1. 昆明理工大学冶金与能源工程学院
2. 昆明理工大学
收稿日期:
2018-08-28修回日期:
2018-10-11出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
魏永刚基金资助:
铜熔渣喷吹地沟油还原贫化的基础研究Effect of calcium borate on sedimentation of copper inclusions in copper slag
Yu SHI, Bo LI, Guangping DAI, Shiwei ZHOU, Hua WANG, Yonggang WEI*State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
Received:
2018-08-28Revised:
2018-10-11Online:
2019-06-22Published:
2019-06-20Contact:
Yonggang WEI 摘要/Abstract
摘要: 考察了添加剂CaB2O3对转炉铜渣中夹杂铜沉降效果的影响,并结合铜渣的粘度测试及红外光谱表征,研究其影响机理,采用FactSage软件计算了添加剂对铜渣液相线温度的影响。结果表明,随添加剂含量增大,铜渣中夹杂铜的沉降效果逐渐增强,添加剂含量由0增至6wt%时,底部渣含铜量由4.10wt%增至6.85wt%,这是由于添加剂可有效降低铜渣粘度。随添加剂含量增大,渣粘度降低,但降低效果随温度增大而趋于平缓。随添加剂含量增大,铜渣的硅酸盐结构趋于简化,添加剂通过破坏铜渣复杂的硅酸盐结构降低铜渣粘度。铜渣的液相线温度随添加剂含量增大而减小,添加剂通过减少渣中固体颗粒的方式降低铜渣粘度。
引用本文
石瑀 李博 戴广平 周世伟 王华 魏永刚. 硼酸钙对铜渣中夹杂铜沉降效果的影响[J]. 过程工程学报, 2019, 19(3): 553-559.
Yu SHI Bo LI Guangping DAI Shiwei ZHOU Hua WANG Yonggang WEI. Effect of calcium borate on sedimentation of copper inclusions in copper slag[J]. Chin. J. Process Eng., 2019, 19(3): 553-559.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218271
http://www.jproeng.com/CN/Y2019/V19/I3/553
参考文献
[1] Nadirov R K, Syzdykova L I, Zhussupova A K, et al. Recovery of value metals from copper smelter slag by ammonium chloride treatment [J]. International Journal of Mineral Processing, 2013, 124(22):145-149. [2] M. Deniz TURAN, Z. Abidin SARI, JanD.MILLER. Leaching of blended copper slag in microwave oven [J]. The Chinese Journal of Non ferrous Metals,2017, 27(6):1404-1410. [3] 杨慧芬, 景丽丽, 党春阁. 铜渣中铁组分的直接还原与磁选回收 [J]. 中国有色金属学报, 2011, 21(5):1165-1170. Yang Huifen, Jing Lili, Dang Chunge. Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation [J]. The Chinese Journal of Non ferrous Metals,2011, 21(5):1165-1170. [4] 朱祖泽,贺家齐. 现代铜冶金学 [M]. 北京:科学出版社,2003: 424-425 [5] Suh I K, Waseda Y, Yazawa A. Some Interesting Aspects of Non-ferrous Metallurgical Slags [J]. High Temperature Materials & Processes, 1988, 8(1):65-88. [6] Sridhar R, Toguri J M, Simeonov S. Copper losses and thermodynamic considerations in copper smelting [J]. Metallurgical & Materials Transactions B, 1997, 28(2):191-200. [7] Wilde E D, Bellemans I, Campforts M, et al. Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags [J]. Journal of Sustainable Metallurgy, 2016:1-12. [8] 常化强, 张廷安, 牛丽萍,等. 铜渣贫化技术的研究进展 [C]// 2013. Chang H Q, Zhang T A , Niu L P, et al. Research progress of copper slag dilution technology. [C] // 2013. [9] Yucel O, Sahin F C, Sirin B, et al. Reduction study of copper slag in a DC arc furnace [J]. Scandinavian Journal of Metallurgy, 1999, 28(3):93-99 [10] Rusen A, Geveci A, Topkaya Y A, et al. Effects of Some Additives on Copper Losses to Matte Smelting Slag [J]. JOM, 2016, 68(9):2323-2331. [11] Talapaneni T, Yedla N, Pal S, et al. Experimental and Theoretical Studies on the Viscosity–Structure Correlation for High Alumina-Silicate Melts [J]. Metallurgical & Materials Transactions B, 2017, 48(3):1450-1462. [12] 刘著, 唐萍, 文光华,等. B2O3在稀土钢连铸保护渣中作用机制的研究 [J]. 