删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Interaction phenomena between lump and solitary wave of a generalized (3 【-逻*辑*与-】plus; 1)-dimension

本站小编 Free考研考试/2022-01-02

Jian-Guo Liu,1,4, Wen-Hui Zhu,2,4, Yan He,1,4, Ya-Kui Wu,3,41College of Computer, Jiangxi University of Traditional Chinese Medicine, Jiangxi 330004, China
2Institute of artificial intelligence, Nanchang Institute of Science and Technology, Jiangxi 330108, China
3School of science, Jiujiang University, Jiangxi 332005, China

First author contact: 4Authors to whom any correspondence should be addressed.
Received:2019-12-18Revised:2020-02-9Accepted:2020-02-10Online:2020-07-15
Fund supported:National Natural Science Foundation of China.81960715
Science and Technology Project of Education Department of Jiangxi Province.GJJ151079


Abstract
In this paper, a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation is studied in liquid with gas bubbles. Based on the Hirota's bilinear form and symbolic computation, lump and interaction solutions between lump and solitary wave are obtained, which include a periodic-shape lump solution, a parabolic-shape lump solution, a cubic-shape lump solution, interaction solutions between lump and one solitary wave, and between lump and two solitary waves. The spatial structures called the bright lump wave and the bright-dark lump wave are discussed. Interaction behaviors of two bright-dark lump waves and a periodic-shape bright lump wave are also presented. Their interactions are shown in some 3D plots.
Keywords: solitary wave;lump wave;variable-coefficient nonlinear-wave equation;interaction behaviors


PDF (1307KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jian-Guo Liu, Wen-Hui Zhu, Yan He, Ya-Kui Wu. Interaction phenomena between lump and solitary wave of a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles*. Communications in Theoretical Physics, 2020, 72(8): 085002- doi:10.1088/1572-9494/ab7709

1. Introduction

In some branches of science and engineering such as fluid mechanics, quantum mechanics, particle physics, mass transfer, plasma physics, nano liquids and biological mathematics [15], nonlinear partial differential equations (NPDES) are used to describe many nonlinear phenomena and wave propagation characteristics. As the lump solutions of the NPDES are the special, powerful destructive ocean wave in the real world, it is important to search for the lump solutions of the NPDES, especially the constant-coefficient NPDES that have attracted the attention of many scholars [610].

Recently, a generalized (3 + 1)-dimensional nonlinear-wave equation has been presented as [11]$ \begin{eqnarray}{\left[4{u}_{t}+4{{uu}}_{x}+{u}_{{xxx}}-4{u}_{x}\right]}_{x}+3({u}_{{yy}}+{u}_{{zz}})=0,\end{eqnarray}$which describes a liquid with gas bubbles in the three-dimensional case.

However, the variable-coefficient NPDES provide us with more real phenomena in the inhomogeneities of media and non-uniformities of boundaries than corresponding constant-coefficient counterparts in some physical cases [1215]. In this paper, a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation is investigated [16, 17]$ \begin{eqnarray}\begin{array}{l}\alpha (t){u}_{x}^{2}+\alpha (t){{uu}}_{{xx}}+\beta (t){u}_{{xxxx}}+\gamma (t){u}_{{xx}}\\ \quad +\,\delta (t){u}_{{yy}}+\varrho (t){u}_{{zz}}+{u}_{{xt}}=0,\end{array}\end{eqnarray}$where u=u(x, y, z, t) is the wave-amplitude function. The bilinear form, Bäcklund transformation, Lax pair, infinitely-many conservation laws, multi-soliton solutions, traveling-wave solutions and one-periodic wave solutions are presented by virtue of the binary Bell polynomials, the Hirota method, the polynomial expansion method and the Hirota-Riemann method [18]. However, lump and interaction solutions between the lump and solitary wave of equation (2) have not been obtained yet, which will make the main work of our paper.

This paper will be organized as follows: section 2 obtains the lump solutions of equation (2) with the aid of the Hirota's bilinear form [1924] and demonstrates their physical structures by some 3D plots; section 3 presents the interaction solutions between lump and one solitary wave; section 4 derives the interaction solutions between lump and two solitary waves; and section 5 gives the conclusion.

2. Lump solutions of equation (2)

Setting $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$ and α(t)=β(t), and using the multi-dimensional Bell polynomials, the bilinear form of equation (2) can be introduced as (see [18])$ \begin{eqnarray}\left[{{\rm{D}}}_{x}{{\rm{D}}}_{t}+\beta (t){{\rm{D}}}_{x}^{4}+\gamma (t){{\rm{D}}}_{x}^{2}+\delta (t){{\rm{D}}}_{y}^{2}+\varrho (t){{\rm{D}}}_{z}^{2}\right]\xi \cdot \xi =0.\end{eqnarray}$

