prime} }$ in equation (12), we plot the surfaces of constant ${C}_{{I}}{({\rm{\Phi }}\left({\rho }^{\mathrm{BD}}\right))}_{{a}_{1}}$ for the four types of channels by utilizing table 2, see figures 6-9. For simplicity, we use CBF, CPF, CBPF and CGAD to represent ${C}_{{I}}{({\rm{\Phi }}\left({\rho }^{\mathrm{BD}}\right))}_{{a}_{1}}$, where Φ is BF, PF, BPF and GAD, respectively. The surfaces show interesting shapes for parameter p and the coherence C. When both p and C are small, the surface is very similar for four channels, see figures 6-9(a). When p is small and C is large, the surface is two separate pieces of a tetrahedron with a gap in different directions for BF, PF and BPF channels, see figures 6-8(b), and four pieces of a tetrahedron, see figure 9(b). When p is large and C is small, the surface is two opposite surfaces for BF, PF and BPF channels, see figures 6-8(c), and is four pieces of surfaces, of which two pairs are opposite for GAD channels, see figure 9(c).

Figure 6.

New window|Download| PPT slide
Figure 6.Surfaces of constant CBF for bit flip channels with fixed p: (a) $p=0.05,{C}_{\mathrm{BF}}=0.05;$ (b) $p=0.05,{C}_{\mathrm{BF}}=0.4;$ (c) $p=0.6,{C}_{\mathrm{BF}}=0.05$.


Figure 7.

New window|Download| PPT slide
Figure 7.Surfaces of constant CPF for phase flip channels with fixed p: (a) $p=0.05,{C}_{\mathrm{PF}}=0.05;$ (b) $p=0.05,{C}_{\mathrm{PF}}=0.4;$ (c) p=0.6, CPF=0.05.


Figure 8.

New window|Download| PPT slide
Figure 8.Surfaces of constant CBPF for bit-phase flip channels with fixed p: (a) p=0.05, CBPF=0.05; (b) p=0.05, CBPF=0.4; (c) p=0.6, CBPF=0.05.


Figure 9.

New window|Download| PPT slide
Figure 9.Surfaces of constant CGAD for generalized amplitude damping channels with fixed p: (a) p=0.05, CGAD=0.05; (b) p=0.05, CGAD=0.4; (c) p=0.6, CGAD=0.05.


Setting c1=−0.2, c2=0.6, c3=0.6 and c1=−0.6, c2=0.2, c3=0.2, respectively, the dynamics of CI(ρBD) under BF, PF, BPF and GAD channels are shown in figure 10. The C-axis denotes CBF, CPF, CBPF and CGAD. Similar to the case of relative entropy of coherence in [62], we find that all the curves are decreasing functions of p, and CPF and CGAD approaches to zero as p approaches 1. Moreover, CBF decreases dramatically as p increases, see figure 10(a), while it decreases very slowly in case of figure 10(b).

Figure 10.

New window|Download| PPT slide
Figure 10.CBF, CPF, CBPF and CGAD as a function of p: (a) ${c}_{1}=-0.2,{c}_{2}=0.6,{c}_{3}=0.6;$ (b) c1=−0.6, c2=0.2, c3=0.2.


4. Conclusions and discussions

We have studied the geometry of skew information-based coherence of quantum states in MUBs by calculating the skew information-based coherence for two qubit states. We calculated the analytical expression for Bell-diagonal states and a special class of X states in a set of AMUBs. As direct consequences, explicit formulas for coherences of Werner states and isotropic states have also been given, which shows that the former is an decreasing function of the state parameter, while the latter is not. Based on these, the geometry of skew information-based coherence for these two qubit states in both computational basis and in MUBs have been depicted.

Moreover, we have displayed the level surfaces of skew information-based coherence for Bell-diagonal states under four typical local nondissipative quantum channels. It has been shown that similar trend occurs when the relative entropy of coherence is used, but the shape of the graphics turned out to be very different. Furthermore, by choosing two different sets of fixed values for c1, c2 and c3, we have depicted the skew information-based coherence under the four channels as a function of the parameter p. It shows the similar features as the relative entropy of coherence.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11701259, 11461045, 11675113), the China Scholarship Council (201806825038), the Key Project of Beijing Municipal Commission of Education (KZ201810028042), the Beijing Natural Science Foundation (Z190005), and the Academy for Multidisciplinary Studies, Capital Normal University. This work was completed while Zhaoqi Wu was visiting Max-Planck-Institute for Mathematics in the Sciences in Germany.


