删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黏性颗粒团聚机理及流化特性研究进展

本站小编 Free考研考试/2022-01-01

祁晗璐, 王嘉骏*, 顾雪萍, 冯连芳
浙江大学化学工程与生物工程学系,化学工程联合国家重点实验室,浙江 杭州 310027
收稿日期:2018-02-19修回日期:2018-04-19出版日期:2019-02-22发布日期:2019-02-12
通讯作者:王嘉骏

基金资助:国家重点研发计划资助;国家自然科学基金资助项目 (U1302274)

Research progress on agglomeration mechanisms and fluidization behavior of cohesive particles

Hanlu QI, Jiajun WANG*, Xueping GU, Lianfang FENG
State Key Lab of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
Received:2018-02-19Revised:2018-04-19Online:2019-02-22Published:2019-02-12
Contact:WANG Jia-jun

Supported by:;Projects (U1302274) supported by the National Science Foundation of China




摘要/Abstract


摘要: 黏性力的存在导致黏性颗粒在流化过程中易发生团聚,干扰正常的流态化。近年来,黏性颗粒流的研究重心逐渐转移到本征的团聚机理和流化特性。本工作综述了4种主要黏性力的力学模型、团聚判据及流态化实验与模拟研究进展,从力、运动及动力学的角度阐述了黏性力作用机制和黏性颗粒流化特性。分析表明,在颗粒尺度上,4种黏性力发展程度差异较大,黏性力动力学模型和团聚过程机理将成为未来研究的主要方向。在反应器尺度上,耦合黏性力模型的离散单元法模拟将继续作为重要的研究方法,其中,机理模型和计算能力是后续模拟中需要突破的重点。

引用本文



祁晗璐 王嘉骏 顾雪萍 冯连芳. 黏性颗粒团聚机理及流化特性研究进展[J]. 过程工程学报, 2019, 19(1): 55-63.
Hanlu QI Jiajun WANG Xueping GU Lianfang FENG. Research progress on agglomeration mechanisms and fluidization behavior of cohesive particles[J]. Chin. J. Process Eng., 2019, 19(1): 55-63.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218139
http://www.jproeng.com/CN/Y2019/V19/I1/55