This is equivalent to$ \begin{eqnarray}\begin{array}{l}\xi [\beta (t){\xi }_{{xxxx}}+\gamma (t){\xi }_{{xx}}+\delta (t){\xi }_{{yy}}+\varrho (t){\xi }_{{zz}}+{\xi }_{{xt}}]\\ \qquad +\ 3\beta (t){\xi }_{{xx}}^{2}-4\beta (t){\xi }_{x}{\xi }_{{xxx}}-\gamma (t){\xi }_{x}^{2}\\ \qquad -\ \delta (t){\xi }_{y}^{2}-\varrho (t){\xi }_{z}^{2}-{\xi }_{t}{\xi }_{x}=0.\end{array}\end{eqnarray}$In order to seek the lump solutions of equation (2), we suppose$ \begin{eqnarray}\begin{array}{rcl}\zeta & = & x{\alpha }_{1}+y{\alpha }_{2}+z{\alpha }_{3}+{\alpha }_{4}(t),\\ \varsigma & = & x{\alpha }_{5}+y{\alpha }_{6}+z{\alpha }_{7}+{\alpha }_{8}(t),\\ \xi & = & {\zeta }^{2}+{\varsigma }^{2}+{\alpha }_{9}(t),\end{array}\end{eqnarray}$where α1, α2, α3, α5, α6 and α7 are unknown constants. α4(t), α8(t) and α9(t) are undefined real functions. Substituting equation (5) into equation (4) through Mathematica software, we get$ \begin{eqnarray}\begin{array}{rcl}(I):{\alpha }_{8}(t) & = & {\eta }_{1}\,-\,\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\right.\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t,\\ {\alpha }_{9}(t) & = & {\eta }_{2}+\int \left[2[\right.{\alpha }_{1}\left({\alpha }_{1}\gamma (t)+{\alpha }_{4}^{{\prime} }(t\right)\,+\,{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)][{\alpha }_{1}[{\eta }_{3}\\ & - & \,\left.\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t\right]-{\alpha }_{5}\ast \ {\alpha }_{4}(t)]]/({\alpha }_{1}{\alpha }_{5})\,{\rm{d}}t,\alpha (t)=\beta (t)=0,\\ {\alpha }_{6} & = & \displaystyle \frac{{\alpha }_{2}{\alpha }_{5}}{{\alpha }_{1}},{\alpha }_{7}=\displaystyle \frac{{\alpha }_{3}{\alpha }_{5}}{{\alpha }_{1}},\end{array}\end{eqnarray}$with ${\alpha }_{1}\ne 0$, ${\alpha }_{5}\ne 0$. Substituting equations (5) and (6) into the transformation $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$, we have the following lump solution of equation (2)$ \begin{eqnarray}\begin{array}{rcl}{u}^{(I)} & = & \left[12\left[2\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\eta }_{2}+\int \left[2\left[{\alpha }_{1}\left[{\alpha }_{1}\gamma (t)+{\alpha }_{4}^{{\prime} }(t)\right]\right.\right.\right.\right.\right.\left.+\,{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]\left[{\alpha }_{1}\left[{\eta }_{1}\right.\right.\\ & - & \,\left.\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t\right]\left.\left.-\,{\alpha }_{5}{\alpha }_{4}(t)\right]\right]/({\alpha }_{1}{\alpha }_{5})\,{\rm{d}}t\\ & + & \,\left[{\eta }_{1}-\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t\right.\\ & + & \left.\left.\,\displaystyle \frac{{\alpha }_{5}\left({\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z\right)}{{\alpha }_{1}}\right]{}^{2}+\left[{\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z\right]{}^{2}\right]-4\left[{\alpha }_{5}\left[{\eta }_{1}\right.\right.\\ & - & \left.\,\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t+{\alpha }_{5}x\right]\left.\left.\left.+\,{\alpha }_{1}\left({\alpha }_{4}(t)+{\alpha }_{2}y+{\alpha }_{3}z\right)+{\alpha }_{1}^{2}x+\displaystyle \frac{{\alpha }_{5}^{2}\left({\alpha }_{2}y+{\alpha }_{3}z\right)}{{\alpha }_{1}}\right]{}^{2}\right]\right]/\left[\left[{\eta }_{2}\right.\right.\\ & + & \,\int \left[2\left[{\alpha }_{1}\left({\alpha }_{1}\gamma (t)+{\alpha }_{4}^{{\prime} }(t\right)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]\left[{\alpha }_{1}\left[{\eta }_{1}\right.\right.\right.\left.-\,\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t\right]\\ & - & \left.\left.\,{\alpha }_{5}{\alpha }_{4}(t)\right]\right]/({\alpha }_{1}{\alpha }_{5})\,{\rm{d}}t\,+\,\left[{\eta }_{1}-\int \displaystyle \frac{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{1}^{2}\gamma (t)+{\alpha }_{2}^{2}\delta (t)+{\alpha }_{3}^{2}\varrho (t)\right]+{\alpha }_{1}^{3}{\alpha }_{4}^{{\prime} }(t)}{{\alpha }_{1}^{2}{\alpha }_{5}}\,{\rm{d}}t\right.\\ & + & \left.\left.\left.\,\displaystyle \frac{{\alpha }_{5}\left({\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z\right)}{{\alpha }_{1}}\right]{}^{2}+\left({\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z\right){}^{2}\right]{}^{2}\right],\end{array}\end{eqnarray}$where α4(t) is arbitrary function, η1 and η2 are integral constants.

The physical structures for $({u}^{(I)})$ are described in figure 1 by the 3D plots. Figure 1 shows the propagation of solution $({u}^{(I)})$ when γ(t), δ(t), ϱ(t) and α4(t) select different functions. When $\gamma (t)=\delta (t)=\varrho (t)=\cos t$ and ${\alpha }_{4}(t)=\sin t$, a periodic-shape rational solution is listed in figure 1(a). When γ (t)=δ(t)=ϱ(t)=t and ${\alpha }_{4}(t)\,=\sin \ t$, a parabolic-shape rational solution is presented in figure 1(b). When $\gamma (t)=\cosh t,\varrho (t)=\exp \,t$ and ${\alpha }_{4}(t)\,=\delta (t)=t$, a cubic-shape rational solution is shown in figure 1(c).$ \begin{eqnarray}\begin{array}{rcl}({II}):{\alpha }_{8}(t) & = & {\eta }_{3}+\int {\alpha }_{5}\left[-\displaystyle \frac{3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)}{{\alpha }_{9}}\right.\\ & & \left.-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}^{2}}-\gamma (t)\right]\,{\rm{d}}t,\\ {\alpha }_{9}(t) & = & {\alpha }_{9},{\alpha }_{6}=-\displaystyle \frac{{\alpha }_{1}{\alpha }_{2}}{{\alpha }_{5}},{\alpha }_{7}=\displaystyle \frac{{\alpha }_{3}{\alpha }_{5}}{{\alpha }_{1}},\\ \delta (t) & = & -\displaystyle \frac{3{\alpha }_{5}^{2}\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)}{{\alpha }_{2}^{2}{\alpha }_{9}},\\ {\alpha }_{4}(t) & = & {\eta }_{4}-\int \left[\displaystyle \frac{{\alpha }_{1}[3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)+{\alpha }_{9}\gamma (t)]}{{\alpha }_{9}}\right.\\ & & \left.+\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}}\right]\,{\rm{d}}t,\end{array}\end{eqnarray}$with ${\alpha }_{1}\ne 0$, ${\alpha }_{5}\ne 0$, ${\alpha }_{9}\ne 0$ and ${\alpha }_{2}{\alpha }_{9}\ne 0$. Substituting equations (5) and (8) into the transformation $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$, we have the following lump solution of equation (2)$ \begin{eqnarray}\begin{array}{rcl}\,{u}^{({II})} & = & \left[12\left[2\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\left[{\alpha }_{9}+\left[\int {\alpha }_{5}\left[-\displaystyle \frac{3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)}{{\alpha }_{9}}\right.\right.\right.\right.\right.\\ & & \left.-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}^{2}}-\gamma (t)\right]\,{\rm{d}}t+\left.{\eta }_{3}+{\alpha }_{5}x-\displaystyle \frac{{\alpha }_{1}{\alpha }_{2}y}{{\alpha }_{5}}+\displaystyle \frac{{\alpha }_{3}{\alpha }_{5}z}{{\alpha }_{1}}\right]{}^{2}\\ & & +\left[\int \left[-\displaystyle \frac{{\alpha }_{1}[3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)+{\alpha }_{9}\gamma (t)]}{{\alpha }_{9}}\right.\right.\\ & & \left.-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}}\right]\,{\rm{d}}t+{\eta }_{4}+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]{}^{2}]\\ & & -\left[4\left[{\alpha }_{1}^{2}\left[\int \left[-\displaystyle \frac{{\alpha }_{1}\left[3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)+{\alpha }_{9}\gamma (t)\right]}{{\alpha }_{9}}\right.\right.\right.\right.\\ & & \left.\left.-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}}\right]\,{\rm{d}}t\right]+{\alpha }_{5}{\alpha }_{1}\left[{\eta }_{3}\right.\\ & & +\int {\alpha }_{5}\left[-\displaystyle \frac{3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)}{{\alpha }_{9}}-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}^{2}}-\gamma (t)\right]\,{\rm{d}}t\\ & & \left.+{\alpha }_{5}x\right]+{\alpha }_{1}^{3}x\\ & & +{\alpha }_{1}^{2}\left({\eta }_{4}+{\alpha }_{3}z\right)+{\alpha }_{3}{\alpha }_{5}^{2}z]{}^{2}]/({\alpha }_{1}^{2})]]\\ & & \,/\left[\left[{\alpha }_{9}+\left[{\eta }_{3}+{\alpha }_{5}x-\displaystyle \frac{{\alpha }_{1}{\alpha }_{2}y}{{\alpha }_{5}}+\displaystyle \frac{{\alpha }_{3}{\alpha }_{5}z}{{\alpha }_{1}}\right.\right.\right.\\ & & \left.+\int {\alpha }_{5}\left[-\displaystyle \frac{3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)}{{\alpha }_{9}}-\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}^{2}}-\gamma (t)\right]\,{\rm{d}}t\right]{}^{2}\\ & & +[{\eta }_{4}+{\alpha }_{1}x+{\alpha }_{2}y\\ & & -\int \left[\displaystyle \frac{{\alpha }_{1}[3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)\beta (t)+{\alpha }_{9}\gamma (t)]}{{\alpha }_{9}}+\displaystyle \frac{{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{1}}\right]\,{\rm{d}}t\\ & & \left.\left.\left.+{\alpha }_{3}z\right]{}^{2}\right]{}^{2}\right],\end{array}\end{eqnarray}$where η3 and η4 are integral constants.

