1. 北京化工大学化学工程学院,有机?无机复合材料国家重点实验室,北京 100029 2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,离子液体清洁过程北京市重点实验室,北京 100190
收稿日期:
2019-03-25修回日期:
2019-05-07出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
赵国英基金资助:
高芳烃高含氮重油催化转化反应基础研究;国家重点基础研究发展基金资助项目;国科学院仪器发展基金资助项目Ionic liquids self-templating to synthesize nitrogen-doped porous carbon materials for CO2 adsorption
Jiahui LIU1,2, Huiting LIU2, Guoying ZHAO2*, Zhenyu SUN1*1. State Key Laboratory of Organic–Inorganic Composites, School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 2. Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2019-03-25Revised:
2019-05-07Online:
2020-01-22Published:
2020-01-14Contact:
ZHAO Guo-ying 摘要/Abstract
摘要: 以多种氰基离子液体为前驱体,采用高温碳化法直接制备多孔碳氮材料,系统考察了离子液体前驱体阳离子结构、阴离子种类及合成条件等因素对碳化材料比表面积、氮元素含量及氮种类的影响,并研究其对CO2的吸附性能。结果表明,阴离子在聚合过程中起模板剂的作用。合成材料主要呈介孔结构,比表面积最高达732.6 m2/g,氮含量最高为9.9wt%,在温度25℃、压力1.8 MPa条件下,CO2的吸附量最高达20.9wt%。多孔碳氮材料经180℃真空加热后可完全脱附再生,再生稳定性良好。
引用本文
刘佳慧 刘会婷 赵国英 孙振宇. 离子液体自模板合成多孔碳氮材料及其对二氧化碳的吸附[J]. 过程工程学报, 2020, 20(1): 108-115.
Jiahui LIU Huiting LIU Guoying ZHAO Zhenyu SUN. Ionic liquids self-templating to synthesize nitrogen-doped porous carbon materials for CO2 adsorption[J]. Chin. J. Process Eng., 2020, 20(1): 108-115.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219164
http://www.jproeng.com/CN/Y2020/V20/I1/108
参考文献
[1] Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J]. Chem. Rev., 2014, 114(3): 1709-1742. [2] D'Alessandro D, Smit B, Long J. Carbon Dioxide Capture: Prospects for New Materials [J]. Angew. Chem. Int. Edi., 2010, 49(35): 6058-6082. [3] 王文举,邢兵,王杰. 用于燃烧前二氧化碳捕集的固体吸附剂研究进展 [J]. 精细石油化工, 2013, 30(5):76-82. [4] Choma J, Jedynak K, Fahrenholz W, et al. Microporosity Development in Phenolic Resin-based Mesoporous Carbons for Enhancing CO2 Adsorption at Ambient Conditions [J]. Appl. Sur. Sci., 2014, 289(2):592-600. [5] Drage T C, Arenillas A, Smith K M, et al. Preparation of Carbon Dioxide Adsorbents from the Chemical Activation of Urea–Formaldehyde and Melamine–formaldehyde Resins [J]. Fuel, 2007, 86(1):22-31. [6] Marta S, Patricia V, Fuertes A B. N‐Doped Polypyrrole‐Based Porous Carbons for CO2 Capture [J]. Adv. Fun. Mater., 2011, 21(14): 2781-2787. [7] Liu L, Deng Q F, Ma T Y, et al. Ordered MesoporousCarbons: Citric Acid-catalyzed Synthesis, Nitrogen Doping and CO2 Capture [J]. J. Mater. Chem., 2011, 21(40): 16001-16009. [8] Zhu X , Hillesheim P C , Mahurin S M , et al. Efficient CO2 Capture by Porous, Nitrogen-doped Carbonaceous Adsorbents Derived from Task-specific Ionic Liquids [J]. Chemsuschem, 2012, 5(10): 1912-1917. [9] Rajendiran S, Park K, Lee K, et al. Ionic-Liquid-Based Heterogeneous Covalent Triazine Framework Cobalt Catalyst for the Direct Synthesis of Methyl 3-Hydroxybutyrate from Propylene Oxide [J]. Inorg. Chem., 2017, 56(12): 7270-7277. [10] Park K, Lee K, Kim H, et al. Preparation of Covalent Triazine Frameworks with Imidazolium Cations Embedded in Basic Sites and Their Application for CO2 capture [J]. J. Mater. Chem. A, 2017, 5(18): 8576-8582. [11] Zhang L, Cai K, Zhang F, et al. Adsorption of CO2 and H2 on Nitrogen-doped