[1]Kennedy D, Norman C.What don't we know?[J].Science, 2005, 309(5731):75-75 [2]孙其诚, 王光谦.颗粒物质力学导论[M]. 北京:科学出版社, 2009:前言1. [3]Sun Q, Wang G.Introduction to the mechanics of particulate matter [M]. Beijing: Science Press, 2009: preface 1. [4]陆夕云, 林建忠.能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J].科学通报, 2017, 62(11):1115-1118 [5]Lu X, Lin J.Can we develop a general theory of the dynamics of turbulent flows and motion of granular materials?[J].Chinese Science Bulletin, 2017, 62(11):1115-1118 [6]Zhou Y, Shi Q, Huang Z, et al.Particle agglomeration and control of gas-solid fluidized bed reactor with liquid bridge and solid bridge coupling actions[J].Chemical Engineering Journal, 2017, 330:840-851 [7]张永俊, 王嘉骏, 顾雪萍, 等.黏性颗粒流态化的气固流动模型研究进展[J].过程工程学报, 2014, 14(3):535-540 [8]Zhang Y, Wang J, Gu X, et al.Research progress in numerical models on gas-solid fluidization of cohesive particles[J].The Chinese Journal of Process Engineering, 2014, 14(3):535-540 [9]Zhou T, Li H.Force balance modelling for agglomerating fluidization of cohesive particles[J].Powder Technology, 2000, 111(1):60-65 [10]Geldart D.Types of gas fluidization[J].Powder Technology, 1973, 7(5):285-292 [11]马吉亮.接触式粘性力对颗粒流态化的影响机理研究[D]. 东南大学, 2016.1-11 [12]Ma J.Investigation on fluidization dynamics of particles with contact cohesive force[D]. Southeast University, 2016.1-11 [13]Liang X, Duan H, Zhou T, et al.Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J].Advanced Powder Technology, 2014, 25(1):236-243 [14]王希.粘性大颗粒流态化过程流化粘结特性研究[D]. 清华大学, 2011.1-22. [15]Wang X.Study on fluidizationand bond characteristics of coarse cohesive particles in fluidized process[D]., Tsinghua University, 2011.1-22. [16]Lamarche C Q, Leadley S, Liu P, et al.Method of quantifying surface roughness for accurate adhesive force predictions[J].Chemical Engineering Science, 2016, 158:140-153 [17]Liu P, Lamarche C Q, Kellogg K M, et al.Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness[J].Aiche Journal, 2016, 62(10):3529-3537 [18]Lu H, Zhong J, Cao G P, et al.Gravitational discharge of fine dry powders with asperities from a conical hopper[J].Aiche Journal, 2017, 64(2):427-436 [19]Liu G, Li S, Yao Q.A JKR-based dynamic model for the impact of micro-particle with a flat surface[J].Powder Technology, 2011, 207(1-3):215-223 [20]Chaouki J, Chavarie C, Klvana D, et al.Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J].Powder Technology, 1985, 43(2):117-125 [21]Iwadate Y, Horio M.Prediction of agglomerate sizes in bubbling fluidized beds of group C powders[J].Powder Technology, 1998, 100(2):223-236 [22]Lauga C, Chaouki J, Klvana D, et al.Improvement of the fluidizability of NiSiO2 aerogels by reducing interparticle forces[J].Powder Technology, 1991, 65(s 1–3):461-468 [23]杨遥.静电流化床中流体力学特性的调控机制研究[D]. 浙江大学, 2016.1-38. [24]Yang Y.Regulation of hydrodynamics in the fluidized bed with electrostatic[D]., Zhejiang University, 2016.1-38. [25]Fotovat F, Bi X T, Grace J R.Electrostatics in gas-solid fluidized beds: A review[J].Chemical Engineering Science, 2017, 173:303-334 [26]柳冠青.范德华力和静电力下的细颗粒离散动力学研究[D]. 清华大学, 2011.1-14. [27]Liu G.Discrete element methods of fine particles dynamics in presence of van der waals and electrostatic forces[D]. Tsinghua University, 2011.1-14. [28]Wang F, Wang J, Yang Y.Distribution of electrostatic potential in a gas?solid fluidized bed and measurement of bed level[J].Industrial & Engineering Chemistry Research, 2008, 47(23):9517-9526 [29]Song D, Mehrani P.Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J].Powder Technology, 2017, 316:166-170 [30]Song D, Salama F, Matta J, et al.Implementation of faraday cup electrostatic charge measurement technique in high-pressure gas-solid fluidized beds at pilot-scale[J].Powder Technology, 2016, 290:21-26 [31]Liu G, Marshall J S, Li S Q, et al.Discrete-element method for particle capture by a body in an electrostatic field[J].International Journal for Numerical Methods in Engineering, 2010, 84(13):1589-1612 [32]Dong K, Zhang Q, Huang Z, et al.Experimental investigation of electrostatic effect on bubble behaviors in gas‐solid fluidized bed[J].Aiche Journal, 2015, 61(4):1160-1171 [33]Dong K, Zhang Q, Huang Z, et al.Experimental investigation of electrostatic effect on particle motions in gas‐solid fluidized beds[J].Aiche Journal, 2015, 61(11):1-14 [34]Mikami T, Kamiya H, Horio M.The mechanism of defluidization of iron particles in a fluidized bed[J].Powder Technology, 1996, 89(3):231-238 [35]郭庆杰, 王昕, 岳光溪, 等.高温流化床的流化特性及结焦非流化行为[J].燃烧科学与技术, 2002, 8(2):130-134 [36]Guo Q, Wang X, Yue G, et al.Flow characteristics and defluidization behavior with agglomeration at high temperature fluidized bed[J].Journal of Combustion Science and Technology, 2002, 8( 2):130-134 [37]赵硕, 栾超, 由长福.