Figure 1.

New window|Download| PPT slide
Figure 1.Lump solution u(I) with α1=1, α2=2, α3=−1, α5=−3, x=−5, η1=η2=y=0, when $\gamma (t)=\delta (t)=\varrho (t)\,=\cos t,{\alpha }_{4}(t)=\sin t$ in (a), $\gamma (t)=\delta (t)=\varrho (t)=t,{\alpha }_{4}(t)=\sin t$ in (b) and $\gamma (t)=\cosh t$, $\varrho (t)=\exp \,t$ and α4(t)=δ(t)=t in (c).


Then, the physical structures for $({u}^{({II})})$ are shown in figures 25 with some 3D plots. When $\gamma (t)\,=-1,\varrho (t)=\beta (t)=1$, the spatial structure called the bright lump wave is seen in figure 2 at $t=-1;0;1$, the spatial structure called the bright-dark lump wave is shown in figure 3 at x=−30; 0; 30. When γ (t)=−t, ϱ(t)=β(t)=t, interaction behaviors of two bright-dark lump waves are presented in figure 4 at $x=-8;0;8$. As the value of x changes, the two bright-dark lump waves move towards each other, and finally merge together. When $\gamma (t)=\varrho (t)\,=\beta (t)=\cos t$, a periodic-shape bright lump wave is found in figure 5 at x=−3; 0; 3.$ \begin{eqnarray}\begin{array}{l}({III}):\varrho (t)=-\displaystyle \frac{3\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right){}^{3}\beta (t)+\left({\alpha }_{2}{\alpha }_{5}-{\alpha }_{1}{\alpha }_{6}\right){}^{2}{\alpha }_{9}\delta (t)}{\left({\alpha }_{3}{\alpha }_{5}-{\alpha }_{1}{\alpha }_{7}\right){}^{2}{\alpha }_{9}},{\alpha }_{9}(t)={\alpha }_{9},\\ {\alpha }_{4}(t)={\eta }_{5}-\int [{\alpha }_{1}[{\alpha }_{5}^{2}\gamma (t)+\left({\alpha }_{2}^{2}-{\alpha }_{6}^{2}\right)\delta (t)+\left({\alpha }_{3}^{2}-{\alpha }_{7}^{2}\right)\varrho (t)]\\ \,+\ {\alpha }_{1}^{3}\gamma (t)+2{\alpha }_{5}[{\alpha }_{2}{\alpha }_{6}\delta (t)+{\alpha }_{3}{\alpha }_{7}\varrho (t)]]/({\alpha }_{1}^{2}+{\alpha }_{5}^{2})\,{\rm{d}}t,\\ {\alpha }_{8}(t)={\eta }_{6}-\int [{\alpha }_{5}[{\alpha }_{5}^{2}\gamma (t)+\left({\alpha }_{6}^{2}-{\alpha }_{2}^{2}\right)\delta (t)+\left({\alpha }_{7}^{2}-{\alpha }_{3}^{2}\right)\varrho (t)]\\ \,+{\alpha }_{5}{\alpha }_{1}^{2}\gamma (t)+2{\alpha }_{1}[{\alpha }_{2}{\alpha }_{6}\delta (t)+{\alpha }_{3}{\alpha }_{7}\varrho (t)]]/({\alpha }_{1}^{2}+{\alpha }_{5}^{2})\,{\rm{d}}t\end{array}\end{eqnarray}$with $\left({\alpha }_{3}{\alpha }_{5}-{\alpha }_{1}{\alpha }_{7}\right){}^{2}{\alpha }_{9}\ne 0$, ${\alpha }_{1}^{2}+{\alpha }_{5}^{2}\ne 0$, ${\eta }_{5}$ and η6 are integral constants. Substituting equations (5) and (10) into the transformation $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$, we derive another lump solution of equation (2)$ \begin{eqnarray}\begin{array}{rcl}{u}^{({III})} & = & [12[2\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)[{\alpha }_{9}+[{\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]{}^{2}\\ & & +[{\alpha }_{8}(t)+{\alpha }_{5}x+{\alpha }_{6}y+{\alpha }_{7}z]{}^{2}]\\ & & -[2{\alpha }_{1}[{\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]\\ & & +2{\alpha }_{5}[{\alpha }_{8}(t)+{\alpha }_{5}x\\ & & +{\alpha }_{6}y+{\alpha }_{7}z]]{}^{2}]]/[[{\alpha }_{9}+[{\alpha }_{4}(t)\\ & & +{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]{}^{2}\\ & & +[{\alpha }_{8}(t)+{\alpha }_{5}x+{\alpha }_{6}y+{\alpha }_{7}z]{}^{2}]{}^{2}],\end{array}\end{eqnarray}$where ${\alpha }_{4}(t)$, ${\alpha }_{4}(t)$ and ϱ(t) satisfy constraint (10).

