删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Soliton molecules and the CRE method in the extended mKdV equation

本站小编 Free考研考试/2022-01-02

Bo Ren,1,4, Ji Lin,2,4, Ping Liu31Institute of Nonlinear Science, Shaoxing University, Shaoxing, 312000, China
2Department of Physics, Zhejiang Normal University, Jinhua, 321004, China
3College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, China

First author contact: 4 Authors to whom any correspondence should be addressed.
Received:2020-01-31Revised:2020-02-21Accepted:2020-03-9Online:2020-04-22


Abstract
The soliton molecules of the (1+1)-dimensional extended modified Korteweg–de Vries (mKdV) system are obtained by a new resonance condition, which is called velocity resonance. One soliton molecule and interaction between a soliton molecule and one-soliton are displayed by selecting suitable parameters. The soliton molecules including the bright and bright soliton, the dark and bright soliton, and the dark and dark soliton are exhibited in figures 13, respectively. Meanwhile, the nonlocal symmetry of the extended mKdV equation is derived by the truncated Painlevé method. The consistent Riccati expansion (CRE) method is applied to the extended mKdV equation. It demonstrates that the extended mKdV equation is a CRE solvable system. A nonauto-Bäcklund theorem and interaction between one-soliton and cnoidal waves are generated by the CRE method.
Keywords: extended mKdV equation;soliton molecule;CRE method;nonlocal symmetry


PDF (2995KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Bo Ren, Ji Lin, Ping Liu. Soliton molecules and the CRE method in the extended mKdV equation. Communications in Theoretical Physics, 2020, 72(5): 055005- doi:10.1088/1572-9494/ab7ed6

1. Introduction

The features of resonance phenomena are an important problem, both experimentally and theoretically. For the integrable systems, resonance in solitons may lead to various types of new excitations such as the breathers [1], the soliton fissions, the soliton fusions [2], the rational-exponential waves [3] and so on. The soliton molecule, which can be treated as the soliton bound state, has attracted considerable attention. The soliton molecules were first predicted theoretically in the framework of the nonlinear Schrödinger-Ginzburg-Landau equation [4] and the coupled nonlinear Schrödinger equations [5]. Recently, a new velocity resonance mechanism is introduced to form soliton molecules [6, 7]. For velocity resonance, high-order dispersive terms play a key role in the nonlinear integrable systems [6]. Based on the velocity resonance, the soliton molecules of the (2+1)-dimensional fifth-order Korteweg–de Vries (KdV) equation [8], the complex modified KdV equation [9] and the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation [10] are constructed by using the Darboux transformation and the variable separation method. Meanwhile, some novel interactions between soliton molecules and breather solutions, and between soliton molecules and dromions, are presented by the velocity resonance mechanism [811]. The interaction between solitons and other nonlinear excitations plays an important topic [1220]. The consistent Riccati expansion (CRE) or the consistent tanh expansion (CTE) method can be applied to find these types of solutions [21]. The method has been applied to various nonlinear systems, including the modified Kadomtsev-Petviashvili (KP) equation [22], the modified KdV-Calogero-Bogoyavlenkskii-Schiff equation [23], the supersymmetric integrable systems [24] and the non-integrable cubic generalised KP equation [25]. In this paper, the main purpose of our work is to construct soliton molecules, interaction between a soliton molecule and one-soliton, and interaction between solitons and cnoidal periodic wave solutions for an extended modified KdV (mKdV) equation.

In the sense of Marchant et al [26, 27], one can get the extended mKdV equation. The extended mKdV equation reads$\begin{eqnarray}\begin{array}{l}{u}_{t}+\alpha ({u}_{{xxx}}+6\sigma {u}^{2}{u}_{x})\\ \quad +\,\beta {\left(6{u}^{5}+10\sigma {{uu}}_{x}^{2}+10\sigma {u}^{2}{u}_{{xx}}+{u}_{{xxxx}}\right)}_{x}=0,\end{array}\end{eqnarray}$where α and β are the third-order and fifth-order dispersion coefficients matching with the relevant nonlinear terms. The extended mKdV equation (1) describes the evolution of steeper waves with shorter wavelengths than in the mKdV equation [28]. The extended mKdV equation (1) becomes the focusing form and defocusing form with σ=+1 and σ=−1. The equation (1) gives rise to multiple soliton solutions and multiple singular soliton solutions for σ=+1 and σ=−1, respectively [28]. The extended mKdV equation (1) for the focusing form, i.e. σ=+1 reads$\begin{eqnarray}\begin{array}{l}{u}_{t}+\alpha ({u}_{{xxx}}+6{u}^{2}{u}_{x})\\ \ \ \ \ +\beta {\left(6{u}^{5}+10{{uu}}_{x}^{2}+10{u}^{2}{u}_{{xx}}+{u}_{{xxxx}}\right)}_{x}=0.\end{array}\end{eqnarray}$The extended mKdV equation of the focusing form (2) possesses the Lax pair, the infinitely conservation laws, the Darboux transformation, the Painlevé property and the multi-soliton solution [29]. The long-time asymptotic behavior for the extended mKdV equation (2) has been analyzed recently [30].

This paper is organized as follows. In section 2, the soliton molecules and interaction between a soliton molecule and one-soliton of the extended mKdV equation are obtained by a new resonance condition. In section 3, the nonlocal symmetry and its application of the extended mKdV equation can be constructed by the truncated Painlevé method. In section 4, the extended mKdV equation is used in the CRE method. The interacted one-soliton with periodic waves can be derived by using a nonauto-Bäcklund transformation theorem. Some concluding remarks will be made in the last section.

