1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 51371051, 51501091), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2242016K40008), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1627).
Received Date:23 August 2018
Accepted Date:05 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:Directional solidification is a common and important process in both scientific research and industrial practice. Owing to the presence of temperature gradients during directional solidification, local remelting and solidification in the mushy zone occurs, resulting in some typical phenomena such as temperature gradient zone melting (TGZM). The TGZM influences the solidifying microstructure and microsegregation significantly. In the present work, a two-dimensional (2D) cellular automaton (CA) model involving the mechanism of both solidification and melting is adopted to investigate the migration phenomena of molten liquid pools in the mushy zone due to the TGZM. The effect of pulling velocity, initial liquid pool position, temperature gradient, and alloy composition on the TGZM kinetics are studied. The simulation results are compared with the analytical predictions, and good agreement between two models is obtained. It is found that under a temperature gradient, the liquid pool always migrates towards the high temperature direction. When the pulling velocity is lower than the critical velocity, the liquid pool migrates through the liquidus into the bulk liquid and the time required for a liquid pool to reach the liquidus increases with pulling velocity increasing. On the other hand, when a pulling velocity higher than the critical value is adopted, the liquid pool moves towards the solidus and the time required for migrating liquid pool to reach the solidus decreases with pulling velocity increasing. For a given pulling velocity, the liquid pools located above the critical position move towards the liquidus, while the others gradually approach to the solidus. When a molten liquid pool migrates towards the liquidus, the migration velocity and liquid pool thickness are found to gradually increase, while the liquid pool composition decreases with time. Inversely, for the molten liquid pool that moves towards the solidus, the migration velocity and liquid pool thickness gradually decrease, while the liquid pool composition increases with time going by. The average migration velocity of liquid pool caused by the TGZM effect increases with temperature gradient increasing and alloy composition decreasing. The CA simulations provide an insight into the complicated interactions among the local temperature, solute distribution and diffusion, and the kinetics of local remelting and solidification in the TGZM process. Keywords:directional solidification/ temperature gradient zone melting/ liquid pool migration/ cellular automaton
表1本文工作采用的物性参数[15,28] Table1.The physical parameters used in the present work[15,28].
-->
3.1.抽拉速度的影响
根据Pan等[15]提出的解析模型, 抽拉速度Vp会显著影响液滴/熔池的迁移行为. 本节分别采用低于和高于临界抽拉速度Vp, cr的不同Vp值对熔池在糊状区的迁移动力学进行CA模拟. 首先, 对Vp < Vp, cr的情况进行模拟. 模拟条件为SCN–0.3 wt.%ACE合金, 温度梯度G = 12 °C/mm, 抽拉速度Vp = 0.6 ${\text{μ}}$m/s. 模拟区域采用10 × 1500的网格, 网格尺寸为Δx = 1 ${\text{μ}}$m. 固相线最初位于模拟区域底部以上80 ${\text{μ}}$m. 固相线以下的固相浓度和液相线以上的液相浓度设为均匀的C0 = 0.3 wt.% ACE; 在固相线和液相线之间的区域, 根据固相线温度对应的平衡浓度设置固相浓度梯度分布. 将一个厚度为10 ${\text{μ}}$m的液相熔池置于靠近固相线的位置(${\tilde y_0}$ = 0.05), 初始熔池的浓度为局部温度所对应的平衡液相浓度. 图1为Vp = 0.6 ${\text{μ}}$m/s条件下, CA模拟和解析模型[15]预测得到的熔池位置随时间的变化. 对于SCN–0.3 wt.% ACE合金, 在G = 12 °C/mm和${\tilde y_0}$ = 0.05条件下, 由解析模型计算得到的临界抽拉速度Vp, cr = 1.59 ${\text{μm/s}}$. 由于抽拉速度Vp = 0.6 ${\text{μm/s}}$低于临界抽拉速度Vp, cr, 熔池从初始的靠近固相线位置朝着移动的液相线方向迁移. 当时间为280 s时熔池到达液相线位置. 从图1中可以看出, CA模拟结果与解析模型计算结果符合良好. 但接近液相线位置时两者略有差别. 分析原因主要有以下两点: 1) 在解析模型中, 熔池是无限薄的, 而在CA模拟中熔池具有一定厚度, 熔池的位置取自熔池的中心位置; 2) 在熔池迁移过程中, 解析模型假定固/液界面的成分即刻达到平衡, 而在CA模拟中, 熔池具有一定厚度, 溶质原子从冷端扩散至热端需要一定的时间, 因此, 固/液界面的成分不能即刻达到平衡. 图 1 SCN–0.3 wt.% ACE合金在$\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$($\scriptstyle {\tilde y_0} = 0.05$)和G = 12°C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较 Figure1. Comparison of the CA simulation with the analytical prediction[15]regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$, $\scriptstyle{\tilde y_0} = 0.05$ and G = 12°C/mm.
