1. 中国科学院过程工程研究所,北京100190 2. 中国科学院山西煤炭化学研究所,山西 太原 030001 3. 中科合成油技术有限公司,北京 101407
收稿日期:
2019-03-25修回日期:
2019-04-24出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
张光晋Effect of Zn modification on hydroisomerization performance of the Fischer?Tropsch heavy diesel over Ni/ZSM-22 catalyst
Yiling BAI1,3, Lichuang FAN3, Tao LI2, Huimin CHEN2, Huaike ZHANG3, Yong YANG2,3, Guangjin ZHANG1*1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China3. Synfuels China Technology Co., Ltd., Beijing 101407, China
Received:
2019-03-25Revised:
2019-04-24Online:
2020-01-22Published:
2020-01-14Contact:
ZHANG Guang-jin 摘要/Abstract
摘要: 采用离子交换、成型、负载方法对ZSM-22分子筛进行改性,得到不同Zn负载量的ZSM-22分子筛载体,通过X射线衍射、N2物理吸附?脱附及吡啶吸附红外等表征其物化性质。以改性ZSM-22分子筛为酸性组分、Ni为金属组分制备Ni基加氢异构催化剂,以费托重柴油为原料对其异构降凝性能进行评价。结果表明,离子交换对分子筛结构影响较小,且Zn在分子筛表面呈高度分散状。分子筛负载Zn可降低Br?nsted (B)酸与Lewis (L)酸的酸量比值(B/L),且随Zn负载量增加,B/L值降低,异构烃收率提高,有效抑制裂解反应,提高柴油收率。负载Zn可明显降低重型柴油冷滤点,随Zn负载量逐渐提高,冷滤点上升。在金属加氢性能相同时,减少B酸含量有利于提升催化剂上金属位与酸性位的匹配及重型柴油异构性能。以所制Zn负载量为0.42wt%的Ni基分子筛催化剂在柴油的冷滤点达到国六车用柴油标准-10#柴油要求(冷滤点?5℃)时,柴油收率仍高达90.65%。
引用本文
白宜灵 范立闯 李涛 陈会民 张怀科 杨勇 张光晋. Zn改性对Ni/ZSM-22催化剂费托重柴油异构降凝性能的影响[J]. 过程工程学报, 2020, 20(1): 116-122.
Yiling BAI Lichuang FAN Tao LI Huimin CHEN Huaike ZHANG Yong YANG Guangjin ZHANG . Effect of Zn modification on hydroisomerization performance of the Fischer?Tropsch heavy diesel over Ni/ZSM-22 catalyst[J]. Chin. J. Process Eng., 2020, 20(1): 116-122.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219167
http://www.jproeng.com/CN/Y2020/V20/I1/116
参考文献
[[1] 李大东, 加氢处理工艺与工程[M], 中国石化出版社, 北京, 2004. [2] I.E. Maxwell, Zeolte catalysis in hydroprocessing technology[J], Catal. Today, 1987(1): 389-417. [3] J.W. Ward, Hydrocracking processes and catalysts[J], Fuel Process. Technol., 1993(35): 55-85. [4] H. Xiang, Y. Yang, Y. Li, Indirect coal-to-liquids technology from fundamental research to commercialization[J], Sci. China-Chem., 2014 (44): 1876-1892. [5] 闫朋辉, 陶智超, 郝坤, 王煜丹, 杨勇, 李永旺, 金属载体结合方式对镍钨催化剂费托合成蜡加氢裂化性能的影响[J], 燃料化学学报, 2013 (41): 691-697. [6] R.A. Flinn, O.A. Larson, H. Beuther, The Mechanism of Catalytic Hydrocracking[J], Ind. Eng. Chem., 1960 (52): 153–156. [7] H.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking [J], Ind. Eng. Chem., 1964 (3): 38-45. [8] T. Hengsawad, C. Srimingkwanchai, S. Butnark, D.E. Resasco, S. Jongpatiwut, Effect of Metal–Acid Balance on Hydroprocessed Renewable Jet Fuel Synthesis from Hydrocracking and Hydroisomerization of Biohydrogenated Diesel over Pt-Supported Catalysts[J], Industrial & Engineering Chemistry Research, 2018 (57): 1429-1440. [9] 韩崇仁, 加氢裂化工艺与工程[M], 中国石化出版社, 北京, 