2. Soliton molecules and interaction between a soliton molecule and one-soliton for the extended mKdV equation

To determine the multi-soliton solution of the extended mKdV equation (2), the dependent variable transformation reads [29]$\begin{eqnarray}u=2{\left(\arctan \displaystyle \frac{F}{G}\right)}_{x}.\end{eqnarray}$The auxiliary functions of F(x, t) and G(x, t) for the three-soliton solution are selected as$\begin{eqnarray}\begin{array}{rcl}F(x,t) & = & 1+\exp ({\theta }_{1})+\exp ({\theta }_{2})+\exp ({\theta }_{3})\\ & & +\,{a}_{12}\exp ({\theta }_{1}+{\theta }_{2})+{a}_{13}\exp ({\theta }_{1}+{\theta }_{3})\\ & & +\,{a}_{23}\exp ({\theta }_{2}+{\theta }_{3})+{b}_{123}\exp ({\theta }_{1}+{\theta }_{2}+{\theta }_{3}),\\ G(x,t) & = & 1-\exp ({\theta }_{1})-\exp ({\theta }_{2})-\exp ({\theta }_{3})\\ & & +\,{a}_{12}\exp ({\theta }_{1}+{\theta }_{2})+{a}_{13}\exp ({\theta }_{1}+{\theta }_{3})\\ & & +\,{a}_{23}\exp ({\theta }_{2}+{\theta }_{3})-{b}_{123}\exp ({\theta }_{1}+{\theta }_{2}+{\theta }_{3}),\end{array}\end{eqnarray}$with θi=kix+ωit+ci. By substituting (4) and (3) into (2), the phases shift aij and b123 read$\begin{eqnarray}\begin{array}{rcl}{a}_{{ij}} & = & -\displaystyle \frac{{\left({k}_{i}-{k}_{j}\right)}^{2}}{{\left({k}_{i}+{k}_{j}\right)}^{2}},\quad 1\leqslant i\leqslant j\leqslant 3,\\ {b}_{123} & = & {a}_{12}{a}_{13}{a}_{23},\end{array}\end{eqnarray}$and the dispersion relation$\begin{eqnarray}\alpha {k}_{i}^{3}+\beta {k}_{i}^{5}+{\omega }_{i}=0.\end{eqnarray}$If the parameters a13, a23, b123 and $\exp ({\theta }_{3})$ in (4) select zero, the three-soliton solution will reduce to the two-soliton solution.

We shall study the soliton molecule with a new resonance condition. The new condition $({k}_{i}\ne {k}_{j})$ of velocity resonance reads$\begin{eqnarray}\displaystyle \frac{{k}_{i}}{{k}_{j}}=\displaystyle \frac{{\omega }_{i}}{{\omega }_{j}}=\displaystyle \frac{\alpha {k}_{i}^{3}+\beta {k}_{i}^{5}}{\alpha {k}_{j}^{3}+\beta {k}_{j}^{5}}.\end{eqnarray}$The ith and jth solitons of resonant condition (7) are bounded to form a soliton molecule or an asymmetric soliton by selecting the parameters in (7). We take the two-soliton and the new resonance condition to describe the soliton molecule in figures 13. For the figure 1, the parameters are selected as$\begin{eqnarray}\begin{array}{rcl}{k}_{1} & = & \displaystyle \frac{1}{2},\quad {k}_{2}=1,\quad \alpha =1,\\ \beta & = & -0.8,\quad {c}_{1}=0,\quad {c}_{2}=10.\end{array}\end{eqnarray}$For the figure 2, the parameters are selected as$\begin{eqnarray}\begin{array}{rcl}{k}_{1} & = & \displaystyle \frac{1}{2},\quad {k}_{2}=-1,\quad \alpha =1,\\ \beta & = & -0.8,\quad {c}_{1}=0,\quad {c}_{2}=10.\end{array}\end{eqnarray}$The parameters are selected as the following form in figure 3$\begin{eqnarray}\begin{array}{rcl}{k}_{1} & = & -\displaystyle \frac{1}{2},\quad {k}_{2}=-1,\quad \alpha =1,\\ \beta & = & -0.8,\quad {c}_{1}=0,\quad {c}_{2}=10.\end{array}\end{eqnarray}$From the figures 13, the soliton molecule can be classified into three cases, i.e., k1>0, k2>0; k1k2<0 and k1<0, k2<0. It represents that the soliton molecule can consist of the bright and bright soliton, the dark and bright soliton, and the dark and dark soliton, respectively. The velocities of two solitons in the molecule are the same value with different amplitude.

Figure 1.

New window|Download| PPT slide
Figure 1.(a) Soliton molecule structure described by (3) with the parameter selections (8). (b) Density plot of the corresponding soliton molecule.


Figure 2.

New window|Download| PPT slide
Figure 2.(a) Soliton molecule structure described by (3) with the parameter selections (9). (b) Density plot of the corresponding soliton molecule.


Figure 3.

New window|Download| PPT slide
Figure 3.(a) Soliton molecule structure described by (3) with the parameter selections (10). (b) Density plot of the corresponding soliton molecule.


To study the interaction between a soliton molecule and one-soliton, we use the three-soliton. We describe this phenomenon in figure 4. For figure 4, the parameters are selected as$\begin{eqnarray}\begin{array}{rcl}{k}_{1} & = & \displaystyle \frac{1}{2},\quad {k}_{2}=1,\quad {k}_{3}=0.8,\quad \alpha =1,\\ \beta & = & -0.8,\quad {c}_{1}=0,\quad {c}_{2}=15,\quad {c}_{3}=35.\end{array}\end{eqnarray}$The interaction between a soliton molecule and one-soliton is elastic from figure 4.

Figure 4.

New window|Download| PPT slide
Figure 4.(a) The interaction between a soliton molecule and one-soliton with the parameters selections (11). (b) The corresponding density plot.


3. Nonlocal symmetry and its application of the extended mKdV equation

The nonlocal symmetry for the extended mKdV equation can be constructed with the truncated Painlevé method [3136]. The Laurent series of the extended mKdV equation (2) reads$\begin{eqnarray}u=\displaystyle \frac{{u}_{0}}{f}+{u}_{1},\end{eqnarray}$where the function f(x, t)=0 is the equation of singularity manifold. The functions of u0 and u1 are functions of x and t. By balancing the coefficients of each power of f independently, we get$\begin{eqnarray}{u}_{0}={{if}}_{x},\end{eqnarray}$and the Schwarzian extended mKdV form$\begin{eqnarray}K+\alpha C+\displaystyle \frac{3\beta }{2}{C}^{2}+\beta {C}_{{xx}}=0,\end{eqnarray}$where K and the Schwarzian derivative C satisfy$\begin{eqnarray}K(x,t)=\displaystyle \frac{{f}_{t}}{{f}_{x}},\ \ \ C(x,t)=\{f;x\}=\displaystyle \frac{\partial }{{\partial }_{x}}\displaystyle \frac{{f}_{{xx}}}{{f}_{x}}-\displaystyle \frac{1}{2}{\left(\displaystyle \frac{{f}_{{xx}}}{{f}_{x}}\right)}^{2}.\end{eqnarray}$By the truncated Painlevé method, the nonlocal symmetry of the extended mKdV equation reads$\begin{eqnarray}{\sigma }^{u}={{if}}_{x}.\end{eqnarray}$The nonlocal symmetry (16) is the residual of the singularity manifold f. To solve the initial value problem of the Lie’s first principle of the nonlocal symmetry, we localize the nonlocal symmetry to the Lie point symmetry by introducing a new field$\begin{eqnarray}{f}_{x}=g.\end{eqnarray}$The initial value problem related by the nonlocal symmetry (17) becomes$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{d\bar{u}}{d\epsilon } & = & {ig},\quad \bar{u}{| }_{\epsilon =0}=u,\\ \displaystyle \frac{d\bar{f}}{d\epsilon } & = & -{f}^{2},\quad \bar{f}{| }_{\epsilon =0}=f,\\ \displaystyle \frac{d\bar{g}}{d\epsilon } & = & -2{gf},\quad \bar{g}{| }_{\epsilon =0}=g.\end{array}\end{eqnarray}$By solving the above initial value problem, the Bäcklund transformation (BT) theorem of the enlarged systems (2), (14) and (17) is obtained.

If f, g and u is a solution of the enlarged systems (2), (14) and (17), $\bar{f},\bar{g}$ and $\bar{u}$ is also a solution of the enlarged systems$\begin{eqnarray}\bar{f}=\displaystyle \frac{f}{1+\epsilon f},\quad \bar{g}=\displaystyle \frac{g}{{\left(1+\epsilon f\right)}^{2}},\quad \bar{u}=u+\displaystyle \frac{i\epsilon g}{1+\epsilon f},\end{eqnarray}$with an arbitrary group parameter ε.

4. CRE method and soliton-cnoidal wave solutions of the extended mKdV equation

The results presented in this paper can be also applied to the defocusing form of the extended mKdV equation. The extended mKdV equation (1) becomes the defocusing form, i.e. σ=−1. In this part, we shall use the CRE/CTE method to study the defocusing form of the extended mKdV equation. Based on the CRE/CTE method [21], the truncated solution of the defocusing form of the extended mKdV equation reads as the following form by using leading order analysis$\begin{eqnarray}u={u}_{0}R(f)+{u}_{1},\end{eqnarray}$where u0, u1 and f are arbitrary functions and R satisfies the Riccati equation$\begin{eqnarray}{R}_{f}={a}_{0}+{a}_{1}R+{a}_{2}{R}^{2},\end{eqnarray}$with a0, a1 and a2 being arbitrary constants. Substituting (20) into (2) and balancing the coefficients of R lead to$\begin{eqnarray}{u}_{0}={f}_{x},\quad {u}_{1}=-\displaystyle \frac{{f}_{{xx}}}{2{f}_{x}},\end{eqnarray}$and$\begin{eqnarray}\begin{array}{l}K+\alpha (C-2{f}_{x}^{2})\\ \quad +\,\beta \left(\displaystyle \frac{3}{2}{C}^{2}+{C}_{{xx}}-10{f}_{x}^{2}C+6{f}_{x}^{4}-10{f}_{{xx}}^{2}\right)=0,\end{array}\end{eqnarray}$where K(x, t) and C(x, t) satisfy (15). The CRE will be transformed to the CTE with a0=1, a1=0 and a2=−1. The special solution of the Riccati equation reads$\begin{eqnarray}R=\tanh (f).\end{eqnarray}$It demonstrates that a CRE solvable model would be a CTE solvable model, and vice versa. We can construct the theorem, which is treated as a nonauto-BT theorem between the solution of f and u.

If f is a solution of the equation (23), then u given by$\begin{eqnarray}u={f}_{x}\tanh (f)-\displaystyle \frac{{f}_{{xx}}}{2{f}_{x}},\end{eqnarray}$will be a solution of the extended mKdV equation with the defocusing form.

The solution of the extended mKdV equation with the defocusing form can be obtained by using the above theorem. We shall list two cases by means of the theorem.

Case I. A trivial solution of the defocusing form is$\begin{eqnarray}f={kx}+\omega t,\quad \omega =2\alpha {k}^{3}-6\beta {k}^{5},\end{eqnarray}$where k is an arbitrary constant and ω is determined by the dispersion relation. The one-soliton solution of the defocusing form reads as the following form by using the nonauto-BT theorem$\begin{eqnarray}u=k\tanh \left({kx}+(2\alpha {k}^{3}-6\beta {k}^{5})t\right).\end{eqnarray}$

Case II. In order to obtain the interaction between one-soliton and other nonlinear excitations of the defocusing form, this type solution can be determined by a sum of a trivial solution and an arbitrary function$\begin{eqnarray}f={kx}+\omega t+F(X),\quad X={k}_{1}x+{\omega }_{1}t,\end{eqnarray}$where k, ω, k1 and ω1 are arbitrary constants. The elliptic function equation can be obtained by substituting (28) into (23)$\begin{eqnarray}\begin{array}{rcl}{F}_{1}{\left(X\right)}_{X}^{2} & = & 4{F}_{1}{\left(X\right)}^{4}+{C}_{3}{F}_{1}{\left(X\right)}^{3}+{C}_{2}{F}_{1}{\left(X\right)}^{2}\\ & & +\,{C}_{1}{F}_{1}(X)+{C}_{0},\quad {F}_{1}(X)=F(X),\end{array}\end{eqnarray}$with$\begin{eqnarray*}\begin{array}{rcl}{C}_{0} & = & \displaystyle \frac{78{\alpha }^{3}{k}^{3}}{125{\beta }^{2}{k}_{1}^{3}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{2\alpha {k}^{2}(7k{\omega }_{1}-{k}_{1}\omega )}{5\beta {k}_{1}^{4}({k}_{1}\omega -k{\omega }_{1})}\\ & & +\,\displaystyle \frac{5k({k}_{1}\omega -k{\omega }_{1})}{6\alpha {k}_{1}^{5}}+\displaystyle \frac{4{k}^{4}}{{k}_{1}^{4}},\\ {C}_{1} & = & \displaystyle \frac{234{\alpha }^{3}{k}^{2}}{125{\beta }^{2}{k}_{1}^{2}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{4\alpha k(10k{\omega }_{1}-{k}_{1}\omega )}{5\beta {k}_{1}^{3}({k}_{1}\omega -k{\omega }_{1})}\\ & & +\,\displaystyle \frac{5({k}_{1}\omega -k{\omega }_{1})}{6\alpha {k}_{1}^{4}}+\displaystyle \frac{16{k}^{3}}{{k}_{1}^{3}},\\ {C}_{2} & = & \displaystyle \frac{234{\alpha }^{3}k}{125{\beta }^{2}{k}_{1}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{2\alpha (19k{\omega }_{1}-{k}_{1}\omega )}{5\beta {k}_{1}^{2}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{24{k}^{2}}{{k}_{1}^{2}},\\ {C}_{3} & = & \displaystyle \frac{78{\alpha }^{3}}{125{\beta }^{2}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{12\alpha {\omega }_{1}}{5\beta {k}_{1}({k}_{1}\omega -k{\omega }_{1})}+\displaystyle \frac{16k}{{k}_{1}}.\end{array}\end{eqnarray*}$By the nonauto-BT, the interaction between one-soliton and cnoidal waves of the defocusing form reads as$\begin{eqnarray}\begin{array}{rcl}u & = & \left(k+{k}_{1}F{\left(X\right)}_{X}\right)\tanh \left({kx}+\omega t+F(X\right)\\ & & -\,\displaystyle \frac{{k}_{1}^{2}F{\left(X\right)}_{{XX}}}{2\left(k+{k}_{1}F{\left(X\right)}_{X}\right)}.\end{array}\end{eqnarray}$If we get the solution of the elliptic function equation (29), the explicit interaction between one-soliton and cnoidal periodic wave solutions for the defocusing form will be obtained by the expression (30).

5. Conclusion

In summary, the soliton molecules and some novel interaction solutions of the extended mKdV equation were studied by the velocity resonance mechanism and the CRE method. The soliton molecule and the interaction between a soliton molecule and one-soliton were constructed by the new resonance condition of velocity resonance. The interaction between a soliton molecule and one-soliton is elastic by some detail analysis. The nonlocal symmetry and the BT theorem of the extended mKdV equation were derived by the truncated Painlevé method. Based on the CRE/CTE method, the extended mKdV equation is a CRE/CTE solvable system. A nonauto-BT theorem was constructed by using the CRE/CTE method. The interaction between one-soliton and cnoidal periodic waves was given by the nonauto-BT theorem.

Acknowledgments

This work is supported by the National Natural Science Foundation of China Grant Nos. 11775146, 11305106, 11975156, 11775047 and 11835011.


Reference By original order
By published year
By cited within times
By Impact factor

Stoll E Schneider T Bishop A R 1979 Phys. Rev. Lett. 42 937
DOI:10.1103/PhysRevLett.42.937 [Cited within: 1]

Wang S Tang X Y Lou S Y 2004 Chaos Soliton Fract. 21 231
DOI:10.1016/j.chaos.2003.10.014 [Cited within: 1]

Zhang D J Zhao S L Sun Y Y Zhou J 2014 Rev. Math. Phys. 26 1430006
DOI:10.1142/S0129055X14300064 [Cited within: 1]

Malomed B A 1991 Phys. Rev. A 44 6954
DOI:10.1103/PhysRevA.44.6954 [Cited within: 1]

Malomed B A 1992 Phys. Rev.A 45 R8321
DOI:10.1103/PhysRevA.45.R8321 [Cited within: 1]

Lou S Y 2019 arXiv:1909.03399
[Cited within: 2]

Xu D H Lou S Y 2020 Acta Phys. Sin. 69 014208
[Cited within: 1]

Zhang Z Yang S X Li B 2019 Chin. Phys. Lett. 36 120501
DOI:10.1088/0256-307X/36/12/120501 [Cited within: 2]

Zhang Z Yang X Y Li B 2020 Appl. Math. Lett. 103 106168
DOI:10.1016/j.aml.2019.106168 [Cited within: 1]

Cui C J Tang X Y Cui Y J 2020 Appl. Math. Lett. 102 106109
DOI:10.1016/j.aml.2019.106109 [Cited within: 1]

Yan Z W Lou S Y 2020 Appl. Math. Lett. 104 106271
DOI:10.1016/j.aml.2020.106271 [Cited within: 1]

Lou S Y Lin J 2018 Chin. Phys. Lett. 35 050202
DOI:10.1088/0256-307X/35/5/050202 [Cited within: 1]

Ren B Ma W X Yu J 2019 Comput. Math. Appl. 77 2086
DOI:10.1016/j.camwa.2018.12.010

Ren B Ma W X Yu J 2019 Nonlinear Dyn. 96 717 727
DOI:10.1007/s11071-019-04816-x

Qin C Y Tian S F Wang X B Zhang T T 2018 Commun. Nonli. Sci. Numer. Simulat. 62 378
DOI:10.1016/j.cnsns.2018.02.040

Yan X W Tian S F Dong M J Zhou L Zhang T T 2018 Comput. Mathe. Appl. 76 179
DOI:10.1016/j.camwa.2018.04.013

Zhang X E Chen Y Tang X Y 2018 Comput. Math. Appl. 76 1938
DOI:10.1016/j.camwa.2018.07.040

Huang L L Yue Y F Chen Y 2018 Comput. Math. Appl. 76 831
DOI:10.1016/j.camwa.2018.05.023

Wang Y Y Zhang Y P Dai C Q 2016 Nonlinear Dyn. 83 1331
DOI:10.1007/s11071-015-2406-5

Wang Y Y Chen L Dai C Q Zheng J Fan Y 2017 Nonlinear Dyn. 90 1269
DOI:10.1007/s11071-017-3725-5 [Cited within: 1]

Lou S Y 2015 Stud. Appl. Math. 134 372
DOI:10.1111/sapm.12072 [Cited within: 2]

Ren B 2015 Phys. Scr. 90 065206
DOI:10.1088/0031-8949/90/6/065206 [Cited within: 1]

Wang Y H Wang H 2017 Nonlinear Dyn. 89 235 241
DOI:10.1007/s11071-017-3449-6 [Cited within: 1]

Ren B 2016 Chin. J. Phys. 54 628
DOI:10.1016/j.cjph.2016.07.009 [Cited within: 1]

Ren B Lin J 2015 Z. Naturforsch. 70a 539 544
DOI:10.1515/zna-2015-0085 [Cited within: 1]

Marchant T R Smyth N F 1996 IMA J. Appl. Math. 56 157
DOI:10.1093/imamat/56.2.157 [Cited within: 1]

Marchant T R Smyth N F 1990 J. Fluid Mech. 221 263
DOI:10.1017/S0022112090003561 [Cited within: 1]

Wazwaz A M Xu G 2016 Nonlinear Dyn. 86 1455
DOI:10.1007/s11071-016-2971-2 [Cited within: 2]

Wang X Zhang J Wang L 2018 Nonlinear Dyn. 92 1507
DOI:10.1007/s11071-018-4143-z [Cited within: 2]

Liu N Guo B L Wang D S Wang Y F 2019 arXiv:1907.03067
[Cited within: 1]

Gao X N Lou S Y Tang X Y 2013 J. High Ener. Phys. 5 029
DOI:10.1007/JHEP05(2013)029 [Cited within: 1]

Hu X R Lou S Y Chen Y 2012 Phys. Rev. E 85 056607
DOI:10.1103/PhysRevE.85.056607

Ren B Cheng X P Lin J 2016 Nonlinear Dyn. 86 1855
DOI:10.1007/s11071-016-2998-4

Ren B 2017 Commun. Nonli. Sci. Numer. Simulat. 42 456
DOI:10.1016/j.cnsns.2016.06.017

Ren B Lin J Le J Y Wang S Dai T Z 2017 Commun. Theor. Phys. 68 170
DOI:10.1088/0253-6102/68/2/170

Huang L L Chen Y 2019 Commun. Nonlinear Sci. Numer. Simulat. 67 237
DOI:10.1016/j.cnsns.2018.06.021 [Cited within: 1]

闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐粶缂佲偓婢跺绻嗛柕鍫濇噺閸e湱绱掗悩闈涒枅闁哄瞼鍠栭獮鎴﹀箛闂堟稒顔勯梻浣告啞娣囨椽锝炴径鎰﹂柛鏇ㄥ灠濡﹢鏌涢…鎴濇灀闁圭ǹ鍟村娲川婵犲孩鐣烽悗鍏夊亾闁归棿绀佺粻鏍ㄤ繆閵堝懏鍣洪柡鍛叀楠炴牜鈧稒岣跨粻姗€鏌i埡浣规崳缂佽鲸鎸婚幏鍛槹鎼淬倗鐛ラ梻渚€娼荤紞鍥╃礊娴e壊鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞は佸洦鈷戦柛蹇氬亹閵堟挳鏌¢崨顔剧疄闁诡噯绻濆畷鎺楁倷缁瀚肩紓鍌欑椤戝牆鈻旈弴銏″€块柛褎顨嗛悡娆撴煕閹存瑥鈧牜鈧熬鎷�2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐鍕祮婵﹨娅i幏鐘诲灳閾忣偅顔勯梻浣规偠閸庢粓宕惰閺嗩亪姊婚崒娆戝妽閻庣瑳鍛床闁稿本顕㈠ú顏勵潊闁靛牆鎳愰敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犳牕顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹
濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏″€峰┑鐘插閸犳劗鈧箍鍎卞Λ娆撳矗韫囨稒鐓忛柛顐g箥濡插綊鏌嶉柨瀣伌闁哄本绋戦埥澶婎潨閸繀绱g紓鍌欑劍椤ㄥ棛鏁Δ浣衡攳濠电姴娴傞弫鍐煥濠靛棙澶勯柛鎺撶☉椤啴濡堕崘銊т痪濠碘槅鍋勯崯顖炲箞閵娾晛鐒垫い鎺戝閻撳繘鏌涢锝囩畺闁挎稑绉垫穱濠囶敃閵忕媭浼冮梺鍝勭焿缁查箖骞嗛弮鍫晬婵犲﹤鎲涢敐澶嬧拺闁告縿鍎辨牎闂佺粯顨堟慨鎾偩閻戣棄顫呴柕鍫濇噽椤旀帒顪冮妶鍡樷拻闁哄拋鍋婂畷銏ゅ箹娴e厜鎷洪梺鍛婄☉閿曘儳绮堢€n偆绠惧ù锝呭暱濞诧箓宕愰崼鏇熺叆婵犻潧妫欓ˉ鎾趁瑰⿰鍕煉闁哄瞼鍠撻埀顒佺⊕宀h法绮婚弽褜鐔嗛悹鍝勬惈椤忣偆绱掓潏銊ョ闁逞屽墾缂嶅棙绂嶇捄浣曠喖鍩€椤掑嫭鈷戠紒顖涙礃閺夊綊鏌涚€n偅灏い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵顓奸崶銊ョ彴闂佸搫琚崕鍗烆嚕閺夊簱鏀介柨鐔哄Х閻e搫霉濠婂啰鍩g€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁圭ǹ顭烽幃鐑藉煛娴g儤娈惧銈嗙墬缁嬫垿顢氶柆宥嗗€垫繛鎴烆仾椤忓懐顩叉い鏍ㄥ焹閺€浠嬫煟閹邦剙绾ч柍缁樻礀闇夋繝濠傚缁犵偟鈧鍠楅悡锟犮€佸Δ鍛妞ゆ巻鍋撻柍褜鍓欓悥濂稿蓟閿濆绠涙い鏃囧Г濮e嫰姊虹涵鍛棄闁稿﹤娼″璇测槈閵忕姈褔鏌涢妷顔句虎闁靛繈鍊栭ˉ鍡楊熆鐠轰警鍎戠紒鈾€鍋撳┑鐘垫暩婵挳宕愰幖浣告辈闁挎繂妫庢禍婊堝箹濞n剙鐒烘繛鍫熸礋閺屾洟宕惰椤忣參鏌涢埡鍐ㄤ槐妞ゃ垺锕㈤幃娆忣啅椤旇崵妫繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勯拑鐔兼煥閻斿搫孝闁绘劕锕弻宥嗘姜閹殿喖濡