1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Supported by the National Key Research and Development Program of China (Grant No. 2016 YFA0301602) and the National Natural Science Foundation of China (Grant No. 61574087)
Received Date:23 October 2019
Accepted Date:27 November 2019
Published Online:05 February 2020
Abstract:In this paper, the spin dynamics and broadening mechanism of cesium vapor in cells without buffer gas is investigated by means of spin noise spectroscopy. In a macro atomic vapor cell, the lineshape of detuning frequency spectrum of spin relaxation rate is of Gaussian distribution. For a micron-scaled vapor cell with strong spatial locality, the lineshape of detuning frequency spectrum of spin relaxation rate is of Lorentzian distribution. The parameter dependence of detuning frequency spectrum of spin relaxation rate, such as temperature, is studied quantitatively. The detuning frequency spectrum of the spin relaxation rate is measured experimentally to be broadened by $ \sim $4 GHz, which is obviously larger than the unhomogeneous Doppler broadening of $ \sim $500 MHz for a macro atomic vapor cell. At the same time, the detuning frequency spectrum of total noise in the two atomic vapor cells is studied. In the macro atomic vapor cell, the total noise intensity strongly relies on the detuning frequency of the laser with respect to the atomic resonance transition. In the micron-scaled vapor cell, due to the strong homogeneous broadening, the center of the detuning frequency spectrum of the total noise is observed to dip. Finally, a simplified physical model is established to compute the broadening of the micron-scaled vapor cell. The homogeneous broadening of atoms is explained experimentally and theoretically in the micron-scaled vapor cell. Keywords:spin noise spectroscopy/ spin dynamics/ spin relaxation rate/ homogeneous broadening
全文HTML
--> --> -->
3.实验结果及讨论首先在气室1中基于法拉第旋转效应测量了133Cs原子的自旋噪声谱. 测量时将激光失谐频率调至距133Cs原子D2跃迁线(62S1/2 (F = 4) → 62P3/2)中心频率+600 MHz, 原子气室温度T = 296 K, 激光功率P = 500 μW, 外加磁场B = 5 G (1 G = 10–4 T), 得到典型的133Cs原子的自旋噪声谱(图1(b)). 通过洛伦兹拟合得到半高全宽${\text{δ}}\nu \approx$514 kHz, 其对应的自旋寿命[23] ${\tau _{{\rm{spin}}}} \approx {619}\;{\rm{ns}}$. 改变外加磁场B (从5 G增大至30 G), 测量得到自旋噪声谱, 其拉莫尔进动频率与磁场关系如图2(b)所示, 随着磁场的增加拉莫尔进动频率向高频移动. 基于拉莫尔进动与外场的依赖关系可以得到朗德因子g = 0.25364, 与理论值0.25000有1.5%的偏差, 误差原因主要来自于磁场线圈的非均匀性带来的系统误差. 图 2 气室1中磁场相关的自旋噪声谱 (a)不同磁场下的自旋噪声谱(黑线)和拟合曲线(红线); (b)自旋噪声谱中心频率(蓝圆圈)与外场关系图, 以及拟合曲线(红线); 激光失谐频率ΩD2 = + 600 MHz于D2线(62S1/2 (F = 4) → 62P3/2), 激光功率为P = 500 μW, 原子气室温度T = 296 K Figure2. Magnetic-field dependent spin noise spectrum in cell 1: (a) Spin noise spectrum (black lines) and fitting curve (red lines) versus the magnetic fields; (b) dependence of center frequency of spin noise spectrum on magnetic fields. The blue circles are the experimental data. The red line is the fitting curve. The laser is detuned ΩD2 = + 600 MHz from the D2 transition (62S1/2 (F = 4) → 62P3/2). The laser power P = 500 μW. The temperature of atomic cell is 296 K.