温度、接触压力与时间对燃煤飞灰固体桥力的影响规律[J].化工学报, 2016, 67(6):2542-2547 [38]Zhao S, Luan C, You C.Effect of temperature,contact pressure and duration on solid-bridge force of coal ash[J].Journal of Chemical Industry and Engineering(China), 2016, 67(6):2542-2547 [39]Ennis B J, Li J, Tardos G I, et al.The influence of viscosity on the strength of an axially strained pendular liquid bridge[J].Chemical Engineering Science, 1990, 45(10):3071-3088 [40]Mikami T, Kamiya H, Horio M.Numerical simulation of cohesive powder behavior in a fluidized bed[J].Chemical Engineering Science, 1998, 53(10):1927-1940 [41]Shi D, Mccarthy J J.Numerical simulation of liquid transfer between particles[J].Powder Technology, 2008, 184(1):64-75 [42]Girardi M, Radl S, Sundaresan S.Simulating wet gas–solid fluidized beds using coarse-grid CFD-DEM[J].Chemical Engineering Science, 2016, 144:224-238 [43]韩笑.气固流化床中持液颗粒的流化特性及反应器模型研究[D]. 浙江大学, 2013.34-49. [44]Han X.Research on fluidization characteristics of liquid-containing particles and reactor modeling in gas-solid fluidized bed [D]., Zhejiang University, 2013.34-49. [45]Yakov I, Rabinovich, Madhavan S, Esayanur, Brij M, Moudgil.Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[J].Langmuir: the ACS journal of surfaces and colloids, 2005, 21(24):10992-7 [46]Boyce C M, Ozel A, Kolehmainen J, et al.Analysis of the effect of small amounts of liquid on gas–solid fluidization using CFD‐DEM simulations[J].Aiche Journal, 2017, 63(12):5290-5302 [47]Wang T, He Y, Tang T, et al.Experimental and numerical study on a bubbling fluidized bed with wet particles[J].Aiche Journal, 2016, 62(6):1970-1985 [48]Askarishahi M, Salehi M S, Radl S.Full‐physics simulations of spray‐particle interaction in a bubbling fluidized bed[J].Aiche Journal, 2017, 63(7):2569-2587 [49]Wu M, Radl S, Khinast J G.A model to predict liquid bridge formation between wet particles based on direct numerical simulations[J].Aiche Journal, 2016, 62(6):1877-1897 [50]Weber M W, Hrenya C M.Square-well model for cohesion in fluidized beds[J].Chemical Engineering Science, 2006, 61(14):4511-4527 [51]Ennis B J, Tardos G, Pfeffer R.A microlevel-based characterization of granulation phenomena[J].Powder Technology, 1991, 65(1–3):257-272 [52]Boyce C M, Ozel A, Kolehmainen J, et al.Growth and breakup of a wet agglomerate in a dry gas–solid fluidized bed[J].Aiche Journal, 2017, 63(7):2520-2527 [53]Shao J, Guo Z, Tang H.Influence of temperature on sticking behavior of iron powder in fluidized bed[J].Isij International, 2011, 51(8):1290-1295 [54]Ge W, Wang W, Yang N, et al.Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm[J].Chemical Engineering Science, 2011, 66(19):4426-4458 [55]Li J, Kong J, He S, et al.Self-agglomeration mechanism of iron nanoparticles in a fluidized bed[J].Chemical Engineering Science, 2017, 177:455-463 [56]Zi C, Lungu M, Huang Z, et al.Investigation of unstable solids circulation behavior in a circulating fluidized bed with sweeping bend return using pressure frequency analysis[J].Powder Technology, 2016, 294:159-167 [57]Zhou Y, Yang L, Lu Y, et al.Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique[J].Chemical Engineering Journal, 2017, 334:1484-1492 [58]Yang Y, Huang Z, Zhang W, et al.Effects of agglomerates on electrostatic behaviors in gas–solid fluidized beds[J].Powder Technology, 2016, 287:139-151 [59]Zhang Q, Dong K, Zhou Y, et al.A comparative study of electrostatic current and pressure signals in a MSFC gas–solid fluidized bed[J].Powder Technology, 2016, 287:292-300 [60]Yang Y, Zhang Q, Zi C, et al.Monitoring of particle motions in gas-solid fluidized beds by electrostatic sensors[J].Powder Technology, 2017, 308:461-471 [61]Penn A, Tsuji T, Brunner D O, et al.Real-time probing of granular dynamics with magnetic resonance[J].Science Advances, 2017, 3(9):e1701879- [62]Yang Y, Zi C, Huang Z, et al.CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds[J].Powder Technology, 2016, 308:422-433 [63]Kolehmainen J, Ozel A, Boyce C M, et al.A hybrid approach to computing electrostatic forces in fluidized beds of charged particles[J].Aiche Journal, 2016, 62(7):2282-2295 [64]Liu D, Van Wachem B G M, Mudde R F, et al.An adhesive CFD‐DEM model for simulating nanoparticle agglomerate fluidization[J].Aiche Journal, 2016, 62(7):2259-2270 [65]Gan J, Zhou Z, Yu A.CFD–DEM modeling of gas fluidization of fine ellipsoidal particles[J].Aiche Journal, 2016, 62(1):62-77 [66]Wu M, Khinast J G, Radl S.The effect of liquid bridge model details on the dynamics of wet fluidized beds[J].Aiche Journal, 2018, 64:437-456




