Fund Project:Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B010143003) and the National Natural Science Foundation of China (Grant No. 61871195)
Received Date:18 December 2020
Accepted Date:25 March 2021
Available Online:07 June 2021
Published Online:05 August 2021
Abstract:The cylindrical surrounding double-gate metal-oxide-semiconductor field-effect transistor (CSDG MOSFET) is formed by adding an internal control gate to the cylindrical surrounding-gate (CSG) MOSFET. The inner gate of CSDG MOSFET acts as a second gate for enhanced charge control. At present, the research of CSDG MOSFET structure is widely concerned. Compared with double-gate MOSFET, triple-gate MOSFET and CSG MOSFET, the CSDG MOSFET provides good controllability of the gate over the channel. Additionally, the device allows for higher volume inversion than CSG MOSFET, which leads to better output characteristics.In order to study the electrical characteristics of CSDG MOSFET, the potential model of CSDG MOSFET is obtained by solving the two-dimensional Poisson equation in cylindrical coordinates. The effects of gate dielectric, channel length and gate dielectric thickness on the surface potential and electric field of CSDG MOSFET are studied. Besides, the drain-source current model of CSDG MOSFET is established by integrating the inverse charge along the channel. The effects of gate dielectric and gate dielectric thickness on the transconductance of CSDG MOSFET are studied. In addition, the effects of the downscaling of device parameters on the transfer characteristics and transconductance of CSDG MOSFET are studied.The electrical characteristics of CSDG MOSFET are analyzed and discussed. The results show that the minimum surface potential along the channel of CSDG MOSFET decreases with the increase of gate dielectric constant of gate dielectric layer. The electric field along the channel and along the radius, drain-source current and transconductance of CSDG MOSFET increase as the gate dielectric constant increases. The threshold voltage of CSDG MOSFET decreases as the gate dielectric constant increases. Moreover, with the downscaling of device parameters, the transfer characteristics and transconductance of CSDG MOSFET decrease. The performance of CSDG MOSFET can be significantly improved by using high-k gate dielectrics. Keywords:cylindrical surrounding double-gate metal-oxide-semiconductor field-effect transistor/ model/ gate dielectric/ electrical characteristics
表1CSDG MOSFET器件参数值 Table1.Model parameters of CSDG MOSFET.
基于(15)式和(16)式的电势模型, CSDG MOSFET在不同栅介质下的外栅表面势沿沟道变化情况如图4所示. 由图4可见, 表面势沿沟道先减小后逐渐增大, 最小表面势随栅介质层介电常数的增加而降低, 这是因为栅电容增大后, 垂直电场增大, 栅极对沟道的控制增强, 使沟道表面势下降. 图 4 表面势沿沟道的分布 Figure4. Surface potential distribution along the channel.
图5所示为CSDG MOSFET在不同SiO2栅介质厚度下外栅表面势沿沟道变化曲线, 可以看出, 随着SiO2氧化层变薄, 栅极对沟道的控制增强, 垂直电场增大, 使最小表面势下降. CSDG MOSFET在不同沟道长度下的表面势沿沟道变化情况如图6所示, 其中沟道长度为30和50 nm时的电势分布情况与文献[23]的结果基本一致. 随着沟道长度的减小, 最小表面势上升, 这是因为沟道长度减小后电荷控制的线性区域减小, 使电势向源区偏移, 从而影响了沟道中心的最小表面势[24]. 图 5 不同氧化层厚度下表面势分布 Figure5. Surface potential distribution with different oxide thickness.
图 6 不同沟道长度下表面势的分布 Figure6. Surface potential distribution with different channel length.
CSDG MOSFET在不同栅介质下的电场沿沟道的变化情况如图7所示. 随着栅介质层介电常数增大, CSDG MOSFET在源漏端的电场逐渐增大, 这是因为栅介电常数的提高使栅电容增大后, 栅极对沟道的控制增强, 源漏端的电场逐渐增大. 图 7 不同栅介质下外栅表面电场沿沟道的分布 Figure7. Electric field distribution along the channel at the outer surface of CSDG MOSFET with different gate dielectric
在漏源电压固定时, SiO2介质下CSDG MOSFET在不同栅源电压下的电势和电场沿半径变化情况如图8和图9所示, 随着栅源电压增大, 电势逐渐增大且变得更平缓, 电场减小. 图 8 不同栅电压下电势沿半径的分布 Figure8. Electric potential distribution along the radius with different gate voltage.
图 9 不同栅电压下电场沿半径的分布 Figure9. Electric field distribution along the radius with different gate voltage.
CSDG MOSFET在不同栅介质下的电场沿半径变化情况如图10所示, 真空栅介质时CSDG MOSFET的电场较低, 随着栅介质层介电常数的增大, 栅极对沟道的控制增强, 沿半径的电场也逐渐增大. 图 10 不同栅介质下电场沿半径的分布 Figure10. Electric field distribution along the radius with different gate dielectric.
图11是CSDG MOSFET在不同栅介质下的漏源电流随栅源电压变化曲线, 插图为不同栅介质下的阈值电压对比. 由图中${I_{\rm{ds}}}$–${V_{{\rm{gs}}}}$变化关系可知, 当${V_{{\rm{gs}}}}$达到一定值后, 电流开始迅速增加, 说明CSDG MOSFET的栅控性能得到了较大程度的提高. 若以漏源电流2.0 × 10–7 A时的栅源电压作为阈值电压[25], 由图11可见, 随着栅介质常数的增大, 栅控性能变好, 沟道反型电荷密度增大, 漏源电流增加, 阈值电压逐渐减小. 图 11 不同栅介质下${I_{\rm{ds}}}$-${V_{{\rm{gs}}}}$曲线 Figure11. Curves of ${I_{\rm{ds}}}$ versus ${V_{\rm{ds}}}$ with different gate dielectric.
图12是CSDG MOSFET在不同SiO2栅介质厚度下的跨导随栅源电压变化曲线. 跨导随栅介质厚度的增大而减小, 这是因为栅介质厚度增大后栅电容减小, 垂直电场减小, 栅极对沟道的控制减弱, 使CSDG MOSFET的漏源电流减小, 跨导减小. 图 12 不同SiO2栅介质厚度下的跨导 Figure12. Transconductance with different SiO2 dielectric thickness.
为了对基于(23)式的漏源电流模型的仿真结果与TCAD的仿真结果进行比较, 用文献[26]中给出的器件尺寸和材料参数进行仿真, 结果见图13, 模型仿真得到的${I_{\rm{ds}}}$-${V_{\rm{ds}}}$特性与TCAD的结果[26]基本一致. 图 13 本文模型仿真得到的${I_{\rm{ds}}}$-${V_{\rm{ds}}}$曲线与TCAD结果比较 Figure13. Curve of ${I_{\rm{ds}}}$ versus ${V_{\rm{ds}}}$ between the model in this paper and the TCAD result.