1.College of Materials Science and Engineering, Sichuan University, Chengdu 610207, China 2.No. 33 Research Institute, China Electronics Technology Group Corporation, Taiyuan 030006, China 3.School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China 4.Institute of Precision Measuring Technology and Instruments, Beijing Information Science and Technology University, Beijing 100192, China
Fund Project:Project supported by Beijing Natural Science Foundation (Grant No. 7172035)
Received Date:25 May 2019
Accepted Date:12 July 2019
Available Online:01 November 2019
Published Online:20 November 2019
Abstract: Two-dimensional spatial modulation and demodulation technology can improve the weak signal detection capability of photoelectric detection system in a stronger noise background. In this paper, a two-dimensional phase-sensitive detector for the high-precision demodulation of 2D spatial amplitude-modulated signal is proposed. In this paper, we introduce the principle of extracting modulating signals from 2D amplitude modulated images by using 2D phase-sensitive detector, and simulate its ability to suppressing noise and extracting signal from the amplitude-modulated images buried in noise. In order to eliminate the influence of grid image generated by metal wire mesh sandwiched between two layers of glass on the detection of shielding glass defects, the methods of filtering in the frequency domain, rectifying plus filtering and two-dimensional phase sensitive detector are used to demodulate the mesh amplitude-modulated image, and the effects of extracting defects and suppressing noise are compared with each other. The principle and experimental results of defect detection of ordinary glass by using external carrier are also provided. The simulation results and the detection results show that the two-dimensional phase-sensitive detector can be used to demodulate spatial two-dimensional amplitude-modulated image produced by optical modulators to extract two-dimensional measurement signals. The 2D phase-sensitive detector can greatly improve the signal-to-noise ratio of the output image, increase detection accuracy and the ability to extract modulating signals from the amplitude-modulated image buried in noise. Keywords:two-dimensional phase-sensitive detector/ amplitude-modulated image/ signal-to-noise ratio/ glass defects detection
图 8 二维相敏检波方法屏蔽玻璃缺陷识别过程 (a) 屏蔽玻璃原始二维图像; (b) 原始二维图像幅度谱2D显示; (c) 原始二维图像幅度谱3D网格显示; (d) 载波幅度谱2D显示; (e) 载波幅度谱3D网格显示; (f) 提取的载波图像; (g) 乘法器输出图像; (h) 乘法器输出图像幅度谱2D显示; (i) 乘法器输出图像幅度谱3D网格显示; (j) 滤波器幅度谱; (k) 滤波器输出图像幅度谱2D显示; (l) 滤波器输出图像幅度谱3D网格显示; (m) 滤波器输出图像2D显示; (n) 滤波器输出图像3D网格显示; (o) 缺陷二值化图像 Figure8. Detection process of defects in shielding glass for 2D PSD: (a) Original 2D image of shielding glass; (b) amplitude spectrum 2D display of original image; (c) amplitude spectrum 3D mesh display of original image; (d) amplitude spectrum 2D display of carrier; (e) amplitude spectrum 3D mesh display of carrier; (f) extracted carrier image; (g) output image of multiplier; (h) amplitude spectrum 2D display of output image of multiplier; (i) amplitude spectrum 3D mesh display of output image of multiplier; (j) amplitude spectrum 2D display of filter; (k) amplitude spectrum 2D display of output image of filter; (l) amplitude spectrum 3D mesh display of output image of filter; (m) 2D display of output image of filter; (n) 3D mesh display of output image of filter; (o) binary image of defect.
利用图7所示四种屏蔽玻璃缺陷检测算法对图6所示三种屏蔽玻璃典型缺陷图像进行缺陷识别, 识别结果如图9所示, 在此采用(5)式所示的信噪比的定义评价输出图像的质量. 直接滤波方法输出噪声较多, 信噪比最低; 整流 + 滤波方法信噪比有所提高; 两种不同载波提取方法实现的二维相敏检波都可以得到信噪比高的缺陷图像. 图 9 四种屏蔽玻璃缺陷检测算法输出图像信噪比对比 (a) 黑点缺陷原始图像; (b) 划痕缺陷原始图像; (c) 白线缺陷原始图像; (d) 黑点缺陷直接滤波方法输出图像; (e) 划痕缺陷直接滤波方法输出图像; (f) 白线缺陷直接滤波方法输出图像; (g) 黑点缺陷整流滤波方法输出图像; (h) 划痕缺陷整流滤波方法输出图像; (i) 白线缺陷整流滤波方法输出图像; (j) 黑点缺陷二维相敏检波方法(近似提取载波)输出图像; (k) 划痕缺陷二维相敏检波方法(近似提取载波)输出图像; (l) 白线缺陷二维相敏检波方法(近似提取载波)输出图像; (m) 黑点缺陷二维相敏检波方法(精确提取载波)输出图像; (n) 划痕缺陷二维相敏检波方法(精确提取载波)输出图像; (o) 白线缺陷二维相敏检波方法(精确提取载波)输出图像 Figure9. Signal-to-noise ratio of defect output images for different detection methods: (a) Original 2D image of black spot defect; (b) original 2D image of scratch defect; (c) original 2D image of white line defect; (d) image of black spot defect achieved by filtering method; (e) image of scratch defect achieved by filtering method; (f) image of white line defect achieved by filtering method; (g) image of black spot defect achieved by rectifier + filtering method; (h) image of scratch defect achieved by rectifier + filtering method; (i) image of white line defect achieved by rectifier + filtering method; (j) image of black spot defect achieved by 2D PSD (extracting carrier approximately) method; (k) image of scratch defect achieved by 2D PSD (extracting carrier approximately) method; (l) image of white line defect achieved by 2D PSD (extracting carrier approximately) method; (m) image of black spot defect achieved by 2D PSD (extracting carrier accurately) method; (n) image of scratch defect achieved by 2D PSD (extracting carrier accurately) method; (o) image of white line defect achieved by 2D PSD (extracting carrier accurately) method.
24.2.二维相敏检波方法在普通玻璃缺陷检测中的应用 -->
4.2.二维相敏检波方法在普通玻璃缺陷检测中的应用
由于屏蔽玻璃中的金属丝网起到载波调制的作用, 因此在屏蔽玻璃缺陷检测中不需要外加载波信号, 而普通玻璃缺陷检测中为了消除各种环境光的影响, 可以采用对外加载波进行调制和解调的方法. 图10(a)所示为通过计算机软件生成的二维载波图像; 图10(b)为相机采集到的通过投影仪投射的未被调制的载波图像; 图10(c)为相机获取的、已被玻璃调制的图像; 图10(d)为强环境光下的已调制图像; 图10(e)为叠加了噪声的已调制图像; 图10(f)为(c)图所示已调制图像和(d)图强环境光下已调制图像解调后的图像; 图10(g)为(c)图所示已调制图像和(d)图强环境光下已调制图像解调后图像的3D网格显示; 图10(h)为(e)图所示叠加了噪声的已调制图像解调后图像的3D网格显示. 图10(f)和10(g)结果显示, 只要相机没有出现饱和的情况下, 环境光对玻璃缺陷的检测毫无影响, 图10(h)结果显示, 二维相敏检波方法可以有效抑制噪声对玻璃缺陷检测的影响. 图 10 外加载波方法普通玻璃缺陷检测结果 (a) 软件生成的二维载波图像; (b) 投影仪投射的未加调制的载波图像; (c) 相机获取的已调制图像; (d) 强环境光下的已调制图像; (e) 叠加了噪声的已调制图像; (f)图(c)和(d)解调后的2D图像; (g)图(c)和(d)解调后的3D网格显示图像; (h) 图(e)解调后的3D网格显示图像 Figure10. Detection results of glass defects by using external carrier method: (a) 2D carrier image generated by software; (b) unmodulated carrier image projected by projector; (c) 2D modulated image acquired by camera; (d) modulated image in strong ambient light: (e) modulated image superimposed with noise; (f) demodulated 2D image of (c) and (d); (g) demodulated 3D mesh image of (c) and (d); (h) demodulated 3D mesh image of (e).