Figure 2.

New window|Download| PPT slide
Figure 2.Lump solution (9) with α1=1, α2=2, α3=−1, α5=α9=−3, η3=η4=0, z=−10, when t=−1 in (a), t=0 in (b) and t=1 in (c).


Figure 3.

New window|Download| PPT slide
Figure 3.Lump solution (9) with ${\alpha }_{1}=-1$, α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−30 in (a), x=0 in (b) and x=30 in (c).


Figure 4.

New window|Download| PPT slide
Figure 4.Lump solution (9) with α1=−1, α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−8 in (a), x=0 in (b) and x=8 in (c).


Figure 5.

New window|Download| PPT slide
Figure 5.Lump solution (9) with α1=−1, α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−3 in (a), x=0 in (b) and x=3 in (c).


The physical structures for $({u}^{({III})})$ are shown in figures 68 with some 3d plots. When $\gamma (t)=-1,\delta (t)=\beta (t)=1$, the spatial structure called the bright lump wave is seen in figure 6 at x=−10; 0; 10. When $\gamma (t)=-t,\delta (t)\,=\beta (t)=t$, interaction behaviors of two bright lump waves are presented in figure 7 at y=−3; 0; 3. As the value of y changes, the two bright lump waves move towards each other, and finally merge together. When $\gamma (t)=\delta (t)=\beta (t)\,=\cos t$, a periodic-shape bright lump wave is found in figure 8 at $z=-10;0;10$ and x=0.

Figure 6.

New window|Download| PPT slide
Figure 6.Lump solution (11) with α1=α2=α3=α5=−1, α6=α7=η5=3, η6=−2, α9=2, z=0, when x=−10 in (a), x=0 in (b) and x=10 in (c).


Figure 7.

New window|Download| PPT slide
Figure 7.Lump solution (11) with α1=α3=α5=−1, α2=1, α6=−3, α7=3, η6=η5=z=0, α9=2, z=0, when y=−3 in (a), y=0 in (b) and y=3 in (c).


Figure 8.

New window|Download| PPT slide
Figure 8.Lump solution (11) with α1=α2=α3=α5=−1, α6=α7=η5=3, η6=−2, α9=2, x=0, when z=−10 in (a), z=0 in (b) and z=10 in (c).


3. Interaction solutions between lump and one solitary wave

In order to find the interaction solutions between lump and one solitary wave, we add an exponential function in equation (5) as follows$ \begin{eqnarray}\begin{array}{rcl}\zeta & = & x{\alpha }_{1}+y{\alpha }_{2}+z{\alpha }_{3}+{\alpha }_{4}(t),\\ \varsigma & = & x{\alpha }_{5}+y{\alpha }_{6}+z{\alpha }_{7}+{\alpha }_{8}(t),\\ \xi & = & {\zeta }^{2}+{\varsigma }^{2}+{\alpha }_{9}(t)+{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)\\ & & +\ {\alpha }_{10}x+{\alpha }_{11}y+{\alpha }_{12}z],\end{array}\end{eqnarray}$where α10, α11 and α12 are unknown constants. α13(t) and α14(t) are unknown real functions. Substituting equation (12) into equation (4) through Mathematica software, we have$ \begin{eqnarray}\begin{array}{rcl}{\alpha }_{6} & = & -\displaystyle \frac{{\alpha }_{1}{\alpha }_{2}}{{\alpha }_{5}},{\alpha }_{7}=-\displaystyle \frac{{\alpha }_{1}{\alpha }_{3}}{{\alpha }_{5}},\\ {\alpha }_{11} & = & {\alpha }_{12}=0,{\alpha }_{9}(t)=\displaystyle \frac{{\alpha }_{1}^{2}+{\alpha }_{5}^{2}}{{\alpha }_{10}^{2}},\\ \delta (t) & = & -\displaystyle \frac{3{\alpha }_{5}^{2}{\alpha }_{10}^{2}\beta (t)+{\alpha }_{3}^{2}\varrho (t)}{{\alpha }_{2}^{2}},\\ {\alpha }_{8}(t) & = & {\eta }_{8}-{\alpha }_{5}\int [3{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t,\\ {\alpha }_{4}(t) & = & {\eta }_{9}-{\alpha }_{1}\int [3{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t,\\ {\alpha }_{13}(t) & = & {\eta }_{10}-{\alpha }_{10}\int [{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t-\mathrm{ln}{\alpha }_{14}(t),\end{array}\end{eqnarray}$with ${\alpha }_{2}\ne 0$, ${\alpha }_{5}\ne 0$ and ${\alpha }_{10}\ne 0$. Substituting equations (5) and (13) into the transformation $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$, we get$ \begin{eqnarray}\begin{array}{rcl}{u}^{({IV})} & = & \left[12\left[\left[2\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right)+{\alpha }_{10}^{2}\exp \left[{\eta }_{10}+{\alpha }_{10}\left[x-\int \left[{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\right]\right.\right.\\ & * & \left[\displaystyle \frac{{\alpha }_{1}^{2}+{\alpha }_{5}^{2}}{{\alpha }_{10}^{2}}+\exp \left[{\eta }_{10}+{\alpha }_{10}\left[x-\int \left[{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\right.\\ & & +\displaystyle \frac{\left[{\alpha }_{1}\left({\alpha }_{2}y+{\alpha }_{3}z\right)-{\alpha }_{5}\left[{\eta }_{8}+{\alpha }_{5}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\right]{}^{2}}{{\alpha }_{5}^{2}}\\ & & \left.+\left[{\eta }_{9}+{\alpha }_{1}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]+{\alpha }_{2}y+{\alpha }_{3}z\right]{}^{2}\right]\\ & & -\left[2{\alpha }_{1}{\eta }_{9}+{\alpha }_{10}\exp \left[{\eta }_{10}+{\alpha }_{10}\left[x-\int \left[{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\right.\\ & & +2{\alpha }_{5}\left[{\eta }_{8}+{\alpha }_{5}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\\ & & \left.\left.\left.+2{\alpha }_{1}^{2}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]{}^{2}\right]\right]/\left[\left[\displaystyle \frac{{\alpha }_{1}^{2}+{\alpha }_{5}^{2}}{{\alpha }_{10}^{2}}\right.\right.\\ & & +\exp \left[{\eta }_{10}+{\alpha }_{10}\left[x-\int \left[{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]+\left[\left[{\alpha }_{1}\left({\alpha }_{2}y+{\alpha }_{3}z\right)\right.\right.\\ & & -\left.\left.{\alpha }_{5}\left[{\eta }_{8}+{\alpha }_{5}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]\right]\right]{}^{2}\right]/{\alpha }_{5}^{2}\\ & & \left.\left.+\left[{\eta }_{9}+{\alpha }_{1}\left[x-\int \left[3{\alpha }_{10}^{2}\beta (t)+\gamma (t)\right]\,{\rm{d}}t\right]+{\alpha }_{2}y+{\alpha }_{3}z\right]{}^{2}\right]{}^{2}\right],\end{array}\end{eqnarray}$where η8, η9 and η10 are integral constants. Interaction phenomena between lump and one solitary wave in equation (14) is shown in figures 9 and 10. Obviously, we can see a solitary wave and a lump wave in figure 9(a). In figure 9(b), the solitary and lump wave are slowly approaching at t=0. In figure 9(c), the solitary and lump waves merge together to propagate forward at t=1. Figure 10 displays the effect of variable coefficient γ(t) on the interaction phenomena between lump and one solitary wave.