自旋噪声谱的强度依赖测量激光的频率失谐. 在气室1中, 原子气室温度T = 296 K, 激光功率P = 500 μW, 外加磁场B = 15 G. 测量不同激光失谐频率下的自旋噪声谱. 对自旋噪声谱经洛伦兹拟合得到自旋弛豫速率和总噪声的结果, 如图3蓝圆圈所示. 其谱线在两个基态超精细结构(F = 3和F = 4)的D2跃迁线处有极值, 两侧迅速减小. 气室1没有缓冲气体, 展宽主要来自于多普勒效应引起的非均匀展宽. 由于系统的非均匀展宽特性, 自旋弛豫速率和总噪声均为激光失谐频率的函数, 以高斯公式线性拟合: 图 3 气室1中自旋噪声谱的失谐频率依赖关系 (a)自旋弛豫速率与失谐频率的对应关系图; (b)总噪声与失谐频率的对应关系图; 激光失谐频率在D2线(62S1/2 (F = 3) → 62P3/2)附近, 激光功率P = 500 μW, 外磁场B = 15 G, 实验数据为(蓝圆圈)和拟合曲线(红线), 原子气室温度T = 296 K Figure3. Detuning frequency dependent spin noise spectrum in cell 1: (a) Spin relaxation rate versus the detuning frequency; (b) total noise versus the detuning frequency. The laser is detuned from the D2 transition (62S1/2 (F = 3) → 62P3/2). The laser power P = 500 μW. Magnetic field B = 15 G. The blue circles are the experimental data. The red line is the fitting curve. The temperature of atomic cell is 296 K.
其中, 激光强度$I = P/{\text{π}}{\omega ^2}$(P = 5 mW为激光功率, ω = 20 μm为高斯光束的束腰), 饱和强度$ {I_{{\rm{sat}}}} \!= $$ \displaystyle\frac{{\text{π}}}{{\rm{3}}}\frac{{hc}}{{{\lambda ^3}\tau }}$[28], λ是激光的波长, 激发态能级(62P3/2)的寿命τ$ \approx $ 30 ns. 计算得到133Cs原子的饱和强度为1.1 mW/cm2, 代入(4)式得到的功率展宽为约3.125 GHz, 大于多普勒展宽. 系统的展宽为所有展宽之和, 约4 GHz, 其中功率展宽在均匀展宽中占主导作用, 简便起见, 在百微米气室2中只考虑均匀展宽对自旋噪声谱的影响. 在百微米尺度原子气室中, 探测光功率P = 5 mW, 测量不同温度和失谐频率条件下的自旋噪声谱, 其自旋弛豫速率和总噪声的实验结果(圆圈)以及拟合曲线(红线)如图4所示. 图4(a)和图4(b)为温度T = 387和431 K时自旋弛豫速率-频率依赖关系. 图4中有两个明显的峰, 分别处于两个基态超精细结构(F = 3和F = 4)的共振跃迁线上. 图 4 气室2中自旋噪声谱的失谐频率依赖关系 (a) T = 387 K时自旋弛豫速率与失谐频率的关系; (b) T = 431 K时自旋弛豫速率与失谐频率的关系; (c) T = 387 K时总噪声与失谐频率的关系; (d) T = 431 K时总噪声与失谐频率的关系; 激光失谐频率在D2线(62S1/2 (F = 3) → 2P3/2)附近, 激光功率为P = 5 mW, 蓝圆圈表示实验数据, 红线为拟合曲线 Figure4. The detuning frequency dependent spin noise spectrum in cell 2: (a) Spin relaxation rate versus the detuning frequency at T = 387 K; (b) spin relaxation rate versus the detuning frequency at T = 431 K; (c) total noise versus the detuning frequency at T = 387 K; (d) total noise versus the detuning frequency at T = 431 K. The laser is detuned from the D2 transition (62S1/2 (F = 3) → 62P3/2). The laser power P = 5 mW. The blue circles are the experimental data, and the red line is the fitting curve.