介梺璇茬箣缁舵艾顫忓ú顏勫窛濠电姴瀚崰娑㈡⒑缁嬫鍎愰柟鐟版搐椤繒绱掑Ο璇差€撻梺鍛婄缚閸庤櫕顨欏┑鐘垫暩閸嬫﹢宕犻悩璇插耿闁归偊浜濋惈蹇涙⒒娴h櫣甯涢柛鏃€顨婂顐﹀传閵壯傜瑝闂佸搫鍟悧濠囨偂濞嗘挻鐓欐い鏍ф閼活垰鈻撻崼鏇熲拺鐎规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡锋惔锝呮灁闁归濞€楠炴捇骞掑┑鍥ㄧグ闂傚倸鍊烽悞锕傚箖閸洖纾圭憸蹇曞垝婵犳艾绠婚悹鍥蔼閹芥洟姊虹紒妯活梿婵炲拑缍侀幆灞解枎閹惧鍘电紓浣割儏閻忔繈顢楅姀銈嗙厵妞ゆ梻鏅幊鍥ㄦ叏婵犲嫬鍔嬮悗鐢靛帶閳诲酣骞嬮悩妯荤矌缁辨挻鎷呴崫鍕戯綁鏌eΔ浣圭妞ゃ垺宀搁弫鎰緞濡粯娅囬梻浣稿暱閻忓牓寮插⿰鍫熷€靛┑鐘崇閳锋垹鎲搁悧鍫濈瑨濞存粈鍗抽弻娑樜熼崫鍕ㄦ寖缂備緡鍠楅悷鈺佺暦閻旂⒈鏁嶆繛鎴炲笚鐎氬ジ姊绘担鍛婅础閺嬵亝绻涚€电ǹ鍘撮柛鈹垮劜瀵板嫰骞囬鐘插箰闂備礁澹婇崑鎺楀磻閸曨剚娅犻悗鐢电《閸嬫挾鎲撮崟顒傤槬缂傚倸绉撮敃銉︾┍婵犲偆娼扮€光偓婵犲唭顏勨攽閻樻剚鍟忛柛銊ゅ嵆婵″爼骞栨担姝屾憰濠电偞鍨惰彜婵℃彃鐗婇幈銊ノ旈埀顒勬偋婵犲洤鏋侀柛鎾楀懐锛濇繛杈剧到閹碱偅鐗庨梺姹囧焺閸ㄦ娊宕戦妶澶婃槬闁逞屽墯閵囧嫰骞掗崱妞惧闂備浇顕х换鎴︽嚌妤e啠鈧箓宕归鍛缓闂侀€炲苯澧存鐐插暢椤﹀湱鈧娲栧畷顒勬箒闂佸搫顦扮€笛囧窗濡皷鍋撶憴鍕閺嬵亪鎽堕弽顬″綊鏁愭径瀣彸闂佹眹鍎烘禍顏勵潖缂佹ɑ濯村〒姘煎灡閺侇垶姊虹憴鍕仧濞存粠浜滈~蹇旂鐎n亞顦板銈嗙墬缁嬫帒鈻嶉弽顓熲拺闁告繂瀚埢澶愭煕濡湱鐭欓柟顔欍倗鐤€婵炴垶鐟ч崢閬嶆⒑閺傘儲娅呴柛鐕佸灣缁牓鍩€椤掆偓椤啴濡惰箛鏇炵煗闂佸搫妫欑粩绯村┑鐘垫暩婵兘寮崨濠冨弿濞村吋娼欓崹鍌炴煕閿旇骞樼紒鈧繝鍌楁斀闁绘ê寮堕幖鎰版煟閹烘垹浠涢柕鍥у楠炴帒顓奸崼婵嗗腐闂備焦鍓氶崹鍗灻洪悢鐓庤摕闁哄洢鍨归獮銏′繆閵堝倸浜鹃梺鍝勬4缂嶄線寮婚敍鍕勃闁告挆鍕灡婵°倗濮烽崑鐐垫暜閿熺姷宓侀悗锝庡枟閸婂鏌涢埄鍐夸緵婵☆値鍐f斀闁挎稑瀚禍濂告煕婵犲啰澧遍柡渚囧櫍閹瑩宕崟顓犲炊闂備礁缍婇崑濠囧窗濮樿埖鍎楁繛鍡楃箚閺€浠嬫煟濡搫绾у璺哄閺屾稓鈧綆鍋勬慨宥夋煛瀹€瀣М濠殿喒鍋撻梺闈涚箚閸撴繂袙閸曨垱鐓涘ù锝呮憸婢э附鎱ㄦ繝鍕笡闁瑰嘲鎳愮划娆撳箰鎼粹檧鍋撻姘f斀闁绘﹩鍠栭悘顏堟煥閺囨ê鐏╅柣锝囧厴椤㈡稑鈽夊鍡楁闂佽瀛╃粙鎺楁晪婵炲瓨绮犻崹璺侯潖濞差亜宸濆┑鐘插閻e灚绻濆▓鍨仴濡炲瓨鎮傞獮鍡涘籍閸繍娼婇梺鎸庣☉鐎氼喛鍊存繝纰夌磿閸嬫垿宕愰弽顓炵婵°倕鎳庣粣妤呭箹濞n剙鐏い鈺傚絻铻栭柨婵嗘噹閺嗙偤鏌i幘瀵告创闁哄本鐩俊鐑芥晲閸涱収鐎撮梻浣圭湽閸斿秹宕归崸妤€钃熼柨婵嗩槹閸嬪嫰鏌涘▎蹇fЧ闁绘繃妫冨铏光偓鍦У椤ュ銇勯敂鐐毈闁绘侗鍠栬灒闁兼祴鏅濋ˇ鈺呮⒑缂佹◤顏勭暦椤掑嫷鏁嗛柕蹇娾偓鑼畾闂佺粯鍔︽禍婊堝焵椤掍胶澧悡銈嗙節闂堟稒顥戦柡瀣Ч閺岋繝宕堕埡浣锋喚缂傚倸鍊瑰畝鎼佹偂椤愶箑鐐婇柕濞р偓濡插牓鎮楅悷鐗堝暈缂佽鍟存俊鐢稿礋椤栨氨顔掑┑掳鍊愰崑鎾绘煕閻曚礁鐏︽い銏$懇閺佹捇鏁撻敓锟�20婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳顭烽弻锝呂熷▎鎯ф缂備胶濮撮悘姘跺Φ閸曨喚鐤€闁圭偓鎯屽Λ鈥愁渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灥瀹曨剟宕滈幍顔剧=濞达絽鎼牎闂佹悶鍔屽ḿ鈥愁嚕婵犳艾围闁糕剝锚瀵潡姊鸿ぐ鎺戜喊闁稿繑锕㈠畷鎴﹀箻濠㈠嫭妫冮崺鈧い鎺戝閻撴繈鏌¢崘銊у妞ゎ偄鎳橀弻锝呂熼悜姗嗘¥闂佺娅曢幑鍥Χ椤忓懎顕遍柡澶嬪灩椤︺劑姊洪崘鍙夋儓闁挎洏鍎甸弫宥夊川椤栨粎锛濋梺绋挎湰閻熝囁囬敂濮愪簻闁挎棁顕ч悘锔姐亜閵忊€冲摵妞ゃ垺锕㈡慨鈧柣姗€娼ф慨锔戒繆閻愵亜鈧牕顔忔繝姘;闁规儳顕弧鈧梺閫炲苯澧撮柡灞芥椤撳ジ宕ㄩ銈囧耿闂傚倷鑳剁划顖氼潖婵犳艾鍌ㄧ憸鏂款嚕閸涘﹦鐟归柍褜鍓熷濠氬即閵忕娀鍞跺┑鐘茬仛閸旀牗鏅ラ梻鍌欒兌鏋Δ鐘叉憸缁棁銇愰幒鎴f憰濠电偞鍨崹褰掑础閹惰姤鐓忓┑鐐茬仢閸旀碍銇勯鐔告珚婵﹦鍎ょ€电厧鈻庨幋鐘虫缂傚倸鍊哥粔鎾晝椤忓牏宓侀柛鎰╁壆閺冨牆绀冮柍杞扮劍閻庮參姊绘担鍛婂暈婵炶绠撳畷锝嗘償閵娿儲杈堥梺璺ㄥ枔婵敻鍩涢幋锔界厱婵犻潧妫楅顏呫亜閵夛箑鐏撮柡灞剧〒閳ь剨缍嗛崑鍛暦鐏炵偓鍙忓┑鐘插暞閵囨繄鈧娲﹂崑濠傜暦閻旂厧鍨傛い鎰癁閸ャ劉鎷洪梺鍛婄☉閿曘儵鍩涢幇鐗堢厽婵°倕鍟埢鍫燁殽閻愭彃鏆i柡浣规崌閹晠鎼归锝囧建闂傚倷绀侀幉鈥趁洪敃鍌氱婵炲棙鎸婚崑鐔访归悡搴f憼闁抽攱鍨垮濠氬醇閻旀亽鈧帞绱掗悩鍐插摵闁哄本鐩獮妯尖偓闈涙憸閻ゅ嫰姊虹拠鈥虫灀闁逞屽墯閺嬪ジ寮告惔銊︾厵闂侇叏绠戦弸銈嗐亜閺冣偓濞叉ḿ鎹㈠┑瀣潊闁挎繂妫涢妴鎰渻閵堝棗鐏ユ俊顐g〒閸掓帡宕奸妷銉у姦濡炪倖甯掔€氼參宕愰崹顐ょ闁割偅绻勬禒銏$箾閸涱厾效闁哄矉绻濋崺鈧い鎺戝绾偓闂佺粯鍨靛Λ妤€鈻撻锔解拺闁告稑锕ユ径鍕煕鐎n偄娴€规洏鍎抽埀顒婄秵閸犳鎮¢弴銏$厸闁搞儯鍎辨俊鍏碱殽閻愮摲鎴炵┍婵犲洤鐭楀璺猴功娴煎苯鈹戦纭锋敾婵$偠妫勯悾鐑筋敃閿曗偓缁€瀣亜閹邦喖鏋庡ù婊勫劤闇夐柣妯烘▕閸庢粎绱撳鍡欏ⅹ妞ゎ叀娉曢幑鍕倻濡粯瀚抽梻浣呵圭换鎴犲垝閹捐钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡橆棤妞わ负鍔戝娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幘鎼濠电偞鍨堕〃鍛此夊杈╃=闁稿本鐟ㄩ崗灞解攽椤旂偓鏆╅柡渚囧櫍閸ㄩ箖骞囨担鍦▉濠电姷鏁告慨鐢告嚌妤e啯鍊峰┑鐘叉处閻撱儲绻濋棃娑欘棡闁革絿枪椤法鎲撮崟顒傤槹濠殿喖锕ュ浠嬪箠閿熺姴围闁告侗鍠氶埀顒佸劤閳规垿鎮欓幓鎺旈獓闂佹悶鍔屽ḿ锟犵嵁婵犲伣鏃堝礃閳轰胶锛忛梺鑽ゅ仦缁嬪牓宕滃┑瀣€跺〒姘e亾婵﹨娅e☉鐢稿川椤斿吋閿梻鍌氬€哥€氼剛鈧碍婢橀悾鐑藉即閵忕姷顓洪梺鎸庢濡嫰鍩€椤掑倹鏆柡灞诲妼閳规垿宕卞☉鎵佸亾濡や緡娈介柣鎰缂傛氨绱掓潏銊ユ诞闁诡喒鏅涢悾鐑藉炊瑜夐幏浼存⒒娴e憡鎯堝璺烘喘瀹曟粌鈹戦崱鈺佹闂佸憡娲﹂崑鈧俊鎻掔墛缁绘盯宕卞Δ浣侯洶婵炲銆嬮幏锟�
相关话题/Soliton molecules method