沈阳航空航天大学能源与环境学院,辽宁 沈阳 110136
收稿日期:
2018-10-22修回日期:
2019-02-04出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
王力军基金资助:
辽宁省自然科学联合基金项目Effect of oxygen/coal ratio of two-stage entrained flow bed on gasification characteristics of dry coal powder
Lijun WANG*, Lingfeng XU, Xiaocheng DUSchool of Energy and Environment, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
Received:
2018-10-22Revised:
2019-02-04Online:
2019-08-22Published:
2019-08-15Contact:
Li-Jun WANG Supported by:
Liaoning Provincial Natural Science Joint Fund Project摘要/Abstract
摘要: 基于Eulerian?Lagrangian方法建立了两段式干煤粉气流床的三维CFD计算流体动力学模型,利用均相与非均相多步化学反应动力学确定煤气化反应,用k??模型描述气相湍流流动,用随机轨道模型追踪煤粉颗粒的运动轨迹,模拟了气流床内的煤气化过程。在氧/煤质量比为0.9, 1.0和1.1时,基于文献实验条件对不同反应机理进行数值模拟,通过结果对比获得最佳反应机理。考察了氧煤比为1.0时上下两阶段煤/氧比对煤气化特性的影响。结果表明,选用焦炭和挥发物完全燃烧反应、忽略CO参与气相燃烧反应的反应机理(Case E)的模拟结果与实验数据非常吻合,误差小于2%。当一级喷嘴(A?A水平)煤和氧化剂喷入量达到并超过给煤量和进气量的50wt%时,合成气组分、碳转化率和有效成分等气化炉总体性能指标较好。在一级喷嘴喷入70wt%煤和60wt%氧气时碳转化率最大,为99.6%,一级喷嘴喷入50wt%煤和50wt%氧气时合成气组分最佳,最大合成气产率为78.24mol%。
引用本文
王力军 徐凌锋 杜晓成. 两段式气流床氧/煤比对干煤粉气化特性的影响[J]. 过程工程学报, 2019, 19(4): 836-844.
Lijun WANG Lingfeng XU Xiaocheng DU. Effect of oxygen/coal ratio of two-stage entrained flow bed on gasification characteristics of dry coal powder[J]. Chin. J. Process Eng., 2019, 19(4): 836-844.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218303
http://www.jproeng.com/CN/Y2019/V19/I4/836
参考文献
[1] Unlu A, Kayahan U. Pilot scale entrained flow gasification of Turkish lignites [J]. Energy Inst., 2017, 90: 159-165. [2] Dalia A A, Mamdouh A G, Omar Y A, et al. Co-gasification of coal and biomass wastes in an entrained flow gasifier modelling, simulation and integration opportunities [J]. Nat. Gas Sci. Eng., 2017, 37: 126-137. [3] Ahmad R, Saleem I., Clean Hydrogen Energy and Electric Power Production with CO2 Capturing by Using Coal Gasification [J]. Iran. J. Chem. Chem. Eng., 2016,35: 143-152. [4] Dmitry S, Thomas F, Daniel S. Numerical study on entrained-flow gasification performance using combined slag model and experimental characterization of slag properties [J]. Fuel Process. Technol., 2017, 161: 62–75. [7] Michele V, Rahul A, Christian H. Simulation of entrained flow gasification with advanced coal conversion submodels. Part2: Char conversion [J]. Fuel, 2014, 118: 369–384. [8] Wen C Y, Chaung T Z. Entrainment coal gasification modeling [J]. Ind. Eng. Chem. Process Des. Dev., 1979, 18(4): 684-695. [9] Chen C, Horio M, Kojima T. Use of numerical modeling in the design and scale-up of entrained ?ow coal gasi?ers [J]. Fuel, 2001, 80: 1513–1523. [10] Choi Y C, Li X Y, Park T J. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier [J]. Fuel, 2001, 80(15): 2193-2201. [11] Shi S, Zitney S E, Shahnam M. Modelling coal gasification with CFD and discrete phase method [J]. Energ. Inst., 2006, 79(4): 217-221. [12] Vicente W, Ochoa S, Aguillón J. An Eulerian model for the simulation of an entrained flow coal gasifier [J]. Appl. Therm. Eng., 2003, 23(15): 1993-2008. [13] Gerun L, Paraschiv M, Vijeu R, et al. Numerical investigation of the partial oxidation in a two-stage downdraft gasifier[J]. Fuel, 2008, 87(7): 1383-1393. [14] Bouma P H, De G L, Tummers M J. Numerical modelling of an entrained-flow gasification simulator [C]. Asme Pressure Vessels Piping Div Publ PVP, 1999,397: 227-235. [15] Guenther C, Breault R. The effect of gas–solids dispersion on a two fluid model of a transport gasifier [C]. AIChE annual meeting and fall showcase. Cincinnati, OH, 2005. [16] Alvarez L, Gharebaghi M, Jones J M, et al. Numerical investigation of NO emissions from an entrained flow reactor under oxy-coal conditions [J]. Fuel Process. Technol., 2012, 93(1): 53-64. [17] Wang L J, Jia Y J, Sunel K, et al. Numerical analysis on the influential factors of coal gasification performance in two-stage entrained flow gasifier, Appl. Therm. Eng., 2017, 112: 1601–1611. [18] Gao X Y, Zhang Y N, Li B X, et al. Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel [J]. Energ. Convers. Manage., 2016, 10: 120–131. [19] Hyo J J, Dong K S, Jungho H. CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model [J]. Appl. Energ., 2014, 123: 29–36. [20] Unar I N, Wang L J, Pathan A G, et al. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners(MOB) gasifier [J]. Energ. Convers. Manage., 2014, 86: 670-682. [21] Saiful A M, Wijayanta A T, Nakaso K. Redictions of O2/N2 and O2/CO2 Mixture Effects during Coal Combustion using Probability Density Function [J]. novel carbon res., 2010, 2: 12-16. [22] Dong C, Yang Y, Yang R. Numerical modeling of the gasification based biomass co-firing in a 600MW pulverized coal boile [J]. Appl. Energ., 2010 87(9): 2834-2838. [23] Van H C, Kong S C. Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam [J]. Fuel, 2013, 103: 987-996. [24] Jae G L, Jae H K, Hyo J L. Characteristics of entrained flow coal gasification in a drop tube reactor [J]. Fuel, 1996, 75(9): 1035-1042. [25] Silva V B, Rouboa A. Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues [J]. Fuel Processing Technology, 2013, 109: 111-117. [26] Xu S S, Ren Y Q, Wang B M, et al. Development of a novel 2-stage entrained flow coal dry powder gasifier [J]. Applied Energy, 2014, 113: 318-323. [27] Silaen A, Wang T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow [J]. Int. J. Heat Mass Tran., 2010, 53(9): 2074-2091. [28] Jones W P, Launder B E, The prediction of laminarization with a two-equation model of turbulence [J]. Int. J. heat mass tran., 1972,15(2): 301-314. [29] Du S W, Chen W H, Lucas J. Performances of pulverized coal injection in blowpipe and tuyere at various operational conditions [J]. Energ. Convers. Manage., 2007,48(7): 2069-2076. [30] Steiler J M, Lao D, Lebonvallet J L. Development of coal injection in the blast furnace at Usinor Sacilor [J]. Inject Technol. Iron Mak Steel Mak Proc., 1996, 15–32 . [31] Du S W, Chen W H. Numerical prediction and practical improvement of pulverized coal combustion in blast furnace [J]. Int. Commun. Heat Mass, 2006, 33(3): 327-334. [32] Ubhayakar S K, Stickler D B, Von Rosenberg C W. Rapid devolatilization of pulverized coal in hot combustion gases [J]. Symp. (Int.) Combust., 1977, 16(1): 427-436. [33] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier [J]. Fuel, 2006, 85(12):1935-1943. [34] Jianjun N, Qinfeng L, Zhijie Z. Numerical and experimental investigations on gas-particle flow in the Opposed Multi-burner Gasifier [J]. Energy conversion and management, 2009, 50(12):3035-3044. [35] Seo H K, Park S, Lee J, et al. Effects of operating factors in the coal gasification reaction [J]. Korean J Chem Eng, 2011, 28:1851–1858. [36] Lu X, Wang T. Water–gas shift modeling in coal gasification in an entrainedflow gasifier. Part 1: development of methodology and model calibration [J]. Fuel, 2013, 108:629–638. [37] Lu X, Wang T. Water–gas shift modeling in coal gasification in an entrainedflow gasifier–Part 2: gasification application [J]. Fuel, 2013, 108: 620–628. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[12] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[13] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
[14] | 卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438. |
[15] | 南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3319