1.State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Key R& D Program of China (Grant Nos. 2018YFB1107205, 2016YFA0301302), and the National Natural Science Foundation of China (Grant Nos. 61590933, 11474010, 11627803).
Received Date:07 January 2019
Accepted Date:20 March 2019
Available Online:01 May 2019
Published Online:20 May 2019
Abstract:Unlike classical digital computers in which a bit can represent either 1 or 0 at any time, quantum computers use a two-level system, i.e., a qubit, to implement logical operations based on quantum mechanical laws, which can represent both values at once. Owing to the superposition property of qubits, quantum computers have natural parallel processing advantages and thus have potential to exceed the computational efficiency of classical computers for particular tasks. Quantum logic gates are the generalization of classical logic gates in computational networks. It has been proved that two-qubit quantum gates together with one-qubit quantum gates are adequate for constructing networks with any possible quantum computational property. Directional couplers are the most critical elementsfor constructing the quantum gates. In recent years, photonic quantum technologies have emerged as a promising experimental platform for quantum computing. Single photons have robust noise resistance, long coherence time, high transmission speed and great compatibility with other systems. They can be easily manipulated and encoded in any of several degrees of freedom, for example, polarization, path, spatial mode or time bin. Optical waveguide technology enables the realizing of complex optical schemes comprised of many elements with desired scalability, stability and miniaturization. Femtosecond laser direct writing of waveguide has been adopted as a powerful tool for integrated quantum photonics with characteristics of rapidness, cost-effectiveness, mask-less and single-step process. In particular, it has the ability to build arbitrary three-dimensional circuits directly inside bulk materials, which is impossible to achieve with conventional lithography. In this article we review the femtosecond laser writing and quantum characterization of directional coupler and important one-qubit and two-qubit optical quantum logic gates, such as Hadamard gate, Pauli-X gate, controlled-NOT gate, and controlled-Phase gate. The qubits in these gates are usually encoded through optical paths or polarizations of photons. The key to the realization of polarization-encoded one-qubit gates is to achieve flexible wave-plate operations, which is described in detail. Controlled-NOT gate and controlled-phase gate are the most crucial two-qubit gates in the linear optics computation and sometimes they can be converted into each other by adding some one-qubit gates or special superposition states. Many different kinds of waveguide circuits have been used to implement these two-qubit gates. The outlook and challenges for the femtosecond laser writing of three-qubit gates, such as Toffoli gate and Fredkin gate, are briefly introduced. Keywords:quantum logic gate/ femtosecond laser direct writing/ optical waveguide/ directional coupler
全文HTML
--> --> -->
2.飞秒激光直写定向耦合器线性光学量子计算利用了光子相互影响的唯一途径即玻色对易关系, Hong-Ou-Mandel(HOM)量子干涉效应就是例证[45,46], 它是由光子间的不可区分性引起的最基本的光学效应, 在线性光学量子计算中具有极其重要的地位. 双光子HOM干涉示意图见图1. 图 1 双光子HOM量子干涉示意图 (a)两个光子通过分束器后都透射和都反射的情况相干相消, 仅会出现一个光子透射而另一个光子反射的情况, 即光子成对的从分束器的任意一个输出端口离开; (b)在分束器两个输出端口对两个输出光子的符合计数值随两个光子进入分束器时的相对延时的变化曲线 Figure1. Two-photon HOM quantum interference in a balanced beam splitter. (a) Destructive interference of two situations: both photons are transmitted and reflected. Only one photon is transmitted and the other photon is reflected. Photons leave in pairs from any of the beam splitter's output ports. (b) The coincidence counts of detecting a photon at each output of the splitter as a function of the relative delay of the photons.
式中Cmax和Cmin分别表示符合计数的最大值和最小值. HOM谷越深, 干涉可见度越高, 理想情况下V = 1. 那么, 如何用集成波导实现类似于分束器的功能呢?O’Brien研究组的实验采用的是定向耦合器(directional coupler, DC)[24], 当两个波导的空间间隔足够近时两个波导的倏逝场重叠就可以实现干涉, 如图2所示. 通过精确调节定向耦合器耦合区两个波导之间的间距d和相互作用长度L, 可以对耦合效率1–R (R相当于分束器的反射率)也即对分束比进行调节. 图 2 基于波导的2 × 2集成定向耦合器示意图, 其中, d和L分别表示耦合区两个波导之间的间距和相互作用长度 Figure2. Schematic of anintegrated DC consisting of two waveguides. Interaction distance and length in the coupling region are denoted by d and L, respectively.