Reference By original order
By published year
By cited within times
By Impact factor

Baumgratz T Cramer M Plenio M B 2014 Phys. Rev. Lett. 113 140401
DOI:10.1103/PhysRevLett.113.140401 [Cited within: 3]

Yuan X Zhou H Cao Z Ma X 2015 Phys. Rev. A 92 022124
DOI:10.1103/PhysRevA.92.022124

Napoli C et al. 2016 Phys. Rev. Lett. 116 150502
DOI:10.1103/PhysRevLett.116.150502

Bu K et al. 2017 Phys. Rev. Lett. 119 150405
DOI:10.1103/PhysRevLett.119.150405

Xiong C Wu J 2018 J. Phys. A: Math. Theor. 51 414005
DOI:10.1088/1751-8121/aac979

Yu X-D Zhang D-J Xu G Tong D 2016 Phys. Rev. A 94 060302(R)
DOI:10.1103/PhysRevA.94.060302

Chen B Fei S-M 2018 Quantum Inf. Process. 17 107
DOI:10.1007/s11128-018-1879-9

Yu C-S 2017 Phys. Rev. A 95 042337
DOI:10.1103/PhysRevA.95.042337 [Cited within: 3]

Luo S Sun Y 2017 Phys. Rev. A 96 022130
DOI:10.1103/PhysRevA.96.022130

Luo S Sun Y 2017 Phys. Rev. A 96 022136
DOI:10.1103/PhysRevA.96.022130 [Cited within: 1]

Luo S Sun Y 2018 Phys. Rev. A 98 012113
DOI:10.1103/PhysRevA.98.012113

Bu K Anand N Singh U 2018 Phys. Rev. A 97 032342
DOI:10.1103/PhysRevA.97.032342

Xiong C Kumar A Wu J 2018 Phys. Rev. A 98 032324
DOI:10.1103/PhysRevA.98.032324

Xiong C et al. 2019 Phys. Rev. A 99 032305
DOI:10.1103/PhysRevA.99.032305

Zhu X-N Jin Z-X Fei S-M 2019 Quantum Inf. Process. 18 179
DOI:10.1007/s11128-019-2291-9

Liu Y Zhao Q Yuan X 2018 J. Phys. A: Math. Theor. 51 414018
DOI:10.1088/1751-8121/aabca2 [Cited within: 1]

Cheng S Hall M J W 2015 Phys. Rev. A 92 042101
DOI:10.1103/PhysRevA.92.042101 [Cited within: 1]

Singh U Zhang L Pati A K 2016 Phys. Rev. A 93 032125
DOI:10.1103/PhysRevA.93.032125

Zhang L 2017 J. Phys. A: Math. Theor. 50 155303
DOI:10.1088/1751-8121/aa6179

Zhang L Singh U Pati A K 2017 Ann. Phys. 377 125
DOI:10.1016/j.aop.2016.12.024

Luo S Sun Y 2019 Phys. Lett. A 383 2869
DOI:10.1016/j.physleta.2019.06.027

Zanardi P Styliaris G Venuti L C 2017 Phys. Rev. A 95 052306
DOI:10.1103/PhysRevA.95.052306

Zanardi P Styliaris G Venuti L C 2017 Phys. Rev. A 95 052307
DOI:10.1103/PhysRevA.95.052306

Styliaris G Venuti L C Zanardi P 2018 Phys. Rev. A 97 032304
DOI:10.1103/PhysRevA.97.032304

Zanardi P Venuti L C 2018 J. Math. Phys. 59 012203
DOI:10.1063/1.4997146

Zhang L Ma Z Chen Z Fei S-M 2018 Quantum Inf. Process. 17 186
DOI:10.1007/s11128-018-1928-4 [Cited within: 1]

Streltsov A et al. 2015 Phys. Rev. Lett. 115 020403
DOI:10.1103/PhysRevLett.115.020403 [Cited within: 1]

Chitambar E Hsieh M H 2016 Phys. Rev. Lett. 117 020402
DOI:10.1103/PhysRevLett.117.020402

Zhu H et al. 2017 Phys. Rev. A 96 032316
DOI:10.1103/PhysRevA.96.032316

Xi Y et al. 2019 Phys. Rev. A 100 022310
DOI:10.1103/PhysRevA.100.022310

Ma J et al. 2016 Phys. Rev. Lett. 116 160407
DOI:10.1103/PhysRevLett.116.160407

Sun Y Mao Y Luo S 2017 Europhys. Lett. 118 60007
DOI:10.1209/0295-5075/118/60007

Kim S Li L Kumar A Wu J 2018 Phys. Rev. A 98 022306
DOI:10.1103/PhysRevA.98.022306

Wu K-D et al. 2018 Phys. Rev. Lett. 121 050401
DOI:10.1103/PhysRevLett.121.050401 [Cited within: 1]

Winter A Yang D 2016 Phys. Rev. Lett. 116 120404
DOI:10.1103/PhysRevLett.116.120404 [Cited within: 1]

Chitambar E et al. 2016 Phys. Rev. Lett. 116 070402
DOI:10.1103/PhysRevLett.116.070402

Regula B Fang K Wang X Adesso G 2018 Phys. Rev. Lett. 121 010401
DOI:10.1103/PhysRevLett.121.010401

Fang K et al. 2018 Phys. Rev. Lett. 121 070404
DOI:10.1103/PhysRevLett.121.070404

Liu C L Zhou D L 2019 Phys. Rev. Lett. 123 070402
DOI:10.1103/PhysRevLett.123.070402

Lami L Regula B Adesso G 2019 Phys. Rev. Lett. 122 150402
DOI:10.1103/PhysRevLett.122.150402