2001. [10] A. Soualah, J.L. Lemberton, L. Pinard, M. Chater, P. Magnoux, K. Moljord, Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism[J], Appl. Catal. A, 2008 (336): 23-28. [11] 孟庆磊, 刘百军, 盖有东, 何琳琳, Y/ASA复合材料的制备及加氢裂化性能[J], 燃料化学学报, 2012 (40): 354-358. [12] 张学军, 王宗贤, 郭爱军, 袁宗胜, 王甫村, 高中油型加氢裂化催化剂用Y型沸石的改性研究[J], 燃料化学学报, 2008 (36): 606-609. [13] 徐如人, 分子筛与多孔材料化学[M], 科学出版社, 北京, 2014. [14] S. Liu, J. Ren, S. Zhu, H. Zhang, E. Lv, J. Xu, Y.-W. Li, Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J], J. Catal., 2015 (330): 485-496. [15] S. HyeonBaeck, W. YoungLee, Dealumination of Mg-ZSM-22 and its use in the skeletal isomerization of 1-butene to isobutene[J], Appl. Catal. A, 1998 (168): 171-177. [16] Y. Wang, Z. Tao, B. Wu, J. Xu, C. Huo, K. Li, H. Chen, Y. Yang, Y. Li, Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J], J. Catal., 2015(322): 1-13. [17] W. Huybrechts, G. Vanbutsele, K.J. Houthoofd, F. Bertinchamps, C.S. Laxmi Narasimhan, E.M. Gaigneaux, J.W. Thybaut, G.B. Marin, J.F.M. Denayer, G.V. Baron, P.A. Jacobs, J.A. Martens, Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst[J], Catal. Lett., 2005 (100): 235-242. [18] S.H. Baeck, K.M. Lee, W.Y. Lee, Skeletal isomerization of 1-butene into isobutene over Mg-ZSM-22 modified by the deposition of silicon alkoxide[J], Catal. Lett., 1998(52): 221-225. [19] P. Strode, K.M. Neyman, H. Kniizinger, N. Riisch, Acidic properties of [Al], [Ga] and [Fe] isomorphously substituted zeolites. Density functional model cluster study of the complexes with a probe CO molecule[J], Chem. Phy. Letters., 1995 (240): 547-552. [20] M.S. Stavet, J.B. Nicholas, Density Functional Studies of Zeolites. 2. Structure and Acidity of [T]-ZSM-5 Models (T = B, Al, Ga, and Fe)[J], J. Phys. Chem., 1995 (99): 15046-15061. [21] S. Liu, J. Ren, H. Zhang, E. Lv, Y. Yang, Y.-W. Li, Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J], J. Catal., 2016(335): 11-23. [22] Z. Chen, S. Liu, H. Wang, Q. Ning, H. Zhang, Y. Yun, J. Ren, Y.-W. Li, Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J], J. Catal., 2018 (361): 177-185. [23] Y. Wang, Z. Tao, B. Wu, H. Chen, J. Xu, Y. Yang, Y. Li, Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion[J], Catal. Today, 2016(259): 331-339. [24] 董玉林,张玉荣,张群等.ZnO/HZSM-5对环戊烷芳构化催化性能的研究.精细石油化工[J],1994,(2):35-39. [25] 王子建.碳四烯烃芳构化的研究:[学位论文].北京:石油化工科学研究院,2006. [26] 潘履让,李牛,唐祥海.正戊烷在HZSM-5及ZnHZSM-5上芳构化反应的研究[J].南开大学学报(自然科学),1995,28(1):28-32. [27] 徐佩若,班卡拉 ND,吴指南等.碳四烃在改性HZSM-5分子筛上芳构化研究[J].燃料化学学报,1993,21(2):127-l34. |
相关文章 0
No related articles found! |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3376