Porous Carbon from Ionic Liquid Precursor [J]. Chem. Res. Chinese U., 2015, 31(1): 130-137. [12] Cui Z, Wang S, Zhang Y, et al. A Simple and Green Pathway toward Nitrogen and Sulfur Dual Doped Hierarchically Porous Carbons from Ionic Liquids for Oxygen Reduction [J]. J. Power Sources, 2014, 259(7): 138-144. [13] Zdolsek N, Dimitrijevic A, Bendova M, et al. Electrocatalytical Activity of Ionic Liquid-derived Porous Carbon Materials for Oxygen Reduction Reaction [J]. ChemElectroChem, 2017, 5(7): 1037-1046. [14] Mahurin S M, Fulvio P F, Hillesheim P C, et al. Directed Synthesis of Nanoporous Carbons from Task-Specific Ionic Liquid Precursors for the Adsorption of CO2 [J]. ChemSusChem, 2014, 7(12): 3284-3289. [15] Kong L, Chen Q, Shen X, et al. Ionic Liquid Templated Porous Boron-Doped Graphitic Carbon Nitride Nanosheet Electrode for High-Performance Supercapacitor [J]. Electrochimica Acta, 2017, 245: 249-258. [16] Gu W, Ozerov O V. Exhaustive Chlorination of [B12H12]2- without Chlorine Gas and the Use of [B12Cl12]2- as a Supporting Anion in Catalytic Hydrodefluorination of Aliphatic C-F bonds [J]. Inorg. Chem., 2011, 50(7): 2726-2728. [17] 郑勇,吕会超,田大勇,等. 咪唑类双氰胺根离子液体的合成与表征 [J]. 广东化工, 2015, 42(17): 33-33. [18] 杨明娣,陈广美,张璟焱. 离子液体[BMIm]NTf2中Ni纳米颗粒的制备及其催化性能研究 [J]. 应用化工, 2011, 40(9): 1518-1521. [19] 施介华,潘高. 1-丁基-3-甲基咪唑磷钨酸盐的制备及其对酯化反应的催化性能 [J]. 催化学报, 2008, 29(7): 629-632. [20] Su Y, Li X, Wang Y, et al. Gold Nanoparticles Supported by Imidazolium-based Porous Organic Polymers for Nitroarene Reduction [J]. Dalton Transa., 2016, 45(42): 16896-16903. [21] Wang X, Liu C G, Neff D, et al. Nitrogen-enriched Ordered Mesoporous Carbons through Direct Pyrolysis in Ammonia with Enhanced Capacitive Performance [J]. J. Mater. Chem. A, 2013, 1(27): 7920-7926. [22] 梁方方,周凌云,李想,等. 乙二胺改性金属有机骨架材料MIL-101(Cr)常压下吸附CO2 [J]. 过程工程学报, 2015, 15(6): 1069-1074. [23] 刘德生,陈小榆,周承富. 温度对泡沫稳定性的影响 [J]. 钻井液与完井液, 2006, 23(4): 10-12. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 郑征 何宏艳. 基于全球专利信息的离子液体领域发展态势分析[J]. 过程工程学报, 2021, 21(4): 383-393. |
[3] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[4] | 张卫风 李娟 王秋华. 响应面法优化解吸MDEA/PG富液中CO2再生工艺[J]. 过程工程学报, 2021, 21(3): 353-362. |
[5] | 潘凤娇 周乐 曾少娟 刘雪 刘艳荣 聂毅. 离子液体/羊毛纤维/凝固剂三元相图的构建[J]. 过程工程学报, 2021, 21(2): 160-166. |
[6] | 王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143. |
[7] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[8] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[9] | 贾韫翰 丁磊 任培月 李凌 王丹丹. 基于响应曲面法的磁性离子交换树脂去除甲基橙和刚果红的优化[J]. 过程工程学报, 2020, 20(9): 1035-1044. |
[10] | 周玥 郭晓晶 李宣江 高璐 洪枫 乔锦丽. 不同浸渍时间对CuO/Cu@BC电极催化CO2还原性能的影响[J]. 过程工程学报, 2020, 20(8): 989-996. |
[11] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[12] | 孙灵 诸林 何阳东. 基于链式循环二氧化碳重整的甲烷制甲醇过程火用分析[J]. 过程工程学报, 2020, 20(7): 822-831. |
[13] | 杨帆 温良英 赵岩 徐健 张生富 杨仲卿. TiO2(100)表面C和Cl2吸附反应的第一性原理计算[J]. 过程工程学报, 2020, 20(5): 569-575. |
[14] | 薛岗 丁磊 高阳 钟梅英. 表面印迹耦合溶胶-凝胶法制备4-硝基酚印迹材料及性能表征[J]. 过程工程学报, 2020, 20(4): 440-448. |
[15] | 张家赫 邢春贤 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响[J]. 过程工程学报, 2020, 20(3): 354-361. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3375