图2为对应于图1条件下由CA模拟的熔池迁移速度V和浓度$C_{\rm{l}}^*$随时间的变化. 速度V是针对熔池的中心位置进行计算的, 而$C_{\rm{l}}^*$取熔池的浓度平均值. 如图2所示, 熔池速度随时间逐渐增加, 而熔池浓度随时间逐渐降低. 根据(7)式和(8)式, 熔池的迁移速度V与熔池和固相线之间的距离yd(t)成正比, 而熔池浓度$C_{\rm{l}}^*$与yd(t)成反比. 如图1所示, 熔池位置随时间不断靠近液相线, 即yd(t)随时间而增大. 因此, 熔池的迁移速度V和浓度$C_{\rm{l}}^*$分别随时间增大和降低(图2). 此外, 在熔池向液相线迁移过程中, 熔池厚度逐渐增宽. 可以从以下两个方面解释这个现象: 1) 在熔池迁移过程中, 熔池热端界面发生熔化而冷端界面发生凝固, 当熔池向液相线迁移时, 熔化驱动力大于凝固驱动力, 使得熔化界面 (热端) 的迁移速度高于凝固界面(冷端)的迁移速度, 因而熔池的厚度逐渐增加; 2) 从图2(b)可以看出, 熔池向高温区迁移的过程中, 熔池内液相浓度降低, 为了保证区域的溶质守恒, 熔池厚度会相应增宽. 图 2 SCN–0.3 wt.%ACE合金在$\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$($\scriptstyle{\tilde y_0} = 0.05$)和G = 12 °C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较 Figure2. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$, $\scriptstyle{\tilde y_0} = 0.05$ and G = 12°C/mm.
对于Vp > Vp, cr的情况, 取抽拉速度Vp = 5 ${\text{μ}}$m/s. 计算区域为50 × 2100个网格, 其他模拟条件与图1相同. 将一个厚度为50 ${\text{μ}}$m的液相熔池置于糊状区中部略靠近液相线的位置(${\tilde y_0}$ = 0.65). 在该条件下临界抽拉速度Vp, cr = 3.82 ${\text{μ}}$m/s. 如前所述, 熔池向液相线迁移时, 厚度略微增宽, 反之, 向固相线迁移时厚度减薄. 因此对于Vp > Vp, cr的情况, 初始设置的液相熔池厚度相对较宽以保证熔池到达固相线时, 其厚度仍宽于最小厚度(约$5\Delta x $). 图3为CA模拟和解析模型在Vp = 5 ${\text{μ}}$m/s > Vp, cr的条件下预测得到的熔池位置随时间的变化. 可以看出, 随着时间的增加, 熔池的位置向上移动, 说明在温度梯度的作用下熔池总是向着高温方向迁移. 然而, 在Vp > Vp, cr的条件下, 熔池的迁移速度比所施加的抽拉速度低, 即糊状区比熔池迁移得更快, 导致熔池逐渐接近固相线位置. 当时间为166 s时, 熔池到达固相线位置. 图 3 SCN–0.3 wt.% ACE合金在$\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$($\scriptstyle{\tilde y_0} = 0.65$)和G = 12 °C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较 Figure3. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$, $\scriptstyle {\tilde y_0} = 0.65$ and G = 12 °C/mm.
图4为对应于图3条件下由CA模拟和解析模型得到的熔池迁移速度V和熔池浓度$C_{\rm{l}}^*$随时间的变化. 可以看出, 在Vp > Vp, cr的条件下, 与图2中Vp < Vp, cr的情况相反, 熔池速度随时间逐渐降低, 而熔池浓度随时间逐渐增加. 图 4 SCN–0.3 wt.%ACE合金在$\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$($\scriptstyle {\tilde y_0} = 0.65$)和G = 12°C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较 Figure4. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$, $\scriptstyle {\tilde y_0} = 0.65$ and G = 12°C/mm.
将熔池迁移到达移动的液相线或固相线所需的时间分别用tl和ts表示. 为了研究抽拉速度Vp对tl和ts的影响, 用不同的Vp值进行了CA模拟, 结果如图5所示. 图5(a)为Vp < Vp, cr (=1.59 ${\text{μ}}$m/s)的条件下, 取Vp = 0, 0.3, 0.6, 0.9 和1.2 ${\text{μ}}$m/s的抽拉速度时, SCN–0.3 wt.% ACE 合金熔池迁移的CA模拟结果, 其他的模拟条件与图1相同. 从图中可以看出, CA模拟和解析模型得到的熔池从初始位置(${\tilde y_0}$ = 0.05)迁移到液相线位置所需的时间tl均随Vp增加而增加. 这是由于抽拉速度越高时, 液相线移动越快, 熔池需要更长的时间迁移到液相线的位置. 图 5 SCN–0.3 wt.% ACE合金在G = 12 °C/mm条件下, (a) Vp < Vp, cr时熔池从初始位置($\scriptstyle {\tilde y_0} = 0.05$)迁移到移动的液相线所需时间tl和(b) Vp > Vp, cr情况下熔池从初始位置($\scriptstyle {\tilde y_0} = 0.65$)迁移到移动的固相线所需时间ts随抽拉速度变化的CA模拟与解析模型[15]预测结果的比较 Figure5. Comparison of the CA simulations with the analytical predictions [15] regarding the times required for a liquid pool to reach (a) the moving liquidus from $\scriptstyle{\tilde y_0} = 0.05$ at Vp < Vp, cr and (b) the moving solidus from $\scriptstyle{\tilde y_0} = 0.65$ at Vp > Vp, cr as a function of the pulling velocity for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm.