Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11727813)
Received Date:07 November 2020
Accepted Date:17 January 2021
Available Online:07 June 2021
Published Online:20 June 2021
Abstract:Ultrasonic wave with higher intensity will directly cavitate in soft tissue. It is an important issue in ultrasonic therapy that the cavitation bubbles in soft tissues are driven in the ultrasonic field. It is assumed that the medium inside the bubble is gas, the cavity is filled with the incompressible viscous liquid, and the medium surrounding the cavity is viscoelastic solid. To introduce the effect of the surrounding tissue, it is assumed that the tissue is incompressible, linear and Voigt viscoelastic solid. The motion of a cavitation bubble can be affected by many factors, such as acoustic pressure, acoustic frequency, tissue elasticity and cavity size. Numerical simulation shows that the resonance frequency and amplitude of the bubbles decrease with cavity radius decreasing. It is also shown that the amplitude of the radial motion for bubbles decreases with the increase of the tissue shear modulus and the frequency, when the ratio of bubble radius to the cavity radius is constant. The effect of the elasticity is very obvious, which reduces the amplitude greatly. The effect of elasticity will be less when the driving pressure is strong. It is found that the inertial cavitation threshold of bubble is relatively low in a range of 1–5 μm. The inertial cavitation threshold of bubble increases with the increase of shear modulus and driving frequency. The smaller the cavity radius, the higher the inertial cavitation threshold of the bubble is. This report aims to provide a firm theoretical basis for the future study of bubbles in a liquid-filled cavity surrounded by a viscoelasticity tissue. Keywords:viscoelastic tissue/ radial vibration/ liquid cavity/ inertial cavitation threshold
3.数值分析与讨论为更好地了解气泡的动力学特征, 利用龙格-库塔法求解气泡的动力学方程(12)式, 并给予数值计算结果分析气泡的运动和惯性空化阈值. 在计算过程中, 腔内液体分别选择血液和水, 软组织的相关参数参考文献[10], 即ρ = 1050 kg/m3, pl0 = 105 Pa, σ = 0.056 N/m, η = 0.005 Pa·s, $\gamma = 1.4$, μ = 0.015 Pa·s, Rb0 = 5 μm, Rc0 = 20 μm. 软组织黏弹性对气泡共振频率的影响如图2所示. 对气泡初始半径为2.5 μm而言, 当腔外组织的剪切模量分别为0, 0.5和1.0 MPa时, 气泡共振频率$({{{\omega _0}} / {{\omega _\infty }}})$随半径比${{{R_{{\rm{c}}0}}}/ {{R_{{\rm{b}}0}}}}$的变化曲线表明: 组织硬度越大, 气泡共振频率约高; 在气泡半径一定的情况下, 腔体半径的增加将导致气泡共振的减小并逐渐趋近于气泡在无界液体中的共振频率, 和Wang[18]给出的弹性固体约束下的气泡共振频率变化规律一致. Olivier等[20]实验观察了凝胶包裹的液体腔内的气泡振动, 发现液体腔半径越大, 气泡的振动频率越低; 由于气泡在负压作用被激发后做自由振荡, 因此, 其振动频率与气泡在腔内的共振特性有关. 该实验观察到的结论与本文得到的气泡动力学模型预测的共振频率变化的趋势一致, 表明腔外介质的约束可使气泡共振频率增大. 图 2 腔外介质弹性不同时气泡共振频率随半径比的变化 Figure2. Change of bubble resonance frequency with radius ratio when the elasticity of the medium outside the cavity is different.
无限流体中的气泡动力学被广泛研究, 被介质包裹的液体腔中的气泡动力学行为在地质学、植物学及生物学中有广泛应用前景. Wang[18]、Church等[21]和Doinikov等[22]均对弹性介质包裹的液体腔内的气泡动力学进行了研究, 得到了他们的模型方程, 为分析凝胶等介质包裹的液体腔内的气泡动力学行为奠定了基础. 选取声波频率为1 MHz, 声压幅值为1 MPa, 气泡周围组织的剪切模量为0.5 MPa, 将本文的模型和上述理论模型进行了数值结果对比分析, 如图3所示. 本文的模型仅考虑了腔外介质弹性的影响, 对照Church和Yang[21]的壳式结构模型可以看出, 若忽略介质密度时, 两曲线几乎重合(图3(a)); 若考虑腔外介质密度, 在同样的驱动情况下, Church和Yang[21]模型预测的结果几乎不能崩溃, 但本文和Wang[18]的模型可观察到明显的崩溃相(图3(b)), 说明腔外介质密度可明显影响气泡的振动行为, 在以后工作中我们将进一步修正模型, 讨论腔外介质特性对气泡动力学的影响. Wang[18]将其理论和凝胶中的气泡运动实验观察结果进行了对比, 二者符合得较好, 但其在考虑液体压缩性时基于线性近似, 理论模型具有一定的局限性. Doinikov等[22]经过严格的推演得到了弹性介质中的气泡的自由振动动力学方程, 选取腔外固体的剪切模量为0.1 GPa, 初始负压为1 MPa做数值分析, 对比发现本文的理论模型预测的气泡自由振动周期短, 气泡的共振频率高(图3(c)), 但气泡振幅相差不大. 因此, 本文的模型在一定程度上可以用来预测黏弹性介质中的气泡动力学行为. 图 3 不同模型下气泡振动对比图(本文、文献[21]、文献[18]和文献[22]分别为模型I, II, III和IV) (a) 忽略腔外介质密度模型I、II对比; (b) Pa = 0.5 MPa时模型I, II, III对比; (c) Pa = 0.1 GPa时模型I, IV对比 Figure3. Vibration of bubbles under different models (The models of this paper, Ref. [21], Ref. [18] and Ref. [22] are called model I, II, III, IV, respectively): (a) Comparison of models I, II when ignoring the density of the medium outside the cavity; (b) Pa = 0.5 MPa, comparison of models I, II, III; (c) Pa = 0.1 GPa, comparison of models I, IV.
