Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11372283), the Foundation of Henan Educational Committee of China (Grant No. 13A140674), and the Research Foundation of the Higher Education Institutions of Henan Province of China (Grant No. 17A430001).
Received Date:25 October 2018
Accepted Date:04 May 2019
Available Online:01 July 2019
Published Online:05 July 2019
Abstract:In this paper, molecular dynamics method is used to simulate the evolution mechanism of void nucleation, growth and closure of diffusion-welded copper/aluminum bilayer film under cyclic loading condition with a strain-to-width ratio of R = –1. It is found that under cyclic loading condition, the voids mainly nucleate inside the aluminum side of the copper/aluminum bilayer film, and two kinds of evolution modes of voids I and II are found. The void I nucleates at the position of the gap defect produced by the Kirkendall effect when the copper-aluminum diffuses to form the bilayer film. Under this nucleation mode, after the gap defects have become void, the void moves into the area where copper atoms are relatively dense inside the OTHER structure on the aluminum side. When gaps accumulate to form voids, the voids grow at a fixed position. The void II on the aluminum side nucleates at the position of the gap defect formed by overcoming the stair-rod dislocation and then remains motionless in the process of nucleation, growth and closure. Comparing with the void I, the stress corresponding to the nucleation of void II is large, the growth speed of the void II is fast and the size of the void II is slightly large in the process of strain loading. The void II closure speed is also faster in the strain unloading stage. The two kinds of voids have two common characteristics in the process of nucleation, growth and closure. 1) Both kinds of voids nucleate at the position of the gap defect inside OTHER structure on the aluminum side. 2) In the process of voids growth and closure, both kinds of voids have the same shape changes. In the void growth stage, both kinds of voids first grow along the strain loading direction, then expand in the direction perpendicular to the strain loading direction, and finally, the shapes of two kinds of voids tend to become spherical. In the stage of void closure, the two kinds of voids are first compressed into ellipsoidal shape along the strain loading direction, and then disappear from both ends of the void to the center of the void in the direction perpendicular to the strain loading direction. In the subsequent cyclic loading process, none of new voids appears again at the position where the voids disappearred, but the nucleation of voids at other position of gap defect forms inside the other structure located on the aluminum side. Keywords:molecular dynamics/ Cu/Al film/ cyclic load/ void
全文HTML
--> --> --> -->
3.1.孔洞Ⅰ的演化: 铜铝扩散形成双层膜时所产生出的空隙缺陷引发孔洞的形核、生长和闭合
33.1.1.孔洞Ⅰ的形核 -->
3.1.1.孔洞Ⅰ的形核
图3和图4分别为铜/铝双层膜在应变加载下孔洞形核Ⅰ演化的成分原子位置图和原子结构图, 这些图是沿[100]晶向截取孔洞附近区域3层原子厚度的局部图. 从图3(a)可以看出, 当应变ε = 0.0000时即循环应变加载前, 铜/铝双层膜中铝侧扩散铜原子附近的铝原子排列稍显混乱, 并已经有空隙存在. 而且从图4(a)可以看出, 循环应变加载前, 孔洞形核前的孔洞位置及附近区域原子结构已经由面心立方结构(face-centered cubic, FCC)变为无序结构(OTHER)和少量密排六方结构(hexagonal closepacked structure, HCP), 表明该位置区域出现了缺陷. 这些空隙缺陷和OTHER结构是由于铜原子向铝侧内扩散过程中产生了柯肯达尔效应, 使得铝侧铜原子扩散位置处发生点阵变形, 由此产生了一定量的空隙、位错和OTHER结构. 图 3 孔洞Ⅰ: 孔洞形核演化截图(红色代表铝原子, 蓝色代表铜原子) ε分别为(a) 0.0000; (b) 0.0528; (c) 0.0531; (d) 0.0534; (e) 0.0537; (f) 0.0540 Figure3. Void I: screenshot of the nucleation evolution of the void (red for aluminum atoms, blue for copper atoms), ε is (a) 0.0000; (b) 0.0528; (c) 0.0531; (d) 0.0534; (e) 0.0537; (f) 0.0540.