Figure 9.

New window|Download| PPT slide
Figure 9.Interaction solution (14) with α1=η8=η9=η10=β(t)=1, α3=γ(t)=−1, α2=α10=2, α5=−3, z=0, when t=−1 in (a), t=0 in (b) and t=1 in (c).


Figure 10.

New window|Download| PPT slide
Figure 10.Interaction solution (14) with α1=η8=η9=η10=α10=β(t)=1, α3=α5=−1, α2=2, y=z=0, when γ(t)=1 in (a), γ(t)=t in (b) and $\gamma (t)=\cos t$ in (c).


4. Interaction solutions between lump and two solitary waves

In order to derive the interaction solutions between lump and two solitary waves, we add two exponential functions in equation (5) as follows$ \begin{eqnarray}\begin{array}{rcl}\zeta & = & x{\alpha }_{1}+y{\alpha }_{2}+z{\alpha }_{3}+{\alpha }_{4}(t),\\ \varsigma & = & x{\alpha }_{5}+y{\alpha }_{6}+z{\alpha }_{7}+{\alpha }_{8}(t),\\ \xi & = & {\zeta }^{2}+{\varsigma }^{2}+{\alpha }_{9}(t)+{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)\\ & & +\ {\alpha }_{10}x+{\alpha }_{11}y+{\alpha }_{12}z]\\ & & +{\alpha }_{15}(t)\exp [-{\alpha }_{13}(t)-{\alpha }_{10}x-{\alpha }_{11}y-{\alpha }_{12}z],\end{array}\end{eqnarray}$where α15(t) are unknown real functions. Substituting equation (15) into equation (4) through Mathematica software, we obtain$ \begin{eqnarray}\begin{array}{rcl}{\alpha }_{6} & = & -\displaystyle \frac{{\alpha }_{1}{\alpha }_{2}}{{\alpha }_{5}},{\alpha }_{7}=-\displaystyle \frac{{\alpha }_{1}{\alpha }_{3}}{{\alpha }_{5}},\\ {\alpha }_{9}(t) & = & \displaystyle \frac{{\alpha }_{10}^{4}{\eta }_{12}+{\alpha }_{1}^{4}+2{\alpha }_{5}^{2}{\alpha }_{1}^{2}+{\alpha }_{5}^{4}}{\left({\alpha }_{1}^{2}+{\alpha }_{5}^{2}\right){\alpha }_{10}^{2}},\\ \varrho (t) & = & \displaystyle \frac{-{\alpha }_{2}^{2}\delta (t)-3{\alpha }_{5}^{2}{\alpha }_{10}^{2}\beta (t)}{{\alpha }_{3}^{2}},\\ {\alpha }_{8}(t) & = & {\eta }_{13}-{\alpha }_{5}\int [3{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t,\\ {\alpha }_{4}(t) & = & {\eta }_{14}-{\alpha }_{1}\int [3{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t,{\alpha }_{11}={\alpha }_{12}=0,\\ {\alpha }_{13}(t) & = & {\eta }_{15}-{\alpha }_{10}\int [{\alpha }_{10}^{2}\beta (t)+\gamma (t)]\,{\rm{d}}t\\ & & -\mathrm{ln}{\alpha }_{14}(t),{\alpha }_{15}(t)=\displaystyle \frac{{\eta }_{12}}{{\alpha }_{14}(t)},\end{array}\end{eqnarray}$with ${\alpha }_{3}\ne 0$, ${\alpha }_{5}\ne 0$, ${\alpha }_{14}(t)\ne 0$, ${\alpha }_{1}^{2}+{\alpha }_{5}^{2}\ne 0$ and ${\alpha }_{10}\ne 0$. Substituting equations (5) and (16) into the transformation $u=12\,{[\mathrm{ln}\xi (x,y,z,t)]}_{{xx}}$, we get$ \begin{eqnarray*}\begin{array}{rcl}{u}^{(V)} & = & 12[[2{\alpha }_{1}^{2}+2{\alpha }_{5}^{2}+{\alpha }_{10}^{2}{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)+{\alpha }_{10}x]\\ & & +{\alpha }_{10}^{2}{\alpha }_{15}(t)\exp [-{\alpha }_{10}x\\ & & -{\alpha }_{13}(t)]]/[{\alpha }_{9}(t)+{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)+{\alpha }_{10}x]\\ & & +{\alpha }_{15}(t)\exp [-{\alpha }_{10}x\end{array}\end{eqnarray*}$$ \begin{eqnarray}\begin{array}{l}-{\alpha }_{13}(t)]+[{\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]{}^{2}\\ +\left({\alpha }_{8}(t)+{\alpha }_{5}x+{\alpha }_{6}y+{\alpha }_{7}z\right){}^{2}]\\ -[[{\alpha }_{10}{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)+{\alpha }_{10}x]\\ -{\alpha }_{10}{\alpha }_{15}(t)\exp [-{\alpha }_{10}x-{\alpha }_{13}(t)]+2{\alpha }_{1}\\ \ast \ [{\alpha }_{4}(t)+{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]\\ +2{\alpha }_{5}\left({\alpha }_{8}(t)+{\alpha }_{5}x+{\alpha }_{6}y+{\alpha }_{7}z\right)]{}^{2}]/[[{\alpha }_{9}(t)\\ +{\alpha }_{14}(t)\exp [{\alpha }_{13}(t)+{\alpha }_{10}x]\\ +{\alpha }_{15}(t)\exp [-{\alpha }_{10}x-{\alpha }_{13}(t)]+[{\alpha }_{4}(t)\\ +{\alpha }_{1}x+{\alpha }_{2}y+{\alpha }_{3}z]{}^{2}\\ +[{\alpha }_{8}(t)+{\alpha }_{5}x+{\alpha }_{6}y+{\alpha }_{7}z]{}^{2}]{}^{2}]],\end{array}\end{eqnarray}$where η12, η13, η14 and η15 are integral constants. Interaction phenomena between lump and two solitary waves in equation (16) is shown in figure 11. Two solitary waves can be found in figure 11(a). A lump wave appears in one of two solitary waves in figure 11(b). In figures 11(c) and 11(d), the lump wave slowly shifts to another solitary wave, until it vanishes in figure 11(e).

Figure 11.

New window|Download| PPT slide
Figure 11.Interaction solution (16) with ${\alpha }_{3}=\gamma (t)=-1$, α2=α10=2, α5=−3, α1=η12=η13=η14=η15=β(t)=1, z=0, when t=−1 in (a), t=−0.3 in (b), t=0 in (c), t=0.3 in (d), t=1 in (e).


5. Conclusion

In this paper, based on the Hirota's bilinear form and Mathematica software [2535], the lump and interaction solutions between lump and solitary wave of a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles are studied. Their physical structures are described in some 3D plots. A periodic-shape rational solution is listed in figure 1(a). A parabolic-shape rational solution is presented in figure 1(b). A cubic-shape rational solution is shown in figure 1(c). In lump solutions (u(II)), the spatial structure called the bright lump wave is seen in figure 2; the spatial structure called the bright-dark lump wave is shown in figure 3. Interaction behaviors of two bright-dark lump waves are presented in figure 4. A periodic-shape bright lump wave is found in figure 5. In lump solutions $({u}^{({III})})$, the spatial structure called the bright lump wave is seen in figure 6. Interaction behaviors of two bright lump waves are presented in figure 7. A periodic-shape bright lump wave is found in figure 8. Figures 9 and 10 display the interaction phenomena between lump and one solitary wave. Figure 11 shows the interaction phenomena between lump and two solitary waves.