[1]张增绪 王永昌 喻寅 刘晓星 . 部分烧结陶瓷材料力学特性的DEM模拟[J]. 过程工程学报, 2021, 21(3): 341-352.
[2]薛沚怡 钱付平 朱景晶 董伟 韩云龙 鲁进利. 高湿黏性颗粒在聚四氟乙烯微孔膜滤料表面沉积特性的数值模拟[J]. 过程工程学报, 2020, 20(5): 521-530.
[3]何野维 李臻 李心心 姜泽毅 林林. 竖式移动床层中散料颗粒破碎的离散元分析[J]. 过程工程学报, 2020, 20(12): 1377-1385.
[4]吴朝阳 先琛 贾吉祥 樊希安 廖相巍 张明亚. 流态化气相沉积中FeSi5Cr5.5/SiO2核壳结构的演化过程[J]. 过程工程学报, 2020, 20(11): 1321-1328.
[5]侯全勋 董世杰 张泉 冯勇进 王晓宇 刘晓星. 滚筒端面对颗粒物料轴向混合过程影响的离散模拟[J]. 过程工程学报, 2019, 19(5): 949-958.
[6]孙昊延 朱庆山 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018, 18(6): 1145-1159.
[7]王晓赞 姜勇 李飞 王维. 基于MP-PIC方法改进EMMS/DP曳力模型[J]. 过程工程学报, 2018, 18(6): 1187-1197.
[8]李洪钟. 过程所与流态化-庆祝过程工程研究所建所60周年[J]. 过程工程学报, 2018, 18(4): 657-668.
[9]刘强 苏景林 战金辉 许光文 刘晓星. 内构件对移动床内颗粒物料流动特性影响的离散模拟[J]. 过程工程学报, 2017, 17(6): 1163-1169.
[10]孟凡凯 尹少武 张沛 刘传平 王立. 高速气流冲击下微细颗粒的输送特性[J]. 过程工程学报, 2017, 17(2): 231-236.
[11]徐瑾睿 钱付平 鲁进利 韩云龙. 褶型空气过滤介质微观结构三维建模及其含尘性能模拟[J]. , 2017, 17(1): 170-177.
[12]赵占一孟文俊孙晓霞蒋权张立勇. 垂直螺旋输送机中颗粒速度的分布[J]. 过程工程学报, 2015, 15(6): 909-915.
[13]宋国良齐晓宾宋维健吕清刚. 新疆准东高碱煤流态化气化过程中碱金属的迁移特性[J]. 过程工程学报, 2015, 15(4): 541-547.
[14]李超程树森赵国磊尹怡欣. 串罐式无钟高炉炉顶炉料运动的离散元分析[J]. , 2015, 15(1): 1-8.
[15]张永俊王嘉骏顾雪萍冯连芳. 黏性颗粒流态化的气固流动模型研究进展[J]. , 2014, 14(3): 535-540.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3205
相关话题/过程 工程 浙江大学 力学 清华大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 液滴滴浸微通道入口段的动力学特性分析
    李培生,连小龙,张莹*,赵万东,刘强,卢敏,杜鹏南昌大学机电工程学院,江西南昌330031收稿日期:2018-03-01修回日期:2018-09-21出版日期:2019-02-22发布日期:2019-02-12通讯作者:张莹基金资助:国家自然科学基金Dynamicanalysisofdropleti ...
    本站小编 Free考研考试 2022-01-01
  • 离心场强化晶硅切割废料Si/SiC分离过程油水分相
    王占奎1,2,王东2*,王志2,马文会1,万小涵11.昆明理工大学冶金与能源工程学院,云南昆明6500932.中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京100190收稿日期:2018-04-10修回日期:2018-07-13出版日期:2019-02-2 ...
    本站小编 Free考研考试 2022-01-01
  • 厌氧活性污泥产电特性及产电过程微生物群落变化
    丁建军1,2,彭小伟1*,韩业君1*1.中国科学院过程工程研究所生化工程国家重点实验室,北京1001902.中国科学院大学生命科学学院,北京100049收稿日期:2018-03-19修回日期:2018-04-23出版日期:2019-02-22发布日期:2019-02-12通讯作者:韩业君基金资助:国 ...
    本站小编 Free考研考试 2022-01-01
  • 蛋白质体系分子动力学模拟的前沿进展-从介科学角度重新审视
    任瑛*,徐骥中国科学院过程工程研究所多相复杂系统国家重点实验室,北京100190收稿日期:2018-06-28修回日期:2018-09-04出版日期:2018-12-22发布日期:2018-12-19通讯作者:任瑛基金资助:国家自然科学基金;中国科学院过程工程研究所介科学研究中心项目;中国科学院过程 ...
    本站小编 Free考研考试 2022-01-01
  • 考虑水力学可行性的反应精馏塔板持液量设计及优化
    林子昕1,安然1,安维中1*,黄连喜1,别海燕1,朱建民21.中国海洋大学化学化工学院,山东青岛2660712.辽宁奥克化学集团,辽宁辽阳111003收稿日期:2017-12-07修回日期:2018-03-23出版日期:2018-12-22发布日期:2018-12-19通讯作者:安维中基金资助:内部 ...
    本站小编 Free考研考试 2022-01-01
  • 酯交换法制备碳酸二甲酯过程模拟与系统火用分析
    陈嵩嵩1,2,董丽1,张军平1,2,成卫国1*,华炜31.中国科学院过程工程研究所绿色过程与工程重点实验室,北京1001902.中国科学院大学化学化工学院,北京1000493.中石化北京燕山分公司,北京102500收稿日期:2018-02-19修回日期:2018-04-02出版日期:2018-12- ...
    本站小编 Free考研考试 2022-01-01
  • 液相氧化反应失控过程的动态流程模拟
    张帆1*,陈萌萌2,邹晋21.化学品安全控制国家重点实验室,山东青岛2660712.青岛科技大学环境与安全工程学院,山东青岛266042收稿日期:2018-03-19修回日期:2018-09-21出版日期:2018-11-22发布日期:2018-11-19通讯作者:张帆基金资助:典型危险化学品爆炸机 ...
    本站小编 Free考研考试 2022-01-01
  • 文丘里洗涤器内硫化氢气体碱液吸收过程的CFD模拟
    杨帅1,赵祥迪1,徐银谋1,2,王正1,袁纪武1,孙万付1*1.中国石化青岛安全工程研究院化学品安全控制国家重点实验室,山东青岛2660712.青岛科技大学机电工程学院,山东青岛266042收稿日期:2018-03-29修回日期:2018-07-24出版日期:2018-11-22发布日期:2018- ...
    本站小编 Free考研考试 2022-01-01
  • 高固多相生物反应工程
    王岚1,刘阳1,2,陈洪章1?1.中国科学院过程工程研究所生物质炼制工程北京市重点实验室,北京1001902.中国科学院大学化学工程学院,北京100190收稿日期:2018-06-12修回日期:2018-07-25出版日期:2018-10-22发布日期:2018-10-12通讯作者:陈洪章基金资助: ...
    本站小编 Free考研考试 2022-01-01
  • 耦合相变储热的金属氢化物反应器吸氢过程模拟
    尧兢,朱鹏飞,任佳伟,吴震*西安交通大学化学工程与技术学院,陕西西安710049收稿日期:2017-12-22修回日期:2018-02-07出版日期:2018-10-22发布日期:2018-10-12通讯作者:吴震基金资助:国家自然科学基金资助项目;陕西省自然科学基金;中国博士后科学基金Simula ...
    本站小编 Free考研考试 2022-01-01