图 4 孔洞Ⅰ: 孔洞形核演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.0000; (b) 0.0528; (c) 0.0531; (d) 0.0534; (e) 0.0537; (f) 0.0540 Figure4. Void I: screenshot of the atomic structure of nucleation evolution of the void (red for HCP structure, green for FCC structure, white for OTHER structure), ε is (a) 0.0000; (b) 0.0528; (c) 0.0531; (d) 0.0534; (e) 0.0537; (f) 0.0540.
随应变增加, 当ε = 0.0510时, 在距离孔洞形核中心位置的附近出现了2条肖克莱位错线S1, S2和1条OTHER位错线Q1(图5). 另外, 在孔洞形核位置附近有HCP结构产生, 由于在孔洞形核位置附近产生层错使得这一区域应力集中释放的同时空隙变大. 图 5ε = 0.0510时, 孔洞Ⅰ: 孔洞形核位置处的位错分析截图(红色原子为HCP结构原子, 紫色为$\langle 110\rangle/6$压杆位错线, 绿色为$\langle 112\rangle/6$肖克莱位错线, 深红色为OTHER结构位错线) Figure5.ε = 0.0510, Void I: screenshot of dislocation analysis at the nucleation position of the void (red atoms are HCP structure atoms, purple represents $\langle 110\rangle/6$ the stair-rod dislocation line, green represents $\langle 112\rangle/6$ the shockley dislocation line, dark red represents the OTHER structure dislocation line).
随拉伸应变的继续增加, 当ε = 0.0528时, 孔洞形核位置区域(110)面之间的空隙增大(图3(a)), 这是由于肖克莱位错S1和S2交截形成了一个压杆位错R1(图6), 此压杆位错对应的割阶导致原空隙变大(图4(b)). 当进一步加载到ε = 0.0531时, 此变大了的空隙向铜原子的位置处移动, 并在扩散铜原子左侧聚集形成一个空位(图3(c)和图4(c)), 这是由于空位与扩散铜原子之间存在一定的结合能[39], 在拉伸应力的作用下, 空位向扩散铜原子数量相对较多的位置发生移动形成了稳定的空位-溶质原子结构[40]. 继续加载时由于该空位附近新产生出的肖克莱位错与压杆位错R1相互作用形成肖克莱位错而导致此压杆位错消失, 这种情况类似于徐振海等[41]在单晶铜纳米线屈服机理的分子动力学模拟研究中观察到的情况. 图 6ε = 0.0528时, 孔洞Ⅰ: 孔洞形核位置处的位错分析截图(红色原子为HCP结构原子, 紫色为$\langle 110\rangle/6$压杆位错线, 绿色为$\langle 112\rangle/6$肖克莱位错线, 深红色为OTHER结构位错线) Figure6.ε = 0.0528, Void I: screenshot of dislocation analysis at the nucleation position of the void (red atoms for HCP structure atoms, purple represents $\langle 110\rangle/6$ the stair-rod dislocation line, green represents $\langle 112\rangle/6$ the shockley dislocation line, dark red represents the OTHER structure dislocation line).
继续加载到ε = 0.0537时, 在拉伸应力的作用下, 空位向铜原子数较多的区域移动. 另外, 另一个新形成的空位也向铜原子数较多的位置移动(图3(d)—(e)), 这是由于在所研究空位的正前方附近形成了新的肖克莱位错S3, 其右上及右下位置各自又形成了2个新的压杆位错R2和R3, 如图7位错分析图所示, 正是这些压杆位错、扩散铜原子与空位的相互作用导致此空位沿Z轴继续向下移动, 并与新形成的空位相聚集形成空位团(图3(f)和图4(f)). 图 7ε = 0.0537时, 孔洞Ⅰ: 孔洞形核位置处的位错分析截图(红色原子为HCP结构原子, 紫色为$\langle 110\rangle/6$压杆位错线, 绿色为$\langle 112\rangle/6$肖克莱位错线, 深红色为OTHER结构位错线) Figure7.ε = 0.0537, Void I: screenshot of dislocation analysis at the nucleation position of the void (red atoms are HCP structure atoms, purple represents $\langle 110\rangle/6$ the stair-rod dislocation line, green represents $\langle 112\rangle/6$ the shockley dislocation line, dark red represents the OTHER structure dislocation line).
图 9 孔洞Ⅰ: 孔洞生长演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.0540; (b) 0.0600; (c) 0.0750; (d) 0.0900; (e) 0.1050; (f) 0.1206 Figure9. Void I: screenshot of the atomic structure of the growth evolution of the void (red for the HCP structure, green for the FCC structure, white for the OTHER structure), ε is (a) 0.0540; (b) 0.0600; (c) 0.0750; (d) 0.0900; (e) 0.1050; (f) 0.1206.
总之, 孔洞长大是由于孔洞周围原子面间距在拉伸应变的作用下产生空隙, 空隙向孔洞聚集, 从而使得孔洞长大. 从结构上整体分析, 孔洞在位错的作用下长大, 当孔洞周围晶格结构不发生变化时, 孔洞外形变化不大, 几乎不成长. 这种孔洞几乎不生长的原因是由于扩散铜原子在铝侧局部区域置换铝原子形成了置换固溶体, 造成该区域强化(固溶强化), 从而使得孔洞不易长大. 经计算得出孔洞形核区域铜原子的原子数密度范围为1.72%—2.63%, 如图10两竖直线段中间区域所示, 此浓度在Cu-Al相图[42]上为χ固溶体(铝作为溶剂), 实验证明, 从铜铝过渡层(铜铝浓度均大于5%)到铝侧中显微硬度逐渐降低, 但大于纯铝的硬度[11,43]. 图 10 扩散后铜和铝原子在拉伸方向(Z轴)的原子浓度分布 Figure10. Atomic concentration distribution of copper and aluminum atoms in the tensile direction (Z-axis) after diffusion.
33.1.3.孔洞Ⅰ的闭合 -->
3.1.3.孔洞Ⅰ的闭合
从应变卸载阶段的图11(a)—(d)可以看出, 孔洞沿应变卸载方向变成椭球状(压缩平面与压缩方向垂直), 椭球型孔洞沿长轴[010]晶向由两端逐渐向椭球中心闭合减小, 这时孔洞周围有新层错的生成(图12(a)—(c)). 继续卸载, 如图12(c)—(d)所示, 孔洞附近位错转变为FCC结构, 当应变卸载至0时, 模型内部层错也随之减少直至消失. 图 11 孔洞Ⅰ: 孔洞闭合演化图(红色代表铝原子, 蓝色代表铜原子) ε分别为(a) 0.0906; (b) 0.0606; (c) 0.0306; (d) 0.0006; (e) –0.0294; (f) –0.0444 Figure11. Void I: screenshot of the closure evolution of the void (red for aluminum atoms, blue for copper atoms), ε is (a) 0.0906; (b) 0.0606; (c) 0.0306; (d) 0.0006; (e) –0.0294; (f) –0.0444.
图 12 孔洞Ⅰ: 孔洞闭合演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.0906; (b) 0.0606; (c) 0.0306; (d) 0.0006; (e) –0.0294; (f) –0.0444 Figure12. Void I: screenshot of the atomic structure of the closure evolution of the void (red for HCP structure, green for FCC structure, white for OTHER structure), ε is (a) 0.0906; (b) 0.0606; (c) 0.0306; (d) 0.0006; (e) –0.0294; (f) –0.0444.
图14和图15分别为铜/铝双层膜随应变加载下孔洞形核Ⅱ演化的成分原子位置图和原子结构图, 这些图是沿[100]晶向截取孔洞附近区域3层原子厚度的局部图. 图 14 孔洞Ⅱ: 孔洞形核演化图(红色代表铝原子, 蓝色代表铜原子) ε分别为(a) 0.1050; (b) 0.1155; (c) 0.1158; (d) 0.1161; (e) 0.1164; (f) 0.1167 Figure14. Void Ⅱ: screenshot of the nucleation evolution of the void (red for aluminum atoms, blue for copper atoms), ε is (a) 0.1050; (b) 0.1155; (c) 0.1158; (d) 0.1161; (e) 0.1164; (f) 0.1167.