Reference By original order
By published year
By cited within times
By Impact factor

Deng G F Gao Y T 2017 Eur. Phys. J. Plus. 132 255
DOI:10.1140/epjp/i2017-11515-8 [Cited within: 1]

Osman M S 2017 Nonlinear Dyn. 87 1209
DOI:10.1007/s11071-016-3110-9

He J S Wang L H Li L J Porsezian K Erdlyi R 2014 Phys. Rev. E 89 062917
DOI:10.1103/PhysRevE.89.062917

Tan W Dai Z D 2017 Nonlinear Dyn. 89 2723
DOI:10.1007/s11071-017-3620-0

Osman M S Machado J A T Baleanu D 2018 Opt. Quant. Electron. 50 1
DOI:10.1007/s11082-018-1346-y [Cited within: 1]

Yang J Y Ma W X Qin Z 2017 Anal. Math. Phys. 8 427
DOI:10.1007/s13324-017-0181-9 [Cited within: 1]

Li Y Z Liu J G 2018 Pramana 90 71
DOI:10.1007/s12043-018-1568-3

Alquran M Jaradat H M Syam M I 2017 Nonlinear Dyn. 90 2525
DOI:10.1007/s11071-017-3820-7

Hu C C Tian B Wu X Y Yuan Y Q Du Z 2018 Eur. Phys. J. Plus. 133 40
DOI:10.1140/epjp/i2018-11875-5

Sun H Q Chen A H 2016 Appl. Math. Lett. 68 55
DOI:10.1016/j.aml.2016.12.008 [Cited within: 1]

Kudryashov N A Sinelshchikov D I 2012 Phys. Scr. 85 025402
DOI:10.1088/0031-8949/85/02/025402 [Cited within: 1]

Lan Z Z Hu W Q Guo B L 2019 Appl. Math. Model. 73 695
DOI:10.1016/j.apm.2019.04.013 [Cited within: 1]

He J S Li Y S 2011 Stud. Appl. Lett. 126 1 15
DOI:10.1111/j.1467-9590.2010.00495.x

Lan Z Z 2019 Appl. Math. Lett. 94 126
DOI:10.1016/j.aml.2018.12.005

He J S Charalampidis E G Kevrekidis P G Frantzeskakis D J 2014 Phys. Lett. A 378 577
DOI:10.1016/j.physleta.2013.12.002 [Cited within: 1]

Tu J M Tian S F Xu M J Song X Q Zhang T T 2016 Nonlinear Dyn. 83 1199
DOI:10.1007/s11071-015-2397-2 [Cited within: 1]

Huang W H 2006 Chaos Soliton. Fract. 29 365
DOI:10.1016/j.chaos.2005.08.022 [Cited within: 1]

Rao J G Mihalache D Cheng Y He J S 2019 Phys. Lett. A 383 1138
DOI:10.1016/j.physleta.2018.12.045 [Cited within: 2]

Zhou Q Zhu Q Liu Y Yao P Bhrawy A H Moraru L Biswas A 2014 Optoelectron Adv. Mat. 8 837
DOI:10.1002/adma.19960081016 [Cited within: 1]

Ma W X Zhou Y 2018 J. Diff Equ. 264 2633
DOI:10.1016/j.jde.2017.10.033

Gao X Y 2017 Appl. Math. Lett. 73 143
DOI:10.1016/j.aml.2017.03.020

Gao X Y 2019 Appl. Math. Lett. 91 165
DOI:10.1016/j.aml.2018.11.020

Liu W H Zhang Y F Shi D D 2019 Phys. Lett. A 383 97
DOI:10.1016/j.physleta.2018.10.018

Qawasmeh A Alquran M 2014 Appl. Math. Sci. 8 5985
DOI:10.12988/ams.2014.48669 [Cited within: 1]

Biswas A Sonmezoglu A Ekici M Mirzazadeh M Zhou Q Alshomrani A S Moshokoa S P Belic M 2018 Optik 161 301
DOI:10.1016/j.ijleo.2018.02.051 [Cited within: 1]

Huang L L Chen Y 2017 Commun. Theor. Phys. 67 473
DOI:10.1088/0253-6102/67/5/473

Xie X Y Meng G Q 2018 Nonlinear Dyn. 93 779
DOI:10.1007/s11071-018-4226-x

Lan Z Z Su J J 2019 Nonlinear Dyn. 96 2535
DOI:10.1007/s11071-019-04939-1

Chen R P Dai C Q 2017 Nonlinear Dyn. 90 1563
DOI:10.1007/s11071-017-3748-y

Chen M D Li X Wang Y Li B 2017 Commun. Theor. Phys. 67 595
DOI:10.1088/0253-6102/67/6/595

Huang Q M Gao Y T 2017 Nonlinear Dyn. 89 2855
DOI:10.1007/s11071-017-3630-y

Ma W X 2018 Comput. Appl. Math. 37 6359
DOI:10.1007/s40314-018-0703-6

Ma W X 2018 J. Geom. Phys. 133 10
DOI:10.1016/j.geomphys.2018.07.003

Li Y Z Liu J G 2018 Nonlinear Dyn. 91 497
DOI:10.1007/s11071-017-3884-4

Lan Z Z 2019 Appl. Math. Lett. 98 128
DOI:10.1016/j.aml.2019.05.028 [Cited within: 1]

相关话题/Interaction phenomena between