Zhao M-J et al. 2019 Phys. Rev. A 100 012315
DOI:10.1103/PhysRevA.100.012315

Zhao Q et al. 2018 Phys. Rev. Lett. 120 070403
DOI:10.1103/PhysRevLett.120.070403 [Cited within: 1]

Lostaglio M Müller M P 2019 Phys. Rev. Lett. 123 020403
DOI:10.1103/PhysRevLett.123.020403 [Cited within: 1]

Marvian I Spekkens R W 2019 Phys. Rev. Lett. 123 020404
DOI:10.1103/PhysRevLett.123.020404 [Cited within: 1]

Zhao Q Liu Y Yuan X Chitambar E Winter A 2019 IEEE Trans. Inf. Theory 65 6441 6453
DOI:10.1109/TIT.2019.2911102 [Cited within: 1]

Simnacher T et al. 2019 Phys. Rev. A 99 062319
DOI:10.1103/PhysRevA.99.062319 [Cited within: 1]

Ma T Zhao M-J Fei S-M Yung M-H 2019 Phys. Rev. A 99 062303
DOI:10.1103/PhysRevA.99.062303 [Cited within: 1]

Ivanović I D 1981 J. Phys. A: Math. Gen. 14 3241
DOI:10.1088/0305-4470/14/12/019 [Cited within: 2]

Wotters W K Fields B D 1989 Ann. Phys. 191 363
DOI:10.1016/0003-4916(89)90322-9 [Cited within: 2]

Durt T Englert B-G Bengtsson I Zyczkowski K 2010 Int. J. Quantum Inf. 8 535
DOI:10.1142/S0219749910006502 [Cited within: 1]

Chen B Fei S-M 2013 Phys. Rev. A 88 034301
DOI:10.1103/PhysRevA.88.034301 [Cited within: 1]

Spengler C et al. 2012 Phys. Rev. A 86 022311
DOI:10.1103/PhysRevA.86.022311 [Cited within: 1]

Chruściński D Sarbicki G Wudarski F 2018 Phys. Rev. A 97 032318
DOI:10.1103/PhysRevA.97.032318

Carmeli C Cassinelli G Toigo A 2019 Found. Phys. 49 532
DOI:10.1007/s10701-019-00274-y

Designolle S Skrzypczyk P Fröwis F Brunner N 2019 Phys. Rev. Lett. 122 050402
DOI:10.1103/PhysRevLett.122.050402

Rastegin A E 2018 Front. Phys. 13 130304
DOI:10.1007/s11467-017-0713-7 [Cited within: 1]

Lang M D Caves C M 2010 Phys. Rev. Lett. 105 150501
DOI:10.1103/PhysRevLett.105.150501 [Cited within: 1]

Li B Wang Z-X Fei S-M 2011 Phys. Rev. A 83 022321
DOI:10.1103/PhysRevA.83.022321 [Cited within: 1]

Wang Y-K Ma T Li B Wang Z-X 2013 Commun. Theor. Phys. 59 540
DOI:10.1088/0253-6102/59/5/04 [Cited within: 1]

Wang Y-K et al. 2014 Quantum Inf. Process. 13 283
DOI:10.1007/s11128-013-0649-y [Cited within: 1]

Wang Y-K Ge L-Z Tao Y-H 2019 Quantum Inf. Process. 18 164
DOI:10.1007/s11128-019-2283-9 [Cited within: 4]

Wang Y-K et al. 2019 Int. J. Theor. Phys. 58 2372 2383
DOI:10.1007/s10773-019-04129-0 [Cited within: 2]

Wang Y-K Fei S-M Wang Z-X 2019 Commun. Theor. Phys. 71 555 562
DOI:10.1088/0253-6102/71/5/555 [Cited within: 1]

Nielsen M A Chuang I L 2000 Quantum Computation and Quantum Information Cambridge Cambridge University Press
[Cited within: 1]

Wigner E P Yanase M M 1963 Proc. Natl Acad. Sci. USA 49 910 918
DOI:10.1073/pnas.49.6.910 [Cited within: 1]

Girolami D 2014 Phys. Rev. Lett. 113 170401
DOI:10.1103/PhysRevLett.113.170401 [Cited within: 2]

Bartlett S D Rudolph T Spekkens R W 2007 Rev. Mod. Phys. 79 555
DOI:10.1103/RevModPhys.79.555 [Cited within: 2]

Gour G Marvian M Spekkens R W 2009 Phys. Rev. A 80 012307
DOI:10.1103/PhysRevA.80.012307 [Cited within: 2]

Du S Bai Z 2015 Ann. Phys. 359 136
DOI:10.1016/j.aop.2015.04.023 [Cited within: 1]

Marvian I Spekkens R W Zanardi P 2016 Phys. Rev. A 93 052331
DOI:10.1103/PhysRevA.93.052331 [Cited within: 1]

Montealegre J D Paula F M Saguia A Sarandy M 2013 Phys. Rev. A 87 042115
DOI:10.1103/PhysRevA.87.042115 [Cited within: 2]

相关话题/Geometry informationbased quantum