图 15 孔洞Ⅱ: 孔洞形核演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.1050; (b) 0.1155; (c) 0.1158; (d) 0.1161; (e) 0.1164; (f) 0.1167 Figure15. Void Ⅱ: screenshot of the atomic structure of the nucleation evolution of the void (red for HCP structure, green for FCC structure, white for OTHER structure), ε is (a) 0.1050; (b) 0.1155; (c) 0.1158; (d) 0.1161; (e) 0.1164; (f) 0.1167.
如图16(a)—(b)和图17(a)—(c)所示, 随拉伸负载增加, 孔洞沿拉伸方向增长, 孔洞体积相应增大, 孔洞附近OTHER结构原子开始增多, 有部分OTHER结构向HCP结构转化. 继续拉伸, 如图16(c)—(e)和图17(c)—(e)所示, 孔洞沿[010]晶向(与拉伸方向垂直的方向)增大, 孔洞形状为近球形, 孔洞附近OTHER结构原子继续增多. 如图16(f)和图17(f)所示, 当拉伸应变达到幅值ε = 0.1206时, 孔洞体积几乎不变, 形状向球形转变. 图 16 孔洞Ⅱ: 孔洞生长演化截图(红色代表铝原子, 蓝色代表铜原子) ε分别为(a) 0.1170; (b) 0.1173; (c) 0.1179; (d) 0.1182; (e) 0.1185; (f) 0.1206 Figure16. Void Ⅱ: screenshot of the growth evolution of the void (red for aluminum atoms, blue for copper atoms), ε is (a) 0.1170; (b) 0.1173; (c) 0.1179; (d) 0.1182; (e) 0.1185; (f) 0.1206.
图 17 孔洞Ⅱ: 孔洞生长演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.1170; (b) 0.1173; (c) 0.1179; (d) 0.1182; (e) 0.1185; (f) 0.1206 Figure17. Void Ⅱ: screenshot of the atomic structure of the growth evolution of the void (red for the HCP structure, green for the FCC structure, white for the OTHER structure), ε is (a) 0.1170; (b) 0.1173; (c) 0.1179; (d) 0.1182; (e) 0.1185; (f) 0.1206.
在卸载阶段, 如图18(a)—(c)和图19(a)—(c)所示, 孔洞两侧{111}面原子向孔洞处滑移, 产生大面积的层错, 孔洞沿[001]晶向(拉伸应变卸载方向)减小, 收缩成椭球形. 卸载到ε = 0.0456时, 如图18(c)—(e)和图19(c)—(e)所示, 孔洞沿椭圆短长轴([010]晶向)向孔洞中心收缩减小, 紧接着孔洞几乎完全被OTHER原子填充, 孔洞位置处又处于位错交截状态[48]. 卸载到ε = 0.0306时, 如图18(f)和图19(f)所示, 孔洞位置处原子间距进一步减小, 原子排列紧密, 孔洞位置处HCP结构继续向OTHER转变直至几乎全部消失, OTHER结构转化为FCC结构. 图 18 孔洞Ⅱ: 孔洞闭合演化截图(红色代表铝原子, 蓝色代表铜原子) ε分别为(a) 0.1203; (b) 0.0906; (c) 0.0756; (d) 0.0606; (e) 0.0456; (f) 0.0306 Figure18. Void Ⅱ: screenshot of the closure evolution of the void (red for aluminum atoms, blue for copper atoms), ε is (a) 0.1203; (b) 0.0906; (c) 0.0756; (d) 0.0606; (e) 0.0456; (f) 0.0306.
图 19 孔洞Ⅱ: 孔洞闭合演化的原子结构分析截图(红色代表HCP结构, 绿色代表FCC结构, 白色代表OTHER结构) ε分别为(a) 0.1203; (b) 0.0906; (c) 0.0756; (d) 0.0606; (e) 0.0456; (f) 0.0306 Figure19. Void Ⅱ: screenshot of the atomic structure of the closure evolution of the void (red for HCP structure, green for FCC structure, white for OTHER structure), ε is (a) 0.1203; (b) 0.0906; (c) 0.0756; (d) 0.0606; (e) 0.0456; (f) 0.0306.