稀有金属, 2006, 30(4):457-461. Liu Z , Tang P , Wen G H, et al. Research on Mechanism of B2O3 in Mold Powder during Continuous Casting of Rare Earth Steel [J].Chinese Journal of Rare Metals, 2006, 30(4):457-461. [13] 王宏明, 李桂荣, 徐明喜,等. 改质剂对LATS精炼钢包渣粘度的影响 [J]. 过程工程学报, 2006, 6(2):227-230. Wang H M, Li G R, Xu H M, et al. Effect of Additives on Viscosity of LATS Refining Ladle Slag [J]. The Chinese Journal of Process Engineering, 2006, 6(2):227-230. [14] Park H, Park J Y, Kim G H, et al. Effect of TiO2 on the Viscosity and Slag Structure in Blast Furnace Type Slags [J]. Steel Research International, 2012, 83(2):150-156. [15] Zhang Z, Xie B, Zhou W, et al. Structural Characterization of FeO–SiO2–V2O3 Slags Using Molecular Dynamics Simulations and FT-IR Spectroscopy [J]. Isij International, 2016, 56(5). [16] Park J H, Kim H, Dong J M. Novel Approach to Link between Viscosity and Structure of Silicate Melts via, Darken’s Excess Stability Function: Focus on the Amphoteric Behavior of Alumina [J]. Metallurgical & Materials Transactions B, 2008, 39(1):150-153. [17] Wang H M, Li G R, Dai Q X, et al. CAS-OB refining: slag modification with B2O3-CaO and CaF2-CaO [J]. Ironmaking & Steelmaking, 2013, 34(4):350-353. [18] Wu L, Ek M, Song M, et al. The Effect of Solid Particles on Liquid Viscosity [J]. Steel Research International, 2011, 82(4):388-397. [19] Roscoe R. The viscosity of suspensions of rigid spheres [J]. British Journal of Applied Physics, 2002, 3(8):267. [20] Ren S, Zhang J, Wu L, et al. Influence of B2O3 on Viscosity of High Ti-bearing Blast Furnace Slag [J]. Isij International, 2012, 52(6):984-991. [21] Rusen A, Derin B, Geveci A, et al. Investigation of Copper Losses to Synthetic Slag at Different Oxygen Partial Pressures in the Presence of Colemanite[J]. JOM, 2016, 68(9):2316-2322. |
相关文章 15
[1] | 戴广平 石瑀 周世伟 李博 魏永刚. 铜熔渣喷吹地沟油还原贫化[J]. 过程工程学报, 2019, 19(4): 759-766. |
[2] | 郑贺 李博 周浩 魏永刚 王华. 橡胶籽油还原作用下铜渣的贫化[J]. 过程工程学报, 2019, 19(3): 589-596. |
[3] | 杨双平 姬正宙 魏起书 庞锦琨 王冲. 基于响应曲面法的铁水预熔脱磷渣组成优化[J]. 过程工程学报, 2019, 19(2): 354-361. |
[4] | 王昊 罗中秋 周新涛 李娜秋 张建辉 和森. 铜渣基草酸盐水泥的制备及其性能[J]. 过程工程学报, 2019, 19(2): 427-433. |
[5] | 杨双平 魏起书 王琛 杨波 庞锦琨. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J]. 过程工程学报, 2018, 18(5): 1013-1019. |
[6] | 张鹏 王雨露 朱国成 焦昭杰 张伟. 近红外光谱法测定CTS-GSH中巯基含量[J]. 过程工程学报, 2018, 18(4): 757-763. |
[7] | 钟源 杜海存 张莹 彭慧颖. 单向温度梯度下异质液滴的热毛细迁移[J]. 过程工程学报, 2018, 18(4): 697-703. |
[8] | 孙恒 胡晓军 胡小杰 张国华 郭占成 周国治. 熔融钢渣水热制氢的实验验证及热力学分析[J]. 过程工程学报, 2017, 17(2): 292-298. |
[9] | 佟志芳乔家龙陈涛. 炉渣组分对CaO-Al2O3-SiO2-TiO2-MgO-Na2O渣系粘度的影响[J]. 过程工程学报, 2016, 16(2): 189-196. |
[10] | 杜冰王志孙丽媛马文会葛治陈杭. 复合熔析精炼去除工业硅中的非金属杂质硼[J]. 过程工程学报, 2015, 15(3): 393-399. |
[11] | 谢晓峰李磊王飞蔚俊强邱士伟张仁杰. 铜渣氯化烟尘中铜的湿法回收[J]. 过程工程学报, 2015, 15(3): 424-429. |
[12] | 梁珂艳陶秀祥惠鹏岳. 用落球法研究气固浓相流化床表观粘度[J]. , 2014, 14(6): 901-906. |
[13] | 张旭升吕庆刘小杰郄亚娜. 添加剂对中钛炉渣性能的影响[J]. , 2014, 14(5): 809-815. |
[14] | 袁骧张建良毛瑞刘征建朱广跃. 高炉低钛渣粘度和熔化性能[J]. , 2014, 14(4): 664-670. |
[15] | 高永建于得江韩伟张光晋. 长碳链二元酸酯的合成及其物化性能[J]. , 2013, 13(5): 831-835. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3271