2009年, 高干涉可见度的单光子、双光子及多光子量子干涉现象首次在激光直写的集成光波导芯片中得到展示[24], 如图3所示. 采用飞秒激光直接在熔融石英玻璃中写入的定向耦合器(R = 0.5128 ± 0.0007)的HOM干涉可见度为0.958 ± 0.005. 图 3 飞秒激光直写定向耦合器示意图和测得的HOM干涉曲线[24] (a)飞秒激光横向直写波导示意图; (b)飞秒激光在波导截面引起的折射率变化; (c)飞秒激光直写的定向耦合器阵列; (d)量子光源表征定向耦合器的实验装置; (e)双光子符合计数随光子间相对延迟差的变化曲线 Figure3. Schematic of femtosecond laser direct writing of DCs based on waveguides and the coincident counts of detecting a photon at each output of the coupler as a function of the relative delay in arrival time of the photons[24]; (a) Femtosecond laser transverse writing of waveguides; (b) femtosecond laser induced refractive index change at the cross section of the waveguide; (c) femtosecond laser written DC array; (d) experimental setup for quantum characterization of DCs; (e) the coincident counts of detecting a photon at each output of the coupler as a function of the relative delay in arrival time of the photons.
2015年, Chaboyer等[47]利用飞秒激光独特的三维加工优势在玻璃内部制备了由两个可调谐三端口分束器串联组成的多路径类马赫-曾德尔干涉仪(Mach-Zehnder interferometer, MZI)芯片, 如图4(a)所示, 分束器的中间一臂相较其他两臂特地抬升了127 μm以接近芯片表面的热光相移器. 通过改变加载在相移器上的电压来调节该臂上产生的相移量θ, 从而调谐双光子干涉的可见度, 如图4(b)所示. 三维加工时较大的深度变化可能会对波导形貌和折射率分布产生一定影响, 可以通过在空间光调制器上加载针对球差等对深度变化敏感的像差的矫正相位板来进行实时的矫正调节. 图 4 可调谐三端口干涉仪(a)和不同相移量θ值下, 干涉仪输出端口两光子符合计数值随两光子进入干涉仪时的相对延迟差的变化曲线(b)[47] Figure4. Schematic ofa tunable 3D multi-path interferometer (a) and the coincident countsof detecting photons at outputs of the interferometer under different phase shift θ as a function of the relative delay in arrival time of the photons (b)[47]. Copyright: http://creativecommons.org/licenses/by/4.0/ for CC BY.
波导双折射的大小会直接影响定向耦合器的偏振特性, 比如光子经过不同的输入-输出路径时将会获得不同的偏振变换, 而且输入偏振态不同也会导致不同的分束比. 那么, 如何制备出偏振不敏感的定向耦合器(polarization insensitive coupler, PIC)呢? 主要有两种方法[48]: 一是双折射补偿法, 如图5所示, 第二根波导的写入会影响第一根波导的双折射以及两种偏振的耦合系数kH和kV[49,50], 而两根波导的双折射不相同就会导致前述的路径依赖的偏振变换, 解决方法是在耦合区域内第二根波导旁边加写一根额外的损伤轨迹, 使其对第二根波导双折射的影响等同于第二根波导对第一根的影响; 二是退火法, Arriola等[51]证明了对硼硅玻璃中写入的多模波导进行退火处理可以减小导光区域、增强芯和包层的折射率对比, 从而得到低损耗的单模波导, 此外, 这种方法还可以有效降低双折射, 减小分束比的偏振依赖程度, 有利于制备偏振无关的光量子集成回路. 图 5 双折射补偿法制备偏振不敏感的定向耦合器[48] (a)飞秒激光直写定向耦合器示意图, 第二根写入的波导的双折射会受到第一根写入的波导的影响; (b)利用不同的加工参数在第二根波导旁边写入一根损伤线, 可以平衡两根波导的双折射; (c), (d)定向耦合器耦合区域分别在加写损伤线之前和之后的显微镜图, 损伤线距离第二根波导32 μm, 图中标尺为20 μm; (e), (f)对角线偏振光入射时, 定向耦合器输出态分别在加写损伤线之前和之后的斯托克斯分量; (g)光从m波导入射, 从n波导出射时, 在水平偏振和垂直偏振分量之间获得了相移φm→n; (h)相移φm→n随损伤线距离的变化曲线, 当距离为32 μm时, 四种情况下的φm→n一致 Figure5. Polarization-independent DC based on local birefringence engineering[48]: (a) Schematic of a femtosecond written DC, the birefringence of the second waveguide is modified by the previously inscribed first one; (b) an additional damage track, with tuned irradiation parameters, is inscribed next to the second waveguide, leading to birefringence equalization; (c), (d) microscope images of the interaction region of the DCs without and with the inscription of the additional track at a distance of 32 μm, scale bar is 20 μm; (e), (f) Stokes parameters of the output states for couplers without and with the additional track, for diagonally polarized input light and various input-output combinations. A planar projection of the Poincaré sphere is represented; (g) light that enters in waveguide m and exits from waveguide n acquires a phase shift φm→n between the horizontally and the vertically polarized components; (h) the different values of φm→n are plotted as a function of distance of the track from the second waveguide. For a distance of 32 μm, the four possible φm→n coincide.