通常情况下, 球腔半径与气泡半径的比值$\alpha $越大, 腔外弹性介质对气泡的振动的约束越弱, 气泡的振动越接近在无限大液体介质中的运动行为. 图4给出了$\alpha $分别为4, 10和$ \infty $时, 气泡半径随时间变化曲线, 计算所用驱动声波频率为1 MHz, 声压幅值为1 MPa, 气泡周围组织的剪切模量为1 MPa. 当半径比$\alpha = 4$时, 气泡的稳态振幅最小且具有显著的非线性特征. 随着半径比的增大, 在较大的驱动压力作用下, 气泡振动表现出更为复杂的振动形态, 即气泡的振动的周期性受到一定的调制, 气泡崩溃间隔时间变长. 因此, 软组织在一定程度上抑制了气泡的振动. 图 4 腔与气泡半径比Rc0/Rb0不同时对气泡径向振动的影响 Figure4. Influence of the radius ratio of cavity to bubble (Rc0/Rb0) on the bubble radial vibration.
组肉组织的力学性能随着组织类型和组成不同而变化, 且组织的剪切模量一般为0.5—1.5 MPa, Qin等[23]在研究处于肌肉组织中的超声造影剂的动力学行为时发现, 在声场下造影剂微泡的振动幅度随着组织剪切模量的增大而减小. 为认识腔外介质力学性能对腔内气泡振动的影响, 分析了在1 MHz的声波频率驱动下, 声压幅值分别为0.5 MPa和1 MPa时, 介质剪切模量对气泡振动的影响. 对比图5(a)和图5(b)可以看出, 弹性模量越大, 气泡振动幅度越小. 驱动压力越大, 介质弹性对气泡的抑制作用具有增强的趋势. 图 5 不同声压幅值下腔外介质弹性对气泡振动的影响 (a) Pa = 0.5 MPa, (b) Pa = 1 MPa Figure5. Influence of the elasticity of the medium outside the cavity on bubble vibration under different sound pressure amplitudes: (a) Pa = 0.5 MPa; (b) Pa = 1 MPa.
气泡的空化阈值取决于许多因素, 包括超声波频率、气泡大小和周围介质特性等, 为分析液体腔内气泡振动特征, 本文采用可使振动气泡最大半径达到初始半径的两倍时的声压幅值作为惯性空化阈值来分析气泡的空化影响[21], 结果如图7所示, 数值分析所取的气泡初始半径范围为0.1—10 μm, 腔外介质的剪切模量为1 MPa. 随着气泡初始半径的增大, 空化阈值具有先减小后增大的趋势; 在气泡初始半径约为0.1—1 μm时, 气泡初始半径越小空化阈值越高, 表明此时气泡难易空化; 空化阈值低的区域主要分布在1—5 μm的范围内, 说明此区域内的气泡较易激发空化振动; 从阈值分布曲线看, 具有一定的起伏特征, 这可能与气泡系统的共振特性有关. 对比腔内介质分别为水和血液时空化阈值随气泡初始半径变化曲线可以发现, 血液中振动气泡的空化阈值较高, 这可能主要是血液黏度影响的结果. 腔外介质弹性模量以及驱动声波频率的增大也会在一定程度上增大空化阈值; 一般情况下, 液体腔越小, 空化阈值越高. 图 7 惯性空化阈值随气泡初始半径的变化趋势 (a)腔内液体及腔外介质弹性对气泡惯性空化阈值的影响; (b)不同驱动频率下气泡的惯性空化阈值; (c)液体腔半径不同时气泡的惯性空化阈值 Figure7. Variation trend of inertial cavitation threshold with initial bubble radius at different frequencies: (a) Influence of the elasticity of the liquid in the cavity and the medium outside the cavity on the inertial cavitation threshold of the bubble; (b) inertial cavitation threshold of bubbles under different driving frequencies; (c) inertial cavitation threshold of bubbles when the radius of the liquid cavity is different.