1. 中国科学院过程工程研究所,离子液体清洁工艺北京市重点实验室,绿色工艺与工程重点实验室,北京 1001902. 中国科学院大学化学工程学院,北京 100049
收稿日期:
2019-04-16修回日期:
2019-07-26出版日期:
2020-03-22发布日期:
2020-03-20通讯作者:
张海涛基金资助:
国家重点研发计划新能源汽车专项;国家自然科学基金“中韩合作项目”;中科院国际创新团队;河南省郑州市重大专项Effects of SiO2 nanoparticle fillers on the performances of ionogel electrolyte and high voltage supercapacitors
Jiahe ZHANG1,2, Chunxian XING1, Haitao ZHANG1*1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2019-04-16Revised:
2019-07-26Online:
2020-03-22Published:
2020-03-20Contact:
Haitao Zhang 摘要/Abstract
摘要: 以SiO2纳米颗粒为填料,通过溶液浇筑法合成了纳米复合离子凝胶电解质,研究了SiO2填料对离子输运的影响规律。基于离子凝胶电解质构筑了准固态电容器,探讨了无机填料对电容器性能的影响,以活性炭为电极、凝胶电解质为隔膜,构筑了准固态双电层电容器。结果表明,SiO2的加入没有改变隔膜电解质的微观形貌,但有效改善了浸润性,提高了离子电导率。高SiO2添加量的隔膜电解质电化学性能更优,当添加8wt% SiO2时凝胶电解质电化学性能最优。SiO2的加入可有效提高活性炭准固态电容器的性能,电容器的比容提升约15%,经4000次循环后容量保持可达100%。电解质高温稳定性良好,器件最高使用温度可达60℃。基于该复合电解质构筑的电容器具有良好的高温性能,电容器比容随温度升高而逐渐提升,60℃时能量密度可达81.36 Wh/kg。
引用本文
张家赫 邢春贤 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响[J]. 过程工程学报, 2020, 20(3): 354-361.
Jiahe ZHANG Chunxian XING Haitao ZHANG . Effects of SiO2 nanoparticle fillers on the performances of ionogel electrolyte and high voltage supercapacitors[J]. Chin. J. Process Eng., 2020, 20(3): 354-361.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219181
http://www.jproeng.com/CN/Y2020/V20/I3/354
参考文献
[1]. Energy Technology Perspectives [M] 2015, 36, International Energy Agency (IEA) [2]Kotz R, Carlen M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta, 2000, 45(15):2483-2498 [3]Simon P, Gogotsi Y.Materials for electrochemical capacitors[J].Nature Materials, 2008, 7(11):845-854 [4]Sato T, Masuda G, Takagi K.Electrochemical properties of novel ionic liquids for electric double layer capacitor applications[J].Electrochimica Acta, 2004, 49(21):3603-3611 [5]Liu T, Finn L, Yu M, et al.Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J].Nano Letters, 2014, 14(5):2522-2527 [6]NOHARA, Shinji, ASAHINA, et al.Hybrid capacitor with activated carbon electrode,Ni(OH)2 electrode and polymer hydrogel electrolyte[J].Journal of Power Sources, 2006, 157(1):605-609 [7]Levine S, Bell G M, Calvert D.The discretenss of charge effect in electric double layer theory[J].Canadian Journal of Chemistry, 2011, 40(3):518-538 [8]Largeot C, Portet C, Chmiola J, et al.Relation between the ion size and pore size for an electric double-layer capacitor[J].Journal of the American Chemical Society, 2008, 130(9):2730-2731 [9]Lee H Y, Goodenough J B.Supercapacitor Behavior with KCl Electrolyte[J].Journal of Solid State Chemistry, 2015, 144(1):220-223 [10]Lewandowski A, Zajder M, Béguin F.Supercapacitor based on activated carbon and polyethylene oxide–KOH–HO polymer electrolyte[J].Electrochimica Acta, 2002, 46(18):2777-2780 [11]Bichat M P, Raymundo-Pi?ero E, Béguin F.High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte[J].Carbon, 2010, 48(15):4351-4361 [12]Liu S, Liu S, Huang K, et al.A novel Et4NBF4 and LiPF6 blend salts electrolyte for supercapacitor battery[J].Journal of Solid State Electrochemistry, 2012, 16(4):1631-1634 [13]Balducci A, Dugas R, Taberna P L, et al.High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte[J].Journal of Power Sources, 2007, 165(2):922-927 [14]Zhuk A Z, Vygodskii Y S, Novikov V T, et al.Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors[J].Electrochimica Acta, 2010, 55(25):7506-7510 [15]Lahe??r A, J?nes A, Lust E.Lithium bis(oxalato)borate as an electrolyte for micromesoporous carbide-derived carbon based supercapacitors[J].Journal of Electroanalytical Chemistry, 2012, 669(6):67-72 [16]Abraham, K.M,JiangA polymer electrolyte-based rechargeable lithiumoxygen battery[J].Cheminform, 1996, 27(19):1-5 [17]Choi C, Park J W, Kim K J, et al.Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles[J].Rsc Advances, 2018, 8(24):13112-13120 [18] Li Y, Kang Z, Yan X, et al.A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor[J].nanoscale, 2018, 10(19):9360-9368 [19]Wang Z, Guo F, Chen C, et al.Self-Assembly of PEISiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability[J].ACS Applied Materials & Interfaces, 2015, 7(5):3314-3322 [20] Niu C, Liu J, Chen G, et al.Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries[J]., 2019, 417:70-75 |
相关文章 0
No related articles found! |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3411