我们首先优化单脉冲能量、扫描速度等参数以加工出在约808 nm波长处导模为单模且损耗最低的直波导. 测试波导性能时, 我们通过单模光纤将波长808 nm的连续激光导入长度约为2.5 cm的直波导中, 用物镜收集波导输出的光场, 而后用电荷耦合器(charge coupled device, CCD)拍摄导光模式. 波导的总插入损耗主要包括传播损耗、耦合损耗和菲涅尔损耗[52]. 测量波导输入和输出的功率P1和P2, 根据–10log10(P2/P1)计算插入损耗, 利用模式重叠积分法[53]可以得到激光由光纤进入波导时的耦合损耗, 传播损耗通过截断法[54]得到. 通过比较导光模式和损耗, 确定的最佳加工参数为: 单脉冲能量296 nJ, 扫描速度40 mm/s, 在该参数下加工出的的波导截面形貌如图7(a)所示, 最中心较亮的导光区域形状较圆, 但是周围还分布着其他不导光区域, 这些可以通过狭缝法[55]或退火法[56]来改善. 如图7(b)所示, 导模是单模, 1/e2强度处模场大小为14.0 μm × 16.4 μm, 数值与808 nm单模光纤的模场直径(~5.5 μm)相差较大, 导致了较大的耦合损耗, 约为 1.9 dB/facet, 测得的插入损耗和传播损耗分别约为4 dB和0.7 dB/cm, 菲涅耳损耗约为0.2 dB/facet. 以后可以通过激光焦场整形和加入损伤线等方法[57]压缩导光模式使其与单模光纤模式尺寸匹配, 以减小耦合损耗从而减小插入损耗. 图 7 波导截面形貌显微图(a)和在808 nm波长处的导光模式(b) Figure7. Microscope image of the cross section of the waveguide (a) and the near field image of the waveguide guided mode at 808 nm (b).
我们在此基础上加工了2 × 2定向耦合器. 对于定向耦合器中的弯曲部分, 我们发现当转弯半径> 30 mm时, 弯曲波导额外引入的弯曲损耗基本可以忽略[29], 最终我们将转弯半径设置为60 mm. 通过调控耦合区双波导的间距d和相互作用长度L, 可以得到不同的分束比. 实验中采用参数L = 130 μm, d = 8 μm加工出了R = 0.4930 ± 0.0007的耦合器, 当光从另一臂端口入射时R = 0.5010 ± 0.0007, 具有高度的对称性, 满足HOM量子干涉实验的测量要求. 定向耦合器在808 nm波长的导模如图8(a)所示, 两个导模强度均匀、对称. 我们通过中心波长约为404 nm的连续激光器(ECL801, UniQuanta)泵浦两块光轴相互垂直粘合而成的I型相位匹配BBO晶体, 自发参量下转换(spontaneous parametric down conversion, SPDC)产生808 nm波段偏振纠缠的全同单光子对, 它们的偏振要么都是垂直的, 要么都是水平的, 各有50%概率. 用两根长度一致的单模光纤分别收集两路单光子, 其中一路光纤上装有由步进电机控制的延迟线, 以便调节两路光子到达样品的相对时间, 再把两根光纤连接到一组间距为127 μm的单模光纤阵列上以将单光子输入到芯片中, 芯片输出的单光子由光纤阵列收集后通过单光子探测器(Excelitas, SPCM-850-14-FC)探测,而后送入多通道时间数字转换器(ID800, IDQ)进行符合计数测量, 实验装置类似于图3(d). 实验中通过半波片附加四分之一波片精细调控每路光子的偏振态以获得较高的量子干涉可见度. 由图8(b)所示的两路单光子符合计数随着两条路径相对延迟差的变化曲线计算得到的干涉可见度达到约 0.98. 图 8 50 : 50分束比定向耦合器在808 nm波长处的导光模式(a)和测得的HOM干涉曲线(b), 干涉可见度约为 0.98 Figure8. The near field image of the DC guided mode at 808 nm (a) and the coincidence counts of detecting photons at outputs of the DC as a function of the relative delay the photons(b), the visibility is ~ 0.98.
2014年, Heilmann等[58]通过精确调控飞秒激光直写芯片上波导光轴的取向α来引入适当的双折射, 实现了任意的光子偏振变换, 演示了偏振编码量子比特的H门和泡利交换门. 实验中, 在待调制光轴的波导旁边用稍高于破坏阈值的能量写入一根附加的缺陷波导, 改变两根波导之间的相对位置(距离r和角度θ)可以改变波导周围的压力场分布[59], 进而改变相邻波导双折射的强弱, 如图9所示. 当α = 22.5°和45°时, 分别实现H门和泡利交换门功能, 对应(3)式中的$\left| 0 \right\rangle $态和$\left| 1 \right\rangle $态分别由水平偏振态|H〉(Horizontal)和竖直偏振态|V〉(Vertical)来表示. 图 9 压力场调控波导双折射来获得特定的波片操作[58] (a)波导旁边附加写入的破坏线通过压力场改变波导光轴的取向; (b)飞秒激光直写三组不同相对位置破坏线示意图; (c)为波导光轴取向角α随破坏线相对位置取向角θ的变化曲线 Figure9. Settings of reorientation of the optical axis through stress fields and measured wave plate operations[58]: (a) Schematic of the cross section of the waveguide arrangement where additional stress fields induce a reorientation of the waveguide’s optical axis; (b) sketch of the writing setting, with which the quantum gates are fabricated (here for 3 different orientations of the defect relatively to the waveguide); (c) experimental data and best fit model of the reorientation of the optical axis α as a function of the azimuthal position of the defect θ. Copyright: http://creativecommons.org/licenses/by/4.0/ for CC BY.
另外一种任意调控波导光轴取向的巧妙方法是控制激光传播方向, 使其不再像绝大多数实验中垂直于样品表面, 而是倾斜一个角度θ, 波导光轴也相应旋转了同样的角度[60], 如图10所示. 具体来说, 采用高数值孔径油浸物镜(NA = 1.4), 让激光偏离物镜中心入射, θ的大小就取决于偏离量, 当θ = 22.5°时即实现偏振编码量子比特的H门操作. 图 10 直写光倾斜入射调控波导光轴方向示意图[60] (a)直写激光正入射充满低数值孔径物镜, 产生的双折射波导光轴OA沿激光传播方向分布; (b)直写激光正入射未充满高数值孔径物镜可以带来和图(a)相同的效果; (c)直写激光偏移距离d后入射高数值孔径物镜使得激光在样品体内旋转θ角度, 波导光轴也随之旋转相同角度, θ取决于d; (d)通过在物镜前L距离处放置长焦透镜可实现直写激光的偏移和缩束 Figure10. Conceptual scheme of the method enabling the direct writing of optical waveguides acting as integrated wave plates with tilted axis[60]: (a) Traditional writing scheme adopting a focusing objective with moderate NA; the symmetry of the writing layout creates birefringent waveguides with the optical axis (OA) aligned as the writing beam direction; actual waveguide writing is performed by a transverse translation of the glass sample (indicated by the purple arrow); (b) equivalent waveguides can be created by underfilling a high-NA oil-immersion objective; (c) offsetting the writing beam before the objective results in waveguide writing with an inclined laser beam; the resulting waveguide has an optical axis tilted by an angle θ that depends on the amount of offset d of the writing beam with respect to the objective axis; (d) reduced beam size and offset at the objective aperture is achieved by a small transverse shift of a long focal lens placed at a distance L from the focusing objective.
二者之间互有联系, 一次CNOT门操作相当于一次CZ门操作前后各附加一次H门操作[61]. 如何利用集成波导实现CNOT门呢?首先是路径编码的CNOT门, 如图12所示, 控制比特C和目标比特T分别由两条波导路径来编码, 如果控制比特和目标比特的输出端口同时探测到了信号(概率为1/9), 则表示CNOT门操作成功. 该波导是完全根据Ralph等[62]以及Hofmann 和Takeuchi[63]在2002年提出的线性光学CNOT门方案来进行设计的, 整个波导芯片包含两个反射率R = 1/2和三个反射率R = 1/3的定向耦合器. 2003年, O’Brien等[64]首先利用体光学元件在自由空间中实现了这种路径编码的CNOT门, 但其可扩展性和稳定性差, 集成度低. 2008年, 他们在硅基二氧化硅片上利用传统光刻法制备了由定向耦合器集成的CNOT门芯片[23]. 目前还没有利用飞秒激光直写路径编码量子比特CNOT门的报道. 图 12 路径编码量子比特的CNOT门结构图[62] 虚线表示定向耦合器中附加相位${\text{π}}$的反射面; 路径cH和cV代表控制比特, 路径tH和tV代表目标比特, 路径vc和vt代表不会被占据的辅助比特; 图中数字表示对应定向耦合器的反射率 Figure12. Schematic of a path-encoded qubit CNOT gate based on waveguides[62]. Dashed line indicates the surface from which a sign change occurs upon reflection in a DC. The control modes are cH and cV. The target modes are tH and tV. The modes vc and vt are unoccupied ancillary modes. The numbers indicate the reflectivity of the corresponding directional coupler.
2011年, Crespi等[29]首次利用飞秒激光加工出了偏振编码的CNOT门, 并进行了完整的量子表征. 当光能量从一根波导传播到另一根波导时, 耦合器透射率随相互作用长度的变化遵循正弦规律, 振荡周期取决于两根波导中导模的耦合系数[65], 如果波导有双折射, 则H偏振态和V偏振态的耦合系数不一样, 所以它们的振荡周期也不同, 如图13(a)所示, 这种对不同偏振光具有不同分束比的定向耦合器又叫做部分偏振定向耦合器(partially polarizing directional coupler, PPDC). 整个CNOT门包含三个PPDC, 如图13(b)所示, 最关键的作用是PPDC1上目标比特和控制比特的HOM干涉, 它对于H偏振光和V偏振光的透射率分别是TH = 0,TV = 2/3, PPDC2和PPDC3起补偿作用, 它们的透射率相同, 为TH = 1/3, TV = 1, CNOT门操作成功的概率是1/9. 图 13 部分偏振定向耦合器中两种偏振态的耦合区能量交换振荡曲线(方块代表H态, 三角代表V态)(a)和偏振编码量子比特的CNOT门波导结构图(b)[29] Figure13. H (squares) and V (triangles) polarization transmissions of DCs with different interaction lengths, based on slightly birefringent waveguides (a) and schematic of a polarization-encoded qubit CNOT gate based on PPDCs (b)[29].
前面所述的CNOT门都是直接测量输出的控制比特和目标比特来检验门操作的成功与否, 称为非预报式CNOT门, 被测量的量子比特态受到破坏, 将不能继续作为后续量子回路的输入量子比特, 不利于发展大规模集成量子计算网络. 为了解决这个问题, 可预报式CNOT门应运而生, 即通过引入两个辅助光子来间接测量表征CNOT门操作, 当同时探测到两个输出的辅助光子时表明门操作成功, 避免了直接测量控制比特和目标比特, 使得它们可以接着被应用于后续的量子网络中, 有利于实现复杂量子计算的模块化. 2001年, Pittman等[66]提出了一种由两个偏振分束器(polarization beam splitter, PBS)构成的偏振编码可预报式CNOT门简化方案, 最大的亮点是入射的两个辅助光子不再是独立的, 而是被制备在最大贝尔偏振纠缠态$\left| {{\varPhi ^ + }} \right\rangle {\rm{ = }}\left( {\left| {{\rm{H,H}}} \right\rangle {\rm{ + }}\left| {{\rm{V,V}}} \right\rangle } \right){\rm{/}}\sqrt 2 $上, 如图14(a)所示, 这样能够将门操作的成功概率从传统的1/9提高到1/4. 2018年, Zeuner等[67]根据该方案利用飞秒激光加工出了这样的可预报式CNOT门, 量子性能表征实验装置如图14(b)所示, 通过两套量子光源产生两对处于最大偏振纠缠态的光子: 一对作为辅助光子, 另一对作为目标和控制光子, 这样方便制备出任意的目标和控制光子输入态. 该CNOT门不仅能够对处于经典计算基的入射光子对进行CNOT门操作, 还能够对处于经典计算基的量子叠加态的入射光子对进行CNOT门操作, 并且始终保持输入光子对的量子相干性, 可以制备处于最大偏振纠缠态的双光子源, 也可以明确地区分出所输入的是四种贝尔态中的哪一个态. 图 14 纠缠态辅助光子的偏振编码可预报式CNOT门结构图(a)和量子性能表征实验装置示意图(b)[67] Figure14. (a) Scheme of a heralded photonic CNOT gate using a maximally entangled ancilla state with improved success probability 1/4. Detection of one photon in each of the modes $a_{out}^1$ and $a_{out}^2$ heralds successful gate operation. (b) Experimental setup for quantum characterization of the polarization-encoded qubit heralded CNOT gate[67]. Copyright: http://creativecommons.org/licenses/by/4.0/ for CC BY.
2002年, Knill[68]提出了一种最简单的路径编码量子比特的可预报式CZ门(hCZ门), 具有目前已知最高的成功概率, 为2/27. 如图15(a)所示, 这种hCZ门由四个定向耦合器组成, 四个不可区分的光子在其上成对地发生量子干涉, 并且第一对和第二对分束器之间有大小为${\text{π}}$的相移, 传统光刻制备不出这样的hCZ门, 因为它需要相邻波导的三维立体交叉以实现相邻模式的物理交换, 制备难度非常大, 如图15(b)所示. 直到2016年, Meany等[69]才利用飞秒激光加工出了这样的三维立体hCZ门结构. 具体来说, 路径C和T代表控制比特和目标比特的|1$ \left. \right\rangle$态, A和B代表辅助光子态, C0和T0代表控制比特和目标比特的|0$ \left. \right\rangle $态, 它们不与|1$ \left. \right\rangle$态和辅助光子态相互作用, 加工时可省略. 输入两量子比特态α00|00$ \left. \right\rangle$ + α10|10$ \left. \right\rangle$ + α01|01$ \left. \right\rangle$ + α11|11$ \left. \right\rangle $, 当在两个辅助光子态输出端口各检测到一个光子时, |11$ \left. \right\rangle$项反转符号, 即hCZ门操作成功. 图 15 路径编码的hCZ门结构图[69] (a)路径C0 (T0)代表|0〉态, 不与其他态相互作用, C (T)代表|1〉态, A和B代表辅助光子态, 它们通过四个定向耦合器相互作用, 耦合器反射率R(θn) =??cos2(θn), 图中浅色面代表附加${\text{π}}$相位的反射面; (b)由四条立体交叉波导路经构成的hCZ门结构 Figure15. Schematic of a path-encoded qubit hCZ gate[69]. (a) The circuit for a hCZ gate showing paths for ancillary photons A and B as well as the computational qubits; the control (target) photon is encoded across spatial paths C0 (T0) representing |0〉 and C (T) representing |1〉. The |0〉 modes do not interact in the gate; the four remaining modes undergo four DCs operations with reflectivities R(θn) =??cos2(θn). The light-coloured side indicates the surface yielding a relative ${\text{π}}$ phase change upon reflection. (b) The four interacting circuit modes modelled as a waveguide array, showing the crossover and optimal reflectivities for the DCs implemented using evanescent coupling. Copyright: http://creativecommons.org/licenses/by/4.0/ for CC BY.
我们课题组利用飞秒激光首次在EAGLE2000玻璃中加工出了路径编码量子比特的CNOT门[70], 结构分布同图12所示, 不同之处在于光子无论经历耦合器上表面反射还是下表面反射都会获得一个${\text{π}}/2$的相移. 其中cH, cV两条路径分别代表控制比特的|1$ \left. \right\rangle$态和|0$ \left. \right\rangle$态; tH, tV分别代表目标比特的|1$ \left. \right\rangle$态和|0$ \left. \right\rangle $态. 当且仅当控制比特处于|1$ \left. \right\rangle$态时, 目标比特状态发生|1$ \left. \right\rangle$和|0$ \left. \right\rangle$之间的态翻转. vc, vt为辅助光子态, 实验中不做测量. 图16是根据实验实测值构建的真值表柱状图, CNOT门保真度约为0.98. 图 16 根据实验实测值构建的真值表柱状图, 保真度约为0.98 Figure16. Experimentally constructed CNOT logical truth table. The labels on the Input and Output axes identify the state |C, T〉. Ideally, a flip of the logical state of the target qubit (T) occurs only when the control qubit (C) is in the logical |1〉 state. The fidelity